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Abstract

In the recent years, automated speech recognition has been the main drive behind the ad-
vent of spoken language interfaces, but at the same time a severe limiting factor in the
development of these systems. We believe that increased robustness in the face of recogni-
tion errors can be achieved by making the systems aware of their own misunderstandings,
and employing appropriate recovery techniques when breakdowns in interaction occur. In
this paper we address the first problem: the development of an utterance-level confidence
annotator for a spoken dialog system. After a brief introduction to the CMU Communica-
tor spoken dialog system (which provided the target platform for the developed annotator),
we cast the confidence annotation problem as a machine learning classification task, and
focus on selecting relevant features and on empirically identifying the best classification
techniques for this task. The results indicate that significant reductions in classification
error rate can be obtained using several different classifiers. Furthermore, we propose a
data driven approach to assessing the impact of the errors committed by the confidence an-
notator on dialog performance, with a view to optimally fine-tuning the annotator. Several
models were constructed, and the resulting error costs were in accordance with our intu-
ition. We found, surprisingly, that, at least for a mixed-initiative spoken dialog system as
the CMU Communicator, these errors trade-off equally over a wide operating characteristic
range.



1 Introduction

Over the recent years, speech recognition technology has been making steady and significant
progress. Together with advances in robust parsing techniques, natural language generation
algorithms, and the advent of high-quality speech synthesis systems, it has paved the way
for the emergence of complex, interactive spoken dialog systems.

A large number of these systems are currently under development in various universities
and research labs across the world: Communicator [1, 2, 3] (CMU and others), Jupiter [4],
Mercury [5] (MIT), ELVIS [8], How May I Help You? [9] (AT&T) , TRAINS/TRIPS [11]
(Rochester University), WAXHOLM [10] (TMH), to name just a few. Other systems have
already successfully transitioned into day-to-day use – for instance, United Airlines makes
use of a spoken dialog system called SIMON to handle claims for missing and delayed
luggage. Companies like TellMe [33], BeVocal [34], HeyAnita [35] successfully provide
various platforms and applications to deliver voice dialing, messaging and a large diversity
of customer care services. These systems operate across a variety of domains, but, given
the limitations in subjacent technologies, most of them fall into one of two categories: they
either act like spoken language front-ends for an information access system, or as simple
spoken language command-and-control interfaces to various devices. More recently, new
efforts aim at the development of other, more sophisticated types of natural language based
interactive agents, like personal assistants, taskable agents, interactive tutors, call-routing
systems, embodied conversational agents, etc.

Automatic recognition of spontaneous speech is still imperfect at best, and, although
it is the main drive behind the advent of spoken language interfaces, it also is one of
the most severe limiting factors in the development of these systems. Small changes in
the environment, microphone or telephone line quality have a great impact on, and can
seriously impair recognition performance. Moreover, as spoken dialog systems are in gen-
eral targeted to large populations, speaker variability (i.e. pronunciation style, native and
non-native accents, etc) represents another major concern. When adding to this mix the
disfluencies (stutters, restarts, false-starts, coughs and various other acoustical non-lexical
events) characteristic to spoken language, the recognition error rates jump from a typical
8-10% for read speech to 20-30% for spontaneous speech.

The impact of recognition errors on a spoken dialog system is in most cases significant.
Typically, the recognition errors will propagate to the upper levels of the system - language
understanding (semantic parsing) and dialog management. If the parser lacks robustness,
even the smallest recognition error can ruin the whole language understanding process: if
no semantic representation of the input can be generated, we have a non-understanding

error. Moreover, even if the parsing succeeds, the misrecognition may still persist in the
parse and will be propagated to the dialog management level - in this case we are dealing
with a misunderstanding. The system will generally take the misunderstanding as fact
and will act using invalid information. When this happens, a simple recognition error can
completely compromise the success of the interaction, as the example in Figure 1 illustrates.
The system is unaware of the problem because it blindly trusts its inputs, and has no means
to judge how well the conversation is proceeding.

One approach to addressing the problem of recognition errors is therefore to increase
the robustness of these systems when faced with misunderstandings. We believe that this
can be achieved by creating an effective performance monitoring and recovery process: after
all, human-human conversations are also affected by misunderstandings, but we typically
manage to reestablish a mutual ground by employing various confirmation and clarification
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This sample conversation was collected from the CMU Communicator [1, 2], a spo-
ken dialog system operating in the air-travel planning domain. The system’s utter-
ances are prefixed by S:, and the user’s utterances by U:. The actual recognized
utterances are also presented in square brackets. In turn 4, the user volunteers his
name (omitted here for privacy reasons), but this is misrecognized by the system
for [ATHENS IN AKRON]. This simple misunderstanding throws the system on a
wrong path and ruins the whole interaction, to the point where the user decides to
restart the whole conversation.

1 S: Are you a registered user ?

2 U: No I’m not. No [NO I’M NOT NO]
3 S: What is your full name ?

4 U: User Name [ATHENS IN AKRON]
5 S: There is an Athens in Georgia and in Greece. Which

destination did you want ?

6 U: Neither [NEITHER]
7 S: I’m sorry, I didn’t catch that. There is an Athens in

Georgia and in Greece. Which destination did you want ?

8 U: Georgia [GEORGIA]
9 S: A flight from Athens... Where do you want to go ?

10 U: Start over [START OVER]
11 S: Do you really want to start over ?

12 U: Yes [YES]
13 S: What city are you leaving from ?

14 U: Hamilton, Ontario [HILTON ONTARIO]
15 S: Sorry, I’m not sure I understood what you said. Where

are you leaving from ?

16 U: Hamilton [HILTON]
17 S: I’m still having trouble understanding you. To go on, I

need you to answer the following question. What city

are you leaving from ?

18 U: Toronto [TORONTO]

Figure 1: Sample session affected by misunderstandings in the CMU Communicator spoken
dialog system

techniques. The two key ingredients needed to spawn this desired robustness are: (1) we
need to make the systems aware of their own misunderstandings, and we need a quantita-
tive assessment of the impact of these misunderstandings on dialog performance. Solving
this first set of problems will serve as a basis for the second part of the solution, (2) the
development of a set of appropriate recovery techniques that are to be used when such
breakdowns in interaction are detected.

In this paper we address the first of these two problems: we present the development
of an utterance-level confidence annotator for the Carnegie Mellon Communicator system,
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together with cost models for the errors it commits.
The confidence annotation problem has been investigated previously [12, 13, 14, 15].

Most of these efforts were focused on how to detect the decoding errors made by the speech
recognizer outside the context of a spoken dialog system, and thus the proposed schemes
work mainly at the frame, phoneme, or word level. For instance, word-level confidence
annotation assigns a reliability tag to each word token in the decoder hypothesis. Typically
a two-class annotation scheme is used, which marks the word instance correct or incorrect.
However, this type of model is not always sufficient for dialog systems. A more desirable so-
lution would be an annotator which integrates information from multiple knowledge sources
existent in the dialog system, and which outputs a continuous score representing the degree
of belief in correct perception of a certain user utterance.

More recently, attempts have been made to use features from the other levels of the
dialog system in deriving confidence metrics. For example [16] reports a study using de-
coder, language model and parsing features with a neural network classifier. Others [17]
have addressed the second part of our stated problem, and devised ways to use confidence
metrics in the upper levels of language understanding and dialog management in order to
achieve more flexible dialog and clarification strategies.

