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The evolution of the modern day graphics hardware has exploited
the data parallelism and high computational nature inherent in
graphics applications. With the advent of programmability for com-
modity graphics processing units (GPUs), a whole new paradigm
of harnessing the vast GPU resources towards performing general-
purpose computations has appeared. In this paper, we aim at pro-
viding the complete functionality available in the BLAS (Basic Lin-
ear Algebra Subprograms) library, thus allowing general linear al-
gebra packages to be built upon GPU implementations. We pro-
pose a programming framework used in porting the BLAS library
and demonstrate the mapping of fundamental linear algebra opera-
tors on the graphics hardware. We demonstrate the effectiveness of
our approach and analyze the performance bottlenecks. Our exper-
iments reveal that the existing graphics architectures are bandwidth
limited. Finally, we propose extensions to current graphics hard-
ware which would improve it’s effectiveness for general purpose
computations.

Keywords: Graphics Hardware, Scientific Computing, BLAS, Cg,
OpenGL, NV30, Vertex Processor, Fragment Processor
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In recent years, there has been a dramatic increase in the com-
putational power and memory bandwidth of graphics processing
units (GPUs). For example the NVIDIA GeForce4 was adver-
tised to perform nearly one trillion operations per second and sup-
port a memory bandwidth of 10 W 4 GB/sec. They are now capa-
ble co-processors, and their highly parallel nature makes them a
high speed computing engine for a variety of applications, tradi-
tionally implemented on general purpose CPUs. With the advent of
programmability, the scientific community is aiming to utilize the
resources of these high performance processing units for general-
purpose numerical computations. For example, recent approaches
have demonstrated using the GPU’s vertex processor and the frag-
ment processor in a vector [Thompson et al. 2002] and a stream
[Buck and Hanrahan 2003; Bolz et al. 2003; Kruger and West-
ermann 2003] programming model respectively. Other emerging
applications include numerical simulations [Bolz et al. 2003], clas-
sic computer science problems like Fast Fourier Transformation,
X
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sorting [Buck and Hanrahan 2003], and simulation of physical phe-
nomena [Harris et al. 2002].

Many applications in the scientific computing domain can
achieve a significant performance gain by off-loading some or all
of their numerical computations onto the GPU, thereby freeing the
CPU to perform other tasks.

In general, the core of a scientific application can be decom-
posed into a set of linear algebra computations. Between applica-
tions, there exists a high component similarity and reuse. Scientific
applications also require tremendous computing power and are of-
ten highly optimized for a target machine. From these, we notice
a trend where scientific application developers favour using some
highly optimized linear algebra library such as BLAS.

We foresee the advent of more powerful and flexible GPUs in the
future allowing developers to implement novel rendering pipelines.
Such development would remove many of the current obstacles in
implementing general purpose software on today’s GPUs.

Our work makes the following contributions:
Y A prototype BLAS library implementation on the NVIDIA

NV30 architecture GPU which forms the core building block
for many important software packages in the realm of scien-
tific computing.

Y Proposes a cascading loop-back model as a mechanism for
chaining multiple GPU-based function calls efficiently on the
GPU. As discussed later in this paper, for a single run through
the graphics pipeline, the setup times are dominant compared
to the actual execution time. Keeping intermediate results in
the GPU memory, the complex scientific applications could be
efficiently modeled as multiple computation phases through
the pipeline.

Y Identifying the architectural bottlenecks of existing GPUs and
proposing enhancements so that running scientific applica-
tions on the GPU can benefit the most in terms of overall ex-
ecution times and numerical accuracy.