In this work, we also start by casting the problem of confidence annotation as a machine-
learning task. A set of 12 relevant features from three different knowledge sources in the
dialog system (speech recognition, parsing and dialog management) are identified and used
to train several classifiers in an attempt to empirically establish which performs best in this
task. Furthermore, in the second part of the paper (Section 4) we perform an empirical
evaluation of the impact of confidence annotation errors on the system’s performance. We
then show how the costs of errors resulting from the constructed models could be used to
optimally fine-tune the confidence annotator. In this process we obtain the notable result
that, at least for a mixed-initiative spoken dialog system like the CMU Communicator,
these errors trade-off almost equally over a wide operating range.

The rest of the paper is organized as follows: we continue with a brief introduction
to the Carnegie Mellon Communicator spoken dialog system, as it sets the framework for
our work. Then, in Section 3, we present the development of a binary utterance-level
confidence annotator, and comment on its extension to a continuous, probability-score
annotator. Section 4 addresses the issue of modelling the costs of the various types of
errors that the developed annotator commits, with the view to fine-tuning its performance.
Lastly, Section 5 summarizes the insights gained from this work, presents our conclusions
and indicates several directions for future research.

2 The Carnegie Mellon Communicator

We briefly present the Carnegie Mellon Communicator spoken dialog system as it provides
the framework and the target platform for the development of the utterance-level confidence
annotator. The CMU Communicator is a telephone-based spoken dialog system that oper-
ates in the air-travel planning domain. It can engage in complex, mixed-initiative conversa-
tions with the users, gathering constraints, constructing multi-leg itineraries and handling
local arrangements (i.e. hotel reservations and car rentals) for each of the visited cities.
The system uses real-time flight information collected from the web and knows of about five
hundred cities in the United States and abroad. For more specific information on the func-
tionality of the CMU Communicator and its components, the interested reader is pointed
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to [1, 2, 3]. The source code for the CMU Communicator has recently been made publicly
available under an open-source license (see www.speech.cs.cmu.edu/Communicator).

Structurally, the CMU Communicator is based on the Galaxy [19] architecture. The
system is composed of a series of parallel modules (i.e. speech recognition, understanding,
synthesis, dialog management, etc.) that interact with each other by means of a central
programmable traffic-router - the Galaxy Hub. Below we briefly comment on the main
components of this system, with a focus on aspects relevant to the construction of the
utterance-level confidence annotator.

The CMU Communicator employs the SPHINX-II decoder [20] in real-time mode to per-
form continuous speech recognition. In the configuration we are currently using, SPHINX
provides a limited form of word-level confidence annotation: each word token in the decoder
hypothesis is marked as either being recognized with a high confidence rating or not. Upon
completion of the decoding phase, the top-level hypothesis is passed to the PHOENIX
parser [21], which, based on a hand-written semantic grammar, outputs the sequence of
semantic concepts extracted from the utterance.

Subsequently, the parsing result is passed to HELIOS - the component responsible for
detecting possible misunderstandings. Previous to this work, HELIOS employed a simple
heuristic rule based on parsing coverage and fragmentation. When parse coherence was
very low, this component raised a Garble flag, indicating to the upper levels of the dialog
system that the current utterance is most likely a misunderstanding.

At the core of the CMU Communicator lies the AGENDA Dialog Manager [3], which
controls the interaction with the user, steering the conversation appropriately. Its actions
are controlled by a set of handlers that are dynamically ordered into an agenda, as the user
advances through the task. Each (unblocked) handler is given the chance to attach to and
consume concepts occurring in the input parse, and can trigger calls to other task agents
(i.e. web-based flight retrieval), or can invoke the natural language generation component
to provide a response to the user. In the current system, Garble utterances are handled
by signaling the misunderstanding to the user, and repeating the previous system prompt.

The natural language generation component used in Communicator relies on a mixture
of template-based and stochastic sentence generation [22]. Finally, the resulting prompt is
synthesized using a limited domain unit selection synthesis, based on the Festival Speech
Synthesis System [23].

In the next sections, we present the development and analysis of a new utterance-level
confidence annotation mechanism, as a replacement and improvement over the rule-based
misunderstanding detector previously employed by HELIOS.

3 Utterance Level Confidence Annotation

The problem of utterance-level confidence annotation can naturally be cast as a machine
learning classification task: given the current user utterance, select a set of relevant features,
and use them to classify the utterance as correctly understood or not. Note that there are
at least two different flavors to this problem: on one hand, one could be interested only
in accepting or rejecting an utterance, in which case the problem reduces to a binary
classification task. Alternatively, one might be interested in obtaining a continuous score
reflecting the probability of correct understanding – this could be used for instance for later
integration in a Bayesian decision framework at the dialog management level. We start by
addressing the first problem in Section 3.1; subsequently, in Section 3.2, we discuss in more

4



detail how the presented approach can be extended to provide a continuous, probability-like
score.

3.1 Binary Utterance Level Confidence Annotation

Once cast as a machine learning classification task, the problem can be decomposed into
several parts: first, we need to collect and label a corpus of utterances, which will be used
for training and testing the classifier. Next, we need to identify a set of features that are
relevant for detecting misunderstandings. Last but not least, we need to make a decision
with regard to which classifier is most appropriate for the given task.

In the following subsections we address in turn each of these issues, after which we
present and comment on the results obtained in the various experiments performed.

3.1.1 Data collection

Two separate corpora were used throughout the experiments described in this paper. Ini-
tially, we started with Communicator logs and transcripts from an early version of the
system (October and November of 1999), as that data was readily available. In the sequel,
we will refer to this initial corpus as OctNov99.

A lot of changes have occurred since then: a new AGENDA dialog manager architecture
was introduced in the system, as well as a new stochastic language generation component
and state-specific language models; furthermore, new functionality for hotel and car reserva-
tions was added. We felt that the combined effect of these changes had a significant impact
on the behavior of the system, and therefore we started another data collection effort, which
resulted in a new, less noisy, and more up-to-date corpus, which we will hereafter refer to
as JuneJuly01.

As the system was publicly available from its earliest stages of development, both cor-
pora contain a mixture of developer and outsider calls. The JuneJuly01 corpus was how-
ever the result of a more directed data-collection effort. While in the first corpus most
sessions were free dialogs, in the JuneJuly01 corpus the largest proportion of the sessions
was scenario-based. Four different scenarios were employed to collect the data, varying
across several dimensions, like number of legs for the trip, the locations involved, and the
hotel and car requirements. Basic statistics for these corpora are illustrated in Table 1.

Corpus OctNov99 JuneJuly01

Dialog types Developer and outsider calls Mostly scenario-based calls

Number of dialogs 311 134

Number of utterances 4550 2561

Table 1: Basic corpus statistics

Two components of these corpora are of special interest for the stated problem: the
system logs and the utterance transcripts. The logs were automatically generated in each
session by the various Communicator components involved, and served as the source of
features for the classification process. The transcripts were created and double-checked
by a human annotator, and were used to establish the appropriate confidence label, as
described below.
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Initially, both corpora were manually labelled for confidence at the concept-level. La-
belling was performed by comparing the decoded hypothesis and parsing results with the
reference transcript. Based on this comparison, each concept appearing in the parse was
assigned one of 4 possible labels: OK, RBAD, PBAD, OOD. A concept would be labelled OK, if
it was correctly perceived by the system, i.e. if both recognition and parsing were correct.
The RBAD label was assigned to misunderstood concepts, when the misunderstanding was
triggered by poor recognition. Similarly, the PBAD label was assigned to misunderstood
concepts, when the error was triggered by an incorrect parse (i.e. insufficient grammar cov-
erage). Finally, unparsed utterances which where not within the scope and functionality of
the system were labelled OOD (out-of-domain). To exemplify the labelling process, Figure 2
shows an actual user utterance, together with its corresponding parse and transcript, and
the labels for each of the concepts.

System: Where are you leaving from?

User (transcript): #noise# from Paris to London and then on to
Toronto #noise#

Decoded hypothesis: from Paris to London on then on to go on to

Parse: [DepartLocation] from Paris [ArriveLocation] to London

[Interjection] then [Resume] go on

Labelling: DepartLocation/OK ArriveLocation/OK
Interjection/OK Resume/RBAD

Figure 2: Sample user utterance, with transcript, parse and concept labelling

Next, aggregate binary whole-utterance labels were generated automatically: any com-
bination of BAD-type labels was labelled BAD, while utterances containing only OK labels were
labelled OK. The labelling was initially performed at the concept level, as we were originally
also interested in the problem of concept-level confidence annotation. Surprisingly, simple
statistics on the concept labels indicated that only a small number of utterances - 6% in
OctNov99 and only 2% in JuneJuly01 corpus - contained combinations of OK and BAD-type
concepts (the utterance from Figure 2 is actually one such utterance). We believe that this
somewhat surprising result can be explained to a large extent by the fact that the average
utterance length in terms of concepts was relatively low.

Given this very small percentage of mix-labelled utterances, we discarded these utter-
ances from the training corpus for the purposes of developing a binary utterance-level confi-
dence annotator, and we abandoned for the moment the idea of constructing a concept-level
confidence annotator.

3.1.2 Feature identification

Identifying relevant features is paramount for the success of any classifier. Confidence
annotators for speech recognizers have traditionally been built upon features provided by
the speech recognition layer [12, 13, 14, 15]. However, we argue that in the context of a fully
functioning dialog system there are at least two other orthogonal knowledge sources which
carry valuable information for the confidence annotation process: the parser and the dialog
manager. Intuitively, a very good parse result is not likely to be obtained in the context of
misunderstandings. Also, dialog-level information (e.g. the dialog state, the match between
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the parse and the list of expected concepts, etc) can be very informative for the process of
confidence annotation. We therefore selected and integrated useful features from all these
three different levels of the dialog system.

Based on the previous example (see Figure 2), we now describe in detail each of the
features that were identified and used in the classification process. It is important to note
that all these features are directly computable both at runtime (as they will later be needed
by the running confidence annotator), and also from the information stored in the system’s
logs, as they are used in the training and testing process. Furthermore, although collected
from our particular implementation of the Communicator system, these features are by-
and-large task- and system- independent.

A. Speech Recognition-Level Features

We limited ourselves to the use of two easily computable features from the speech
recognition level:

• Word Number: the number of word tokens in an utterance (as decoded by the
SPHINX recognition engine) - 11 in the example above. Although this feature might
not seem very informative for the confidence annotation process by itself, its cor-
relation to other features (like Concept Number from the parsing level) could be
exploited by an appropriate classifier: an utterance containing a lot of words and very
few or no concepts, is very likely a misunderstanding.

• Unconfident Percentage: the percentage of word tokens tagged by the decoded
with an unconfident marker. The intuition is that a high unconfident percentage is
often an indication of unconfident input. In the example in Figure 2, there are no
unconfident tagged words, so the unconfident percentage is 0.

Typically, confidence annotators for speech recognition use a multitude of other features
derived from the speech recognition layer. The choice of using only these 2 decoder-level
features for the utterance-level confidence annotator is justified though in this setting by
the fact that the second feature (the percentage of unconfident words), already captures
and integrates all the useful sources of information from the recognition layer.

B. Parsing-Level Features

Six relevant features were identified and used from the parsing level:

• Uncovered Percentage: the percentage of the word tokens in the utterance that
are not covered by the parse (the words covered by the parse are printed in bold
typeface in Figure 2). Similar to the Unconfident Percentage, a high value for this
feature most likely signals an unreliable input. In the example illustrated in Figure
2, there are 4 words uncovered by the parse: on, a second on, to and the last to and
therefore Uncovered Percentage = 4/11.

• Fragment Transitions: the number of transitions between parsed and unparsed
fragments in the utterance. This feature measures the fragmentation degree of the
parse, with high values indicating possible misunderstandings. In the sample utter-
ance above, Fragment Transitions = 5.
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• Gap Number: the number of unparsed fragments in the sentence. High values for
this feature indicate high parse fragmentation, and thus an increased likelihood of
misunderstanding. In the example above, we have 3 gaps: on, on to and to, so Gap
Number = 3.

• Concept Number: the number of concepts in the parsing result. There are 4
concepts in the sample utterance above: [DepartureLocation], [ArrivalLocation] , [In-
terjection] and [Resume]. As previously mentioned, the possible correlation between
this feature and the Word Number feature could be exploited by an appropriate
classifier to signal misunderstandings.

• Bigram Score: the score assigned to the parse by a bigram language model con-
structed using grammar slots as tokens. This type of feature, has also been successfully
used for recognizer hypothesis rescoring [24]. The feature captures the coherence of
the parse, a high score meaning high coherence, and therefore a reduced likelihood of
misunderstandings.

• Garble: the binary indicator previously used in the Communicator system to signal
misunderstandings. This flag is set by the post-processing module HELIOS, which
employed a heuristic rule based on low parse coverage and high fragmentation to
detect misunderstandings. For the sample utterance above, the Garble flag was not
raised, and therefore Garble = 0.

C. Dialog-Management Level Features

From the dialog management level, we used the following 4 features:

• Dialog State: this feature indicates which state the Dialog Manager is currently
in. As the dialog manager in the CMU Communicator is not state-based (see the
AGENDA architecture [3]), the state information is generated on the basis of a manual
clustering of system prompts into categories that entrain similar inputs from the user.
Dialog State is a nominal feature, having one of 17 possible values. In the example
above, the state is query depart location.

• State Duration: this feature captures the number of consecutive turns for which the
system has remained in the current state. High values indicate an increased likelihood
of repeated misunderstandings.

• Turn Number: the number of turns from the start of the conversation. Under
normal conditions (no or very little misunderstandings), there should be a correlation
between the turn number and the Dialog State feature, which can be captured and
exploited by an appropriate classifier.

• Expected Concepts: this feature indicates whether or not the concepts in the pars-
ing result correspond to the current expectation of the dialog manager. Expectation
is defined in the CMU Communicator, as a three-fold nominal feature: expected, ac-
cepted and unexpected. A concept (grammar slot) is expected if it is consumed by
the handler which is currently in focus on the agenda [3], and it would be consid-
ered accepted if it is consumed by a handler which is not the current focus. If no
handler binds to a particular concept in the parse, the concept is considered unex-
pected. For instance, for the utterance in Figure 2, [DepartureLocation] is expected,
[ArrivalLocation] is accepted, and [Interjection] and [Resume] are unexpected.
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3.1.3 Automated Classification Techniques

Several different machine learning classification techniques were explored, in an attempt
to empirically establish which was the most appropriate for the task at hand. Below, we
comment briefly on each of these techniques and the rationale for choosing each of them as
possible solutions.

Bayesian Networks [25] provide a probabilistic framework for inference and decision-
making, which is very appropriate given the nature of the confidence annotation task.
This approach can perform a quantitative assessment of the evidence coming from multiple
sources, and supporting several hypotheses. Initially, a structure linking each feature to the
classification outcome was used. After some experimentation we discovered that limiting
the structure to a smaller number of features produced better results: the explanation lies
in the fact that a network with fewer nodes is less prone to overfitting, and that the feature
set chosen exhibits some redundancies.