The rest of this paper is organized as follows. Section 2 gives
an overview of modern programmable graphics hardware and the
related work in this area. In Section 3, we explain the framework
for BLAS programming on the GPU. The execution models for ba-
sic vector-vector operations are presented. These are subsequently
used to built more complex matrix-vector and matrix-matrix oper-
ations. We also introduce the cascading loop-back model of com-
putation resulting in increased utilization of the graphics pipeline.
The experimental setup and the results are evaluated in Section 4.
Based on our evaluation, we discuss the potential bottlenecks and
propose enhancements for future graphics architectures in Section
5. Finally, Section 6 concludes the paper.
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Figure 1 shows the graphics pipeline and the programmable pro-
cessors in the modern graphics architecture. Both the vertex pro-
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cessor (VP) and the fragment processor (FP) can do 4-wide SIMD
floating point arithmetic. This is well supported by the register set
which can hold quad-valued floating point values e.g. xyzw for po-
sition and rgba for color. The latest graphics card from ATI (9800)
supports 24-bit arithmetic whereas the NVIDIA GeForce NV30 ar-
chitecture supports fixed-point (8 bit), half-float (16 bit) and single-
precision IEEE floating point (32 bit) data types.

Figure 1: The programmable graphics pipeline.
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The vertex and the fragment processors execute a user-specified
vertex and fragment program respectively. All the vertex attributes,
e.g. position, color, normal, can be altered by the vertex program.
Fragment programs define how fragments are to be shaded. At this
stage, textures are mapped to each fragment for computing the final
color of each pixel. Vertex programs get executed for each vertex of
the input geometric primitives and fragment programs are executed
for each fragment generated by the rasterizer.

In this context, there is a fundamental difference in the GPU pro-
gramming model which closely resembles SIMD from that of the
MIMD model for the CPUs.

There is both an assembly-level as well as a high-level (ex.
Cg [Fernando and Kilgard 2003; NVIDIA 2002]) programming in-
terface for implementing these programs.

Figure 2: The execution model.

At the beginning of execution stage (Figure 2), the graphics
hardware places the element’s data fields in the read-only input reg-
isters and executes the user program. During the execution stage,

the program has access to a set of temporary registers as well as
constants defined by the user application. At the end of execution,
the results are placed into write-only output registers.

An important point to note here is that there are several key dif-
ferences in the functionality supported by the vertex and the frag-
ment processors. Vertex programs can branch and use powerful
instruction sets but do not have access to the texture memory. On
the other hand, fragment programs can’t do branching, logical oper-
ations (AND, XOR) and have limited instruction set but are able to
do texture look-ups. Large datasets can be stored and accessed from
the texture memory by fragment programs. Consequently, most of
the recent efforts on harnessing GPUs for general purpose compu-
tations have been focussed on using fragment hardware.

In terms of execution flow (Figure 2), the data values are passed
from the CPU to the GPU pipeline, go through the vertex and frag-
ment processing stages which write the end result into the frame
buffer. Thus, CPU can read output values only from the frame
buffer even though results maybe available much earlier, for in-
stance at the VP stage. This restriction of no direct data path from
CPU to FP and VP to CPU proves to be a critical factor in defining
the mapping of numerical computations onto the GPU.
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Pixel buffers(Pbuffers) are off-screen rendering contexts for an
OpenGL renderer. Pbuffers are useful for computing and storing
the results of intermediate rendering steps. One use is for imple-
menting dynamic texturing, which we discuss shortly.

Modern graphic controllers contain immense amounts of video
memory and extends PBuffers to support high precision. Instead
of limiting rendering contexts to use fixed-point 8bit components
for their RGBA or Texcoord components, these controllers provide
PBuffers for 16 bit or 32 bit floating-point precision for their RGBA
or Texcoord components.

Another feature provided by modern graphic controllers is for
PBuffers to have dimensions which are not a power of two. Hence
a developer has freedom in creating the required PBuffer for his
requirements. Lastly, modern day PBuffers can also be tagged as a
texture object, thus allowing even greater flexibility.
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Dynamic texturing is a technique frequently used by graphic devel-
opers to attain greater realism. In its simplest form, dynamic textur-
ing involves rendering a scene in a graphics context, downloading
the rendered scene as an image onto the host computer, and subse-
quently uploading the image as a texture object for use in rendering
a latter scene. The drawbacks for dynamic texturing are largely
centered on the inefficiencies on moving data back and forth be-
tween the video memory and the host CPU. Modern graphics con-
trollers provide features to enhance the performance for dynamic
texturing. These additions largely center on increasing bandwidth
and throughput in the communication channels between the GPU
and the CPU. More recently, newer controllers provide support for
tagging a off-screen rendering space, the PBuffer, as texture objects
for use in subsequent rendering. This latter support is also known as
render to texture. The use of render to texture eliminates the need to
download a rendered image to the CPU and subsequently uploading
it as a texture object, thereby eliminating the communication costs
required in earlier implementations.
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Using graphics hardware for general purpose computing has been
an active area of research in the last decade [Lengyel et al. 1990;
Hoff III et al. 1999]. The early applications used numerical com-
puting in the context of radiosity [Cohen et al. 1988; Keller 1997].
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With the introduction of programmability of the vertex processor
[Lindholm et al. 2001] and recently, the fragment processor, the
end-user has gained enormous power in terms of programming and
executing his general-purpose tasks on the GPU. The recent efforts
of mapping numerical algorithms on the GPU include non-linear
diffusion [Strzodka and Rumpf 2001], fluids and steam [W. Lei
and Kaufman 2003] and simulation of boiling phenomena [Harris
et al. 2002].

The approach of Thompson et. al. [Thompson et al. 2002]
focuses on using the vertex processor as a general-purpose vec-
tor processor. The authors implemented a software layer on top of
graphics assembly routines. They demonstrated their framework by
solving matrix multiplication and 3-SAT problems. Larsen et. al.
[Larsen and McAllister 2001] also presented a technique for doing
matrix multiplication on the graphics hardware. Ian et. al. [Buck
and Hanrahan 2003] proposed a stream programming model on the
fragment processor. They also identified that general-purpose pro-
grams which exhibit high arithmetic intensity and data parallel na-
ture would show maximum performance gain from their GPU im-
plementation.

The work of Kruger et. al. [Kruger and Westermann 2003] is
closest in spirit to our own. In their work, the authors focused on
solving sets of algebraic equations on the graphics hardware using
linear algebra operators. However, their framework is restricted to
doing basic matrix-vector operations. In contrast, our approach pro-
vides a framework for doing matrix-matrix computations, thereby
closely providing the functionality available in the BLAS library.
Bolz et al. [Bolz et al. 2003] showed the implementation of two
basic computational kernels on the GPU, a sparse matrix conjugate
gradient solver and a regular-grid multi-grid solver.

In contrast to virtually all of the previous approaches which ex-
ecute a single execution sequence through the graphics pipeline,
our approach introduces a cascading loop-back model of compu-
tation where intermediate results are stored in the video memory.
We also show that many concerns related to the severe technical
limitations identified by previous approaches, such as low preci-
sion [Larsen and McAllister 2001; Thompson et al. 2002] are no
longer valid. Though numerical precision can be traded with faster
execution timings, the modern GPU provides a full 32-bit floating
point pipeline for storing each of RGBA or TexCOORD compo-
nents. Therefore many complex and precision-sensitive numerical
calculations can now be implemented on the GPU.
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The BLAS library comprises of a set of high quality ”building
block” routines for performing basic vector and matrix operations.
The library can be separated into three categories of routines,
namely the vector-vector, matrix-vector and matrix-matrix opera-
tions. Because the BLAS subroutines are well abstracted, efficient,
portable, and widely available, they are commonly used in the de-
velopment of high quality linear algebra software. Notable exam-
ples include the LINPACK and the LAPACK.
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To model the different types of BLAS operations, we first describe
the mapping for basic vector operations. For each of the following
cases, we illustrate the mapping using the the addition operation.
Vector-Scalar operation: In this example, our purpose is to incre-

ment a vector by some scalar value. In this operation (Figure 3), a
vector of length n is segmented into m other vectors of length 4 in
the CPU function vsAdd. The vertex program vsAdd.cg is loaded
onto the vertex processor and the scalar value is passed as a uniform
parameter. Subsequently, the CPU function vsAdd would stream
the set of m vectors onto the CPU as OpenGL primitive points. The