Boosting (AdaBoost.M2) [26] is a voting technique that combines a set of weak learn-
ers (the performance of each individual learner needs to be slightly better than random)
and iteratively boosts their performance by changing the distribution over the training
examples to focus the learners on the hard instances. This technique is appealing in our
setting, since we can use individual feature-based predictors as weak learners. The boosting
process iteratively chooses the best performing features, and assigns weights to each feature
according to its predictive power, thus eliminating the problem of redundant information
in the feature set.

Another widely used classification technique we decided to explore was Decision Trees
[27]. In this approach classification is performed by dividing the feature space into sub-
spaces, and ultimately identifying each sub-space with a corresponding majority class. The
partitioning process is implemented by iteratively choosing the next best feature, based on
information gain. As with AdaBoost, redundancies in the feature set do not pose problems
here.

Next, we turned to Artificial Neural Networks (ANN) [29]. This type of classifier is
able to learn complex functions with continuous valued output, and is generally robust to
noise in the training set. We used a typical 3 layer feed-forward architecture trained using
the back-propagation algorithm.

Support Vector Machines [30] have received a great deal of attention in recent years.
It has been shown that on some domains the performance of this approach matches and
sometimes exceeds that of traditional approaches to classification like decision trees and
neural networks. SVMs essentially work by mapping the samples into a highly dimensional
space, and looking for an optimal linear separator in that space [30].

Finally, we also constructed a Näıve Bayes classifier [28]. Although this classifier
makes the assumption of independence between features (which is not really the case in
our setting), it is very simple, easy to implement and has been used with a lot of success
in text-based domains.

3.1.4 Experiments and Results

We now describe the experiments performed and comment on the results that were obtained
using each of the previously mentioned classifiers.

The first set of experiments were based on the OctNov99 corpus. In order to be able to
reliably compare the various techniques used, all the experiments involved a 10-fold cross-
validation process on the specified data-set. For the moment, the performance of each
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classifier is characterized by the mean and variance of the error rates in this process. To
build a more accurate picture of the classification performance, we also report the false-
positive and false-negative rates. Later on, in Section 4, we take into account the impact
of these various types of errors on the dialog system, and refine the performance metric.

Two different performance baselines are used: the first one is given by the error rate
of a naive classifier that would always choose the majority class - in our case BAD; this
majority baseline is at 32.8% (the same as the ratio of OK utterances in the corpus). A
second baseline is given by the performance of the previous rule-based misunderstanding
detector operating in HELIOS - the Garble indicator. This second baseline error rate is
significantly lower - 25.3%.

A. Performance of individual features

Prior to the actual experiments with the classifiers, we evaluated how well each feature
is able to predict the target labels by itself. Individual histogram-based predictors were
constructed for each feature, and evaluated in a 10-fold cross-validation process on both
data-sets. The results are presented in Table 2.

Feature Mean Error Rate (%) F/P Rate (%) F/N Rate (%)

Majority Baseline 32.84 - -

Uncovered Percentage 19.93 17.60 2.33
Expected Concepts 20.97 12.24 8.73
Gap Number 23.01 14.51 8.51
Bigram Score 23.14 15.80 7.34
Garble 25.32 25.30 0.02
Slot Number 26.69 25.52 0.18
Unconfident Percentage 27.34 26.18 1.16
Dialog State 31.03 25.82 5.21
Word Number 32.33 32.07 0.26
Fragment Number 32.73 27.78 4.95
State Duration 32.84 32.02 0.81
Turn Number 33.14 32.40 0.75

Table 2: Performance of individual feature-based classifiers

As Table 2 illustrates, the most useful features are Uncovered Percentage, Expected
Concepts, Gap Number and Bigram Score; they each perform better than the Garble
baseline. The worst performing features are Word Number, Fragment Number, State
Duration and Turn Number. This is somewhat expected, as these features intuitively
don’t carry a lot of information just by themselves. Garble, the rule-based classifier previ-
ously used in the system to detect misunderstandings ranks fifth. It has however the lowest
false-negatives rate, intuitively a very desirable property for a misunderstanding detector.

B. Classifier performance

Table 3 illustrates the results of the 6 classifiers on the OctNov99 dataset. Judged
from a classification error rate perspective, AdaBoost obtains the best result (16.59%),
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equivalent with a 34.4% relative reduction in error rate from the previously used Garble
rule, and 49.5% from the majority baseline. The runner-ups are the Decision Tree and
the Bayesian Network classifiers. A t-test indicated however that the differences between
the mean error rates of the top 5 classifiers are not statistically significant at the 0.05 level
of confidence.

Classifier Mean Error Rate (%) F/P Rate (%) F/N Rate (%)

Garble Baseline 25.32 25.30 0.02

AdaBoost 16.59 11.43 5.16

Decision Tree 17.32 11.82 5.49

Bayesian Net 17.82 9.41 8.42

SVM 18.40 15.01 3.39

Neural Net 18.90 15.08 3.82

Näıve Bayes 21.65 14.24 7.41

Table 3: Classification performance

The Bayesian Network classifier has the lowest false-negative error rate (8.42%), but
this is still significantly higher than that of our previously used Garble heuristic rule. The
Näıve Bayes classifier performs the worst. We suspect this is due to the assumption of
independence between features made by this classifier, assumption clearly violated in this
case.

In conclusion, the experiments performed indicate that the problem of detecting misun-
derstandings can be approached successfully by pulling together various sources of knowl-
edge from different levels in the dialog system in a machine learning approach. Although
the resulting classification error rates are far from optimal (zero), the reductions are sig-
nificant compared to both the majority baseline (about 50% relative reduction) and to our
Garble heuristic baseline (about 34% relative reduction). The consistency of the results
and the absence of a single best performing classifier seem to confirm that indeed we have
reached optimal performance given the set of features we have chosen. In the future, we
intend to concentrate on identifying more features, with the hope of driving the error rates
even lower.

3.2 Continuous-Score Utterance Level Confidence Annotation

Next, we address the second flavor of the confidence annotation problem. This time the
goal is to obtain a continuous, probability-like score which characterizes the degree of belief
in a certain perceived utterance, rather than a mere accept / reject decision.

Each of the classifiers evaluated in the previous section can provide such a continuous
score; most of them are discriminant in nature and actually work by computing a real-
valued classification margin and then applying a threshold to make a binary decision. A
direct, but, as we shall shortly see, not very performant approach would thus be to simply
scale the values of the margins so as to bring them into the unity interval, and then use that
value as a probability score. The experiments presented in the sequel will confirm that,
indeed, the use of margins from discriminant classifiers as probability-like scores is not very
reliable, and a density estimation method is preferable in this setting.

We performed an empirical comparison between two qualitatively different techniques:
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AdaBoost, which is a discriminant classifier on one side, and a logistic regression model
which is a density estimator on the other side. Discriminant classification techniques con-
struct a boundary in the feature space which separates as well as possible the different
classes. By contrast, density estimation techniques construct statistical models which try
to explain or account for the data in the training set. By avoiding the construction of a
full-blown model for the data, discriminant techniques can sometimes be more straightfor-
ward, and are more appropriate when we are simply interested in distinguishing between
classes, and not in obtaining a degree of belief in that decision. However, once we become
interested in obtaining this degree of belief, the performance of these classifiers will be
lacking as compared to density estimation models.

In logistic regression [31], an explanatory model for the data is constructed; the model
belongs to the generalized linear models family, and expresses the logit of the target value
as a linear combination of features. As nominal features cannot be naturally included in a
logistic regression model, we discarded the Dialog State feature, and constructed this model
using the remaining 11 features. The same 10-fold cross-validation process was used to build
and evaluate this model based on the OctNov99 corpus. The experiments indicated a mean
classification error rate of 17.14%, very similar to the performance of the six classifiers
previously discussed.

In this setting, evaluating performance via a binary classification error rate (the hard
error rate) is no longer adequate. Instead, one should use an entropy-like soft error metric:
the average log posterior of the correct label, as defined by equation (1) (where P is the set
of positive instances and N is the set of negative ones). For every instance, the classifier will
output a degree of belief of correct understanding p in [0,1]. A binary acceptance decision
typically corresponds to values of p > 0.5. The soft metric averages the log-likelihood
of correct decisions (i.e. if the utterance was indeed correct we take log(p), otherwise
log(1 − p)), taking thus into account the ”magnitude” of the error. The soft error metric
can also be viewed as the cross-entropy between the constructed model and the ”real world
model” (high values are better).

SE =
∑

i∈P

log(pi) +
∑

i∈N

log(1 − pi), (1)

Although on the hard error metric, the results of the logistic regression model were very
similar to those of AdaBoost, this situation changes dramatically on the soft error metric.
The soft error metric for the AdaBoost classifier was computed by linearly scaling the margin
of each instance to produce a probability-like score. Figure 3 illustrates the AdaBoost soft-
error, as a function of the number of boosting stages. This curve indicates that strong
overfitting takes place (in the soft-error sense). After a small number of boosting stages
the soft-error performance of AdaBoost reaches a maximum of -0.6614, point from which
it continuously declines. This overfitting nature of the curve has a simple explanation: as
the number of boosting stages increases, AdaBoost continuously updates the classification
boundary so as to maximize the margins [26]. Therefore, after a large number of boosting
stages, the margins for most instances tend to be large. This implies that the degree
of confidence in the results outputted by AdaBoost is artificially increased, and therefore
whenever an error is committed, a high penalty in terms of soft-error will be incurred.

Figure 3 also illustrates the soft-error rate for the logistic regression model: -0.579.
Compared with the maximum of -0.6614 reached by AdaBoost, this is a significantly better
result. These experiments have therefore confirmed that, if a degree of belief in correct
understanding is needed (for instance for later integration in a Bayesian decision frame-

12



work for clarification and confirmation at the dialog management level), density estimation
models are to be preferred to discriminant techniques.
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Figure 3: Soft error rate for logistic regression and AdaBoost (as a function of # of boosting
stages)

We have so far illustrated the development of an utterance-level confidence annotator.
Experiments have shown that multiple task-independent features from different levels in
the dialog system can be identified, and integrated in a misunderstanding detector using
various machine-learning techniques. For the binary decision flavor of the problem, we
have shown that several of these techniques can all lead to significant improvements in
classification error rate, and no preferred solution could be clearly identified. Moreover, if
interested in obtaining a probability-score reflecting the belief in correct perception of a
certain utterance, a density estimator model is to be favored to a discriminant technique.

4 Modelling the Costs of Misunderstandings

We now turn to the second part of the problem we have stated: that of modelling the
costs of the various types of errors committed by the confidence annotator, with a view to
assessing their impact on dialog, and to fine-tuning the annotator’s performance.

We start by motivating the need for this type of cost assessment in Section 4.1, and
subsequently we describe the approach taken to solving this problem (Section 4.2). Section
4.3 describes in detail the experiments performed on developing several cost models based on
various dialog performance metrics, and in Section 4.4 we show how the models constructed
can be used to fine-tune the confidence annotator. Finally, in Section 4.5 we take a closer
look at the factors involved in these experiments, in an effort to gain a better understanding
of the somewhat surprising results we obtain.

4.1 Motivation for error cost analysis

An issue we have not addressed so far in the development of the utterance level confidence
annotator is that of modelling the costs of the various types of errors that it commits. When
training a classifier, as in the experiments previously described, we are typically minimizing
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the total classification error rate. We argue that, given the role played by the classifier -
a detector for misunderstandings in dialog, and given that different types of errors are
likely to have a different impact on dialog performance, classification error rate is not an
appropriate metric for evaluating the confidence annotator.

The classification error rate can simply be decomposed as the sum of the false-positives
and the false-negatives that the annotator commits. Therefore, in striving to minimize
classification error rate, we are minimizing this sum, and thus implicitly making the as-
sumption that the cost of these two types of errors are the same. However, intuition tells us
that this assumption is violated in most spoken dialog systems. On a false-positive error,
the system will accept, and possibly use invalid information. This will most likely require
correction later on, which will slow down the progress of the dialog. By contrast, on a
false-negative error, a system will usually communicate the (false) misunderstanding to the
user and ask the user to repeat the last utterance. We believe that a false-positive (an
undetected misunderstanding) would typically cause more trouble later on in the dialog,
and thus we would expect its cost to be higher: better safe than sorry.

The trade-off point between the two types of errors is nevertheless not evident, and is
highly system-dependent. For instance, the cost of a false-positive is likely to be higher
in a system that uses an undo mechanism than in a system that allows the users to easily
overwrite incorrectly captured concepts. Moreover, costs can vary from one domain to
another, or, even within the same system, from one point in the dialog to another. A
false-positive error on a command issued to the system should be more costly than when
the user is merely communication some piece of information, which could presumably be
easily overwritten.

In the following sections we will describe a data-driven approach which allows us to
quantitatively assess the costs of the various types of errors that the confidence annotator
commits. Once these costs are known, we can use them to optimize the annotator accord-
ingly: instead of simply minimizing the sum of false-negatives and false-positives (i.e. the
classification error rate), we can minimize their weighted sum, taking the costs of these
errors into account.

4.2 Approach

We propose a data-driven approach to quantitatively assess the costs of the errors commit-
ted by the confidence annotator. In brief, the idea is to construct a statistical regression
model which links the counts of the errors in each session to the performance of the dialog
system in that session. The coefficients obtained in the regression will thus indicate the
impact of each type of error on the performance of the dialog system.

As a first step, we need to identify a suitable dialog performance metric. This perfor-
mance metric will play the role of target variable for the regression model, and needs to
be easily computable from the training corpus. Several dialog performance metrics have
been proposed and used in the literature. More complex evaluations, taking into account a
variety of factors have been performed in the PARADISE framework [32].

In our work, both objective and subjective performance evaluation metrics were con-
sidered. For instance, a widely used performance metric for spoken dialog systems is user
satisfaction. We therefore collected user satisfaction scores on a 5-point Likert scale for the
JuneJuly01 corpus. However, experiments have confirmed this metric to be very subjec-
tive, inconsistent across users and unreliable (see more details in Section 4.3.2). Most of
our attention therefore became focused on objective metrics such as dialog efficiency (the
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rate at which correct concepts are transferred from the user to the system), and binary task
completion. All these dialog performance metrics, together with the cost models created
using them, are discussed in detail in the next section.

Once a performance metric P to optimize for is chosen, the next step is to create a
statistical regression model which uses this metric as a response variable, and the counts of
the various types of errors as predictor variables, as in equation 2.

P = f(FP, FN) (2)

Obtaining a good fit gives us a robust quantitative assessment of the (negative) contri-
bution of these different errors to the performance of the system. If the model is a linear
one, the obtained coefficients of the predictor variables can be directly interpreted as the
costs of these various types of errors (see equation 3):

P = CostFP · FP + CostFN · FN (3)

Subsequently, the model can be used used to optimally1 fine-tune the classifier, by
changing the classification threshold to minimize for f instead of the sum of the errors; this
idea is discussed in further detail in Section 4.4.