Figure 3: Vector-Scalar operation.

vertex program, vsAdd.cg, would add the scalar value to all the
fields in the m vertices. Consequently, the vertices proceed to the
fragment processor and are then written into the off-screen PBuffer
context. The CPU function vsADD continues to read the color val-
ues of each pixel representation of the vertices. These color values
contain the result of a vector-scalar operation. The output in the
PBuffer is then converted into a texture object. Finally, the CPU
function downloads the texture map from the video RAM, concate-
nates the sequence of color values into a vector of length n and
return it as the result.

Figure 4: Vector-Vector operation.

Vector-Vector operation: In this operation (Figure 4), two vec-
tors of length n are transformed into texture data in the CPU func-
tion vAdd. The fragment program vAdd.cg and the texture data
are loaded into the fragment processor and the GPU memory re-
spectively. Subsequently, the CPU function vAdd would draw a
quadrilateral primitive having n pixels. The vertex processor does
nothing and passes on the vertices to the rasterizer which generates
their pixel representation (fragments). For every pixel, the frag-
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ment processor would do two texture look-ups and determine the
color value of each pixel based on the operation (addition in this
example). These pixels are then written into the off-screen PBuffer
context, bound as a texture, and consequently downloaded onto the
CPU and returned as the result.
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The video memory addressing modes are restrictive compared to a
CPU. As previously described, the VP is not able to access the video
memory and FP can only access it via texture lookups. Hence, it is
a challenge to implement reduce routines such as summation, dot
product, absolute and maximum, which iterate over the contents of
some contiguous memory segment (for a vector).

Our implementation for such algorithms uses a technique simi-
lar to the one described in [Kruger and Westermann 2003]. It is
a recursive algorithm, where for some given input size n, the com-
putation would be performed using a total of log � n � recursive calls.
To illustrate, we describe the execution of the summation algorithm
for a matrix containing 128 elements.

Figure 5: The Folding Technique.

As seen in Figure 5, the matrix is of dimensions, width 16 and
height 8, containing 128 elements. At each recursion step, we di-
vide the matrix into 2 equal-sized segments such that each element
in the first segment maps to an element in the second segment. The
summation process for 128 elements involves log � 128 � = 7 steps.
At each step, the input for our summation routine is a texture of
size p pixels, and the output is a texture image of size p 	 2 pixels.
Specifically, each step renders an image half the size of the input
texture image size. Thus, in our OpenGL rendering commands,
each pixel in the quadrilateral is mapped to 2 texture coordinates of
the input texture. Consequently, in the last step, the resulting image
is 1 pixel in size, which also holds the final result.

From an implementation viewpoint, this technique requires the
availability of multi-texturing extensions available in advanced
graphics controllers.

�_i � 
fn v t1nEyrs ���
��<-<_o���� nEt >
For maximum throughput of the graphics pipeline, we propose a
cascading loop-back computation model. In this model, we ex-

tend the single (binary) operations described in the previous sub-
section to a sequence of N operations where the intermediate re-
sults are stored and accessed as texture objects in the video mem-
ory. The cascading flow of the intermediate results from the ith to
the i � 1th stage (i � 1 ��W�W�W�� N) alleviates the need of passing data
values to and fro between the video and main memory. This novel
concept of performing loop-back computations also reduces the ex-
pensive hardware set-up times required for each of the independent
N passes through the pipeline stages. Moreover, this finds a direct
mapping in the domain of linear algebra operations, ex. adding N
vectors ∑N

i � 1 Vi, multiplying N matrices ∏N
i � 1 Mi etc. We illustrate

the model of N Vector-Vector operations using an example of ad-
dition of three vectors each of length n, performed in two stages.

Figure 6: Cascading Loop-back Model: 2 Vector-Vector operations.