It is important to notice that with this approach we have separated the models for
the costs of the errors from the confidence annotator itself. An alternative would have
been to perform the whole optimization in one step, by training the classifier with different
target labels, which would have been derived from (and would thus reflect) the dialog
performance on each utterance. There are several advantages however to decoupling the
two: first, it allows us to fine-tune a previously developed confidence annotator to any given
spoken dialog system, without retraining it. Second, as previously mentioned, if we use a
linear regression model we can obtain a direct quantitative assessment of the costs (i.e.
the coefficients of regression). More importantly, since the regression model is constructed
using whole sessions as data-points, we can target global performance metrics, and thus
capture long-range (across an entire session) effects of the confidence errors rather than
effects within any single utterance.

Conversely, one drawback of the proposed approach is that it makes the assumption that
the cost of errors is constant throughout the dialog. This assumption could nevertheless
be relaxed, by introducing extra predictor variables, in the presence of a sufficiently large
training corpus. For instance, one could differentiate costs based on dialog state (errors
committed whilst in different dialog states have different costs), by introducing a predictor
variable for each type of error and state (see equation 4, where S represents the set of all
states:

P =
∑

s∈S

(CostFPs
· FPs + CostFNs

· FNs) (4)

This will however quickly lead to a severe data scarcity problem, and unless the number
of states is very small or we benefit of a very large corpus, the approach quickly becomes
infeasible.

Finally, before moving on to present the actual experiments and the results that were
obtained, we briefly comment on similar work in the literature. Smith and Hipp [7] propose
the use of dialog work analysis to determine the trade-off point between these types of
errors. Compared to their approach, ours is entirely data-driven. Our solution also bears

1where optimality is defined in terms of the chosen metric
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resemblance to the PARADISE framework [32], in which regression models are used to
evaluate dialog performance. Our work is different though in that it is targeted at assessing
the costs of several precise types of errors with the final goal of optimizing the performance
of the confidence annotator for a particular spoken dialog system. To our knowledge, this
is the first empirical investigation of the costs of misunderstanding errors in spoken dialog
systems.

4.3 Cost Modelling Experiments

We now describe the experiments performed and the results obtained in constructing the
cost models. In Section 4.3.1 we present the incremental development of three successively
refined models using dialog efficiency as the targeted response variable. Subsequently, in
Section 4.3.2 we describe two additional models constructed using task completion and user
satisfaction as target performance metrics.

The cost modelling experiments were performed based on the JuneJuly01 corpus, de-
scribed previously in Section 3.1.1. Additional statistics for this corpus, relevant to this
context, are presented in Table 5.

4.3.1 Cost Models targeting Dialog Efficiency

One good indicator of dialog performance is dialog efficiency, measured as the rate at which
the system obtains accurate information from the user. This is an objective metric, which
can easily be computed for each session from the system logs, and it captures to a large
extent the goodness-of-the-dialog, as the timely completion of a given task typically re-
quires the system to correctly acquire various concepts from the user. Three successive
models were developed using efficiency as the targeted dialog performance metric; they are
described in depth in the following subsections.

Model 1: CTC = FP + FN + TN

The response variable used to assess dialog efficiency for this first model was the number
of correctly transferred concepts per turn (CTC in the sequel). CTC is computed
by counting the number of concepts correctly transferred from the user to the system
throughout a whole session, and dividing that by the number of turns in that session. A
concept is considered correctly transferred when: (1) it has an OK concept label, (2) it is
actually used by the Dialog Manager and (3) the respective utterance is accepted by the
system (i.e. the confidence annotator does not reject it). The second condition is imposed
as some of the concepts appearing in the semantic grammar in the Communicator system
are not used by the Dialog Manager (see the example in Figure 4). The list of concepts that
the Dialog Manager looks for at a particular point is dynamically determined at run-time,
based on the list of unblocked handlers currently in the agenda. This information is also
logged. The veracity of the other two conditions is also easily determined off-line, from the
available logs.

To exemplify, in the fictive utterance presented in Figure 4, there is only one correctly
transferred concept - [DepartLocation]. Although the concept label for [I Want] is also OK,
this concept is not used by the system, and thus does not satisfy the second condition. Also,
note that if the confidence annotator’s decision had been to reject this utterance, then CTC
would be 0, as no transfer of information from the user to the system would have occurred.
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User says: I want to fly from Pittsburgh to Boston
System recognizes: I want to fly from Pittsburgh to Austin

Concepts: [I want/OK] [DepartLocation/OK] [ArriveLocation/RBAD]
Annotator decision: Accept

Figure 4: Fictive utterance, illustrating concept labelling and efficiency metric computation

The predictor variables for this first cost model are the rates of false-positives (FP),
false-negatives (FN) and true-negatives (TN) committed by the utterance-level con-
fidence annotator. The inclusion of the true-negatives rate (i.e. the correctly detected
misunderstandings) as a predictor in this model is justified, as the models will be later
used to fine-tune the annotator by changing the classification threshold. This will typically
break the balance not only between the numbers of false-positive and false-negative errors,
but also true-negative errors, so therefore they need to be accounted for by the model.

A linear regression model was constructed, and the results are illustrated in Table 4.
The R2 value of 0.82 indicates a good fit. The robustness of the model was also verified in
a 10-fold cross-validation experiment. The means of the R2 values in the 10 runs on the
training and testing set are shown in Table 4.

Model R2 on R2 on R2 on
entire data-set training set testing set

CTC = FP+FN+TN 0.8160 0.8169 0.7336

CTC-ITC = FP+FN+TN 0.8650 0.8657 0.7866
CTC-ITC = REC+FP+FN+TN 0.8910 0.8912 0.8325

CTC-ITC = REC+FPNC+FPC+FN+TN 0.9436 0.9439 0.9014

Table 4: Cost models targeting dialog efficiency

Model 2: CTC-ITC = REC + FP + FN + TN

The first model was refined by changing the response variable to also account for in-

correctly transferred concepts (ITC in the sequel). A concept is incorrectly transferred
from the user to the system when: (1) it has a BAD-type label, (2) it is used by the Dialog
Manager and (3) the confidence annotator accepts the utterance as correct. For instance,
in the utterance presented in Figure 4, there is one incorrectly transferred concept: the
arrival location [ArriveLocation].

Optimally, we want not only to maximize the correctly transferred concepts, but also to
minimize the number of incorrectly transferred ones. This being said, a more encompassing
efficiency performance metric is CTC-ITC. Experiments were repeated using this term as
the response variable, and, as Table 4 illustrates, this refinement improved the fit, leading
to a new R2 = 0.86.

A second refinement to the model addresses the verbosity of the user. In the context of
a mixed-initiative spoken dialog system like the CMU Communicator, a more verbose user
could achieve the same task with a smaller number of turns, and thus a higher CTC than
a terse user. To account for this effect, we added another predictor variable: the number of
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relevantly expressed concepts per turn (REC in the sequel). A relevantly expressed con-
cept is a concept that binds to one of the active handlers on the dialog manager agenda (i.e.
concepts which are taken into account by the dialog manager), regardless of its label and of
the decision made by the confidence annotator on that particular utterance. To exemplify,
in the utterance in Figure 4, there are 2 relevantly expressed concepts: [DepartLocation]
and [ArriveLocation].

Adding this new predictor variable improved the fit even more, leading to an R2 = 0.89
(see Table 4).

Model 3: CTC-ITC=REC+FPNC+FPC+FN+TN

An inspection of the coefficients computed in the last linear regression model showed
that the costs for the false-positives and the false-negatives were very similar: -1.46 and
-1.44 respectively. This contradicts the intuition that the cost should be higher for false-
positives, and a careful analysis of this result led to an additional refinement of the model.

An important observation is that there are two conceptually different types of false-
positive errors in the CMU Communicator dialog system. If the utterance contains rele-
vantly expressed concepts, and the confidence annotator commits a false-positive, the sys-
tem will accept and act based on invalid information (e.g. using Austin instead of Boston
as the arrival city in the previous example). However, if there are no relevantly expressed
concepts, even if the system wrongly accepts the utterance, it will find no useful informa-
tion in it (we have a non-understanding); ultimately the system will inform the user that it
misunderstood, essentially acting the same as on a true-negative. We deem the first type
of false-positive error a False-Positive with Concepts (FPC), and the second type a
False-Positive with No Concepts (FPNC).

The impact of these two types of false-positives on the dialog is clearly different, and
the intuition is that the cost for false-positives with concepts is the one that should be
significantly higher. Therefore, in the third model, we replaced the FP predictor variable
by FPC and FPNC. This model provides an even better fit: R2 = 0.94 (see Table 4.)

The coefficients obtained lead to the following regression formula (5) which captures the
impact of each of the factors on dialog performance:

Efficiency = 0.42 + 0.63 ·REC − 0.48 ·FPNC − 2.12 ·FPC − 1.33 ·FN − 0.56 ·TN (5)

Dataset Statistics Total Mean per Dialog Std.Dev. per Dialog

Number of dialogs 134 - -
Number of utterances 2561 19.11 9.34

#CTC 1983 14.80 7.64
#ITC 166 1.24 1.61
#REC 2373 17.71 9.25
CTC/Turn - 0.77 0.23
(CTC-ITC)/Turn - 0.71 0.28

Table 5: Additional cost-model relevant statistics for the JuneJuly01 corpus
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Coefficient 95% Confidence interv.

Constant term 0.4188 [0.3075 - 0.5302]
REC 0.6254 [0.5269 - 0.7239]
FPNC -0.4820 [-0.6693 - -0.2707]
FPC -2.1222 [-2.2894 - -1.9550]
FN -1.3302 [-1.5429 - -1.1175]
TN -0.5588 [-0.7025 - -0.4151]

Table 6: Estimated cost coefficients (and 95% confidence intervals)
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Figure 5: Plot of estimated cost coefficients (and 95% confidence intervals)

Table 6 and Figure 5 illustrate the coefficients from this third model, together with their
95% confidence intervals obtained in the cross-validation process. These results confirm our
previously stated intuition: the cost of a false-positive with concepts is the greatest, being
1.6 times larger than that of a false-negative error. The cost of a false-positive without
concepts is very similar to that of a true negative, and the REC factor bears a positive
coefficient, as it actually increases dialog efficiency.

4.3.2 Other Cost Models: Completion Rate and User Satisfaction

A. Models based on task completion

While a model of net concept transmission efficiency is of immediate interest in deter-
mining how to use a confidence annotator, we can also consider other response variables
that appear to be correlated with good dialogs, for instance task completion.
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Task completion belongs to the family of objective dialog performance metrics, and can
be automatically computed in the presence of an attribute-value matrix [32]. The dynamic
nature of the constraints assembled by the dialog manager in the Communicator system
precludes however the direct use of this technique, since the number of attributes is not
apriori known. We therefore turned to a simplified binary definition of task completion: a
human annotator labelled each of the sessions as completed or not, based on the information
available from the logs. A shortfall of this metric is that it does not capture correctness: in
some sessions, although completed, due to various misunderstandings the system had failed
to provide the appropriate information to the user. We therefore further defined correct
completion, by adding the constraint that the system responds with the correct information
required by the user (as the transcripts indicate).

We attempted to construct models based on both these metrics. Since both completion
and correct completion are binary variables, we shifted from the use of the linear regression
models (no longer appropriate) to logistic regression models. Evaluation was performed in
terms of classification error rate on the training set. The results however did not indicate a
good fit, as illustrated in Table 7. This was not very surprising, given the coarse granularity
definition of completion and correct completion used, and given that factors other than
utterance rejection are also likely to affect task completion. We believe that a metric like
completion could in principle be used successfully in this setting, if it can be computed on
a finer granularity level, for instance based on the attribute-value matrix as in [32].

Metric Baseline Error on training set

Completion 43.81% 23.81%

Correct Completion 40.00% 25.71%

Table 7: Performance of completion-based models (classification error rates)

B. Models based on user satisfaction

Another dialog performance metric that could be used as a response variable for our cost
models is user satisfaction. Following the PARADISE framework [32], we used completion
and accuracy as the predictor variables. Since we were interested in the individual contri-
butions of the various types of errors that the confidence annotator commits, accuracy was
decomposed into the FP, FN and TN factors.

Unfortunately, our corpus contained user satisfaction scores for only 35 dialogs. The
fit for the model constructed using these data-points - R2 = 0.61 - is comparable with
other results reported in the literature [32], but is significantly lower than the R2 values
obtained using dialog efficiency as a response variable. We believe that this is mostly due to
the subjectivity of the user satisfaction metric (different users have different expectations
from the system, and different definitions of satisfaction); the limited number of available
data-points might also have played an important role in this result.

4.4 Fine-tuning the confidence annotator

We now illustrate how to make use of the cost models developed previously, in an effort
to find the optimal trade-off point between the various types of errors committed by the
confidence annotator.
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In order to make a hard, binary decision, most classifiers compare the output of the
classification process (typically a continuous-valued score) with a certain threshold. In
AdaBoost [26] for instance, the combined vote of the weak learners is compared with 0: if the
vote is greater than zero, the instance is labelled as a positive, otherwise as a negative. By
changing the value of this threshold we can bias the classifier towards more false-positive or
more false-negative errors. Figure 6 illustrates the error rates for the different types of errors
(FPNC, FPC, FN) that the logistic regression confidence annotator makes, as a function of
the classification threshold (the classifier operating characteristic). The classification error
rate (FPNC + FPC + FN) is also illustrated, and, as expected, it is minimized for a 0.5
value of the threshold (the default threshold for a logistic regression classifier).
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Figure 6: Different types of errors as a function of the classification threshold for the logistic
regression confidence annotator

In order to determine the optimal tradeoff point between all these types of errors - where
optimal means taking costs into account - we need to identify the threshold value which
maximizes the regression expression, and therefore implicitly the response variable, i.e. the
selected dialog performance metric.

Using the third model for dialog efficiency, we have:

Efficiency = 0.42 + 0.63 · REC − 0.48 · FPNC − 2.12 · FPC − 1.33 · FN − 0.56 · TN

Since the REC factor (which models the user’s verbosity) is independent of the chosen
threshold, and since the constant factor does not affect the location of the maximum,
maximizing efficiency is equivalent to minimizing the following cost:

TotalCost = 0.48 · FPNC + 2.12 · FPC + 1.33 · FN + 0.56 · TN

This total cost, as a function of the chosen threshold, is plotted in Figure 7. No mini-
mum could be clearly identified. This is a surprising, somewhat counterintuitive, and very
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Figure 7: Cost as a function of confidence annotation threshold

interesting result. The fact that the cost function is almost constant across a wide range
[0-0.5] of the operating characteristic indicates that, to a large extent, the efficiency of the
dialog stays about the same (at least in terms of the metric we have chosen to investigate),
regardless of the ratio of false-positive and false-negative errors that the system makes.
Even when the threshold is set to zero, which is equivalent to completely eliminating the
utterance level confidence annotator, the degradation in efficiency as measured by CTC-
ITC would be insignificant. A very similar result was obtained for the AdaBoost-based
confidence annotator.

4.5 Further Analysis

In an effort to gain a better understanding of this unexpected result, we performed several
additional experiments, described below.

We started by reanalyzing the appropriateness of CTC - ITC as a dialog performance
metric. An analysis of the distribution of this variable across the sessions in the JuneJuly01
corpus indicated a rather large variance (see Table 5). Moreover, the mean values for the
completed and uncompleted dialogs were 0.82 and 0.57 respectively; a t-test indicated
that the difference between these means is statistically significant at a very high level of
confidence (p = 7.23 ·10−9). These results, together with the robust fit, suggest that indeed
there is correlation between the CTC-ITC metric and the goodness-of-dialog, and therefore
endorse the use of CTC-ITC as a dialog performance metric.

Next, we addressed the slightly more subtle issue of coverage for the models in terms of
predictor variable values. The training data for the cost models (the JuneJuly01 corpus)
was collected by running the system with a confidence annotator employing the default
threshold of 0.5. This implies on average a certain ratio between false-positive and false-
negative errors, and it therefore could be argued that the collected data does not allow
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us to create a model which would reliably extrapolate to the extremes of the operating
characteristic, where these predictors would have much different values. An analysis of the
distribution of the false-positive and false-negative rates across sessions indicated however
that this was not the case. As Figure 8 illustrates, these distributions show that the training
set contains a lot of data-points (sessions) which have false-positive and false-negative rates
corresponding to the “flat” portion of the operating characteristic (0 < t < 0.5).
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Figure 8: Distribution of false-positive and false-negative rates across sessions

Although the R2 values indicated a strong fit for the models, we performed further
robustness checks for the models obtained using dialog efficiency as the target variable.
The corpus was randomly divided into two equally sized data-sets, and two separate models
were constructed based on these sets. The coefficients obtained are illustrated side-by-side
in Table 8. Although some differences are noticeable, they are relatively small and basically
lead to the same shape for the cost function in terms of the classification threshold. Plotting
the confidence intervals for the cost coefficients as a function of the number of data-points
used for regression indicated that more data would possibly further increase the precision of
these estimates (the sizes of the 95% cost confidence intervals kept exhibiting a decreasing
trend, even after using all the data-points). Nevertheless, changes in cost coefficients up to
the size of these intervals are clearly not large enough to account for a significant change
in the shape of the cost function.

Experiments were also performed to evaluate the impact of the baseline error rate. A
plot of the cost function determined based only on dialogs with a low error rate indicated
that in this setting the optimal threshold for the classifier is at zero, equivalent to eliminating
the confidence annotator altogether. This observation corroborated our previous results,
and seems to indicate that for spoken dialog systems which have a low baseline error rate to
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Model 1 Model 2

R2 0.9167 0.9683

Constant term 0.4131 0.4137
REC 0.6300 0.6311
FPNC -0.5914 -0.4009
FPC -1.8340 -2.2860
FN -1.4871 -1.2565
TN -0.6090 -0.4888

Table 8: Comparing cost coefficients for 2 models constructed from a random partition of
the data-set

start with, and in which incorrectly captured information can easily be overwritten by the
users, a binary utterance-level confidence annotator, although it can lower the classification
error rate, is not able to significantly improve dialog efficiency.

The absence of a clear minimum in terms of dialog efficiency as a function of the con-
fidence annotation threshold was indeed an unexpected result. It indicates that, at least
for our system, various types of confidence annotation errors trade-off equally in terms
of dialog efficiency over a large operating range. We believe that the main explanation
for this behavior lies in the overall design of the system. The CMU Communicator is a
mixed-initiative system, with a low baseline error rate, and in which incorrectly captured
information can be overwritten without a large penalty in terms of efficiency. Moreover, the
clarification technique employed by the CMU Communicator is simple and straightforward,
and reduces the system’s sensitivity to confidence annotation scores. In some sense, our
efforts to optimize efficiency in the CMU Communicator via confidence annotation were
precluded by an already robust (although not necessarily optimal) system design.

5 Conclusion

Speech recognition errors create strong limitations in the development of complex, interac-
tive spoken dialog systems. We believe that robustness can be achieved in these systems by
(1) giving them the ability to accurately detect misunderstandings, and (2) developing and
employing a set of appropriate recovery techniques when such breakdowns in interaction
are detected. In this paper, we have addressed the first problem, that of developing an
accurate utterance-level confidence annotator.

The problem was cast as a machine learning classification task. We have shown that,
apart from the decoder-level features traditionally used to detect speech recognition errors, a
spoken dialog system contains at least two other valuable sources of knowledge: the parsing
and the dialog management components. Twelve such features from these 3 different levels
were selected and integrated in the confidence annotation process.

Experiments with six different classification techniques have indicated that, although a
single best performing classifier cannot be clearly identified, several of them are able to sig-
nificantly reduce the classification error rate for confidence annotation (50% relative reduc-
tion from the majority baseline, and 34% relative reduction from a previously used heuristic
rule). We have also verified experimentally that, for continuous-score confidence annotation,
density estimation techniques clearly outperform discriminant classification methods.
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Subsequently, we have performed what we believe to be the first empirical quantitative
assessment of the impact of confidence annotation errors on dialog performance. Several
regression models were constructed, relating the counts of various types of errors to different
dialog evaluation metrics: efficiency, completion, user-satisfaction. The models fit the data
quite well and the relative costs of errors are in accordance to our intuitions. However, when
trying to optimally fine-tune the confidence annotator based on these costs, we obtain a
surprising result: for a mixed initiative system like the CMU Communicator, false-positive
and false-negative errors trade-off equally over a large operating range. A careful analysis
of the results and of the factors involved in these experiments led to the conclusion that this
effect is most probably due to the already robust (and somewhat insensitive to confidence
annotation errors) system design.

Although in our system it does not lead to any significant improvements, we believe that
the proposed confidence-error cost estimation approach is an important contribution which
remains valid and is applicable in a large number of settings. The results might prove
to be radically different (and lead to significant improvements) for other spoken dialog
systems. Even for the CMU Communicator, we believe that, once we incorporate more
sophisticated confirmation and clarification strategies, the system’s sensitivity to confidence
annotation will increase, and an optimal confidence annotation threshold could be more
clearly identified.

Future research work will concentrate on two main directions: first, more efforts will be
directed at further improving the performance of the confidence annotator. The similar,
consistent results attained by several classification techniques seem to indicate that we have
reached a certain optimal point, given the set of features that we have used. Identifying
other useful features turns out to be paramount to further improvements in confidence
annotation performance. Another question that we intend to address along the same line is
the study of the transferability of these features and of the constructed confidence annotator
across different domains.

Once a sufficiently reliable confidence annotation mechanism is constructed, the next
research problem is given by the second part of our proposed approach to increased robust-
ness: developing and employing a set of appropriate dialog repair and recovery techniques.
Some of the questions under scrutiny are: (1) what is the set of recovery techniques to be
used ? (2) what is the best way of integrating and updating beliefs at the dialog manage-
ment level based on the confidence scores, and (3) how is this information used to optimally
trigger the appropriate recovery mechanisms ?
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