N Vector-Vector operations: In this example (Figure 6), we
perform two separate vector vector add operations. The first oper-
ation proceeds as described earlier for the vector-vector add opera-
tion. The output of this operation is used as an input for the second
operation. Since the same operation needs to be performed (with
different inputs), we do not load a new vertex or fragment program.
However, a new texture map needs to be loaded corresponding to
the third vector. After that, the second operation proceeds as nor-
mal. Lastly, the CPU function concatenates the sequence of color
values into a vector of length of length n as the final result.

Matrix operations: In our framework, the implementation of
matrix-vector and matrix-matrix operations builds in a bottom-up
fashion on top of vector-vector operation modules. The input ma-
trices are stored as texture maps in the video memory. Given an
operation, the rows (and columns) of a matrix are treated as vectors
and an execution call is made to a vector-vector subroutine corre-
sponding to the desired operation. These calls are made in conjunc-
tion with the reduce operations to process (e.g. accumulate dot-
products in matrix multiplication) the output of vector-operation
sub-routines.
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BLAS input types have to be represented as OpenGL elements for
processing by the GPU. We describe the interface for the C++ class
blas data which acts as a wrapper for BLAS subroutine inputs.
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The constructors create a blas data instance containing a
GL TEXTURE RECTANGLE NV texture object representing the
data object (or referencing a PBuffer). This constructor is used to
represent data corresponding to the datatype for latter computation
by a GPUOp object.

The read-back function downloads the contents of the
GL TEXTURE RECTANGLE NV referenced by the blas data in-
stance and separates the RGBA components into individual floats.
Consequently the values are returned in a float array. The remaining
functions return the dimensions, pixel count and texture reference
of the blas object respectively.
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The GPUOp constructor sets up the proper contexts which are used
subsequently for setting up the vertex and fragment programs and
the PBuffer. The destructor de-allocates the PBuffer memory. The
compute function loads the appropriate vertex and fragment pro-
grams. It also instantiates the necessary PBuffer space and performs
the desired computation by rendering a geometric primitive.

The setArg function pushes a blas data instance onto a stack for
latter use as an input for GPU computations. Figure 7 illustrates
this framework for the Vector-Vector operation of adding 2 vectors,
vAdd.
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In this section, we describe the performance benchmarks and an-
alyze the experimental results from their execution on the testbed
machine.

Our BLAS library prototype has been developed on a represen-
tative hardware system. The experimental testbed was a 1 W 8 GHz

Figure 7: Implementation of BLAS vector-vector operation.

Intel Pentium IV workstation with 512 MB of RAM running Win-
dows XP. It’s graphics system was a NVIDIA Quadro TI 5800 Ultra
with 128 MB DDR SDRAM on an AGP4X bus. The card device
driver was NVIDIA 6 W 14 W 01 W 4345. The timing measurements were
taken using the reference hardware’s high-resolution performance
counter. The frequency of the counter is 3579545 ticks per second.
As such our timings are of high precision.

Figure 8: Execution time for matrix multiplication (8 bit Fixed
Point).
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Offloading a computation onto the GPU is associated with certain
costs. These costs can be broadly classified as upload time, compu-
tation setup time, computation time, and download time. For many
computations, the input has to be morphed and uploaded onto the
video memory as texture objects. We define the cost associated
with converting matrices and vectors into textures and uploading
them onto the GPU as the upload time. For any computation, the
software also has to instantiate and initialize an off-screen rendering
context (a PBuffer) for computation. This is refered as the compu-
tation setup time. Consequently, the actual time taken to render a
scene for a BLAS subroutine computation is known as the compu-
tation time. Lastly, the computation results are bound as a texture
object. The contents have to be downloaded, and represented in
some form for further processing. The associated cost to this is ref-
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ered as the download time. Hence the total computation time in this
step is the sum of all these four components.

To determine the individual contribution of each cost to the total
execution time, we performed a matrix multiplication benchmark.
The size of each matrix is four million elements. The multiplica-
tion program ∏N

i � 1 Mi runs for an entire sequence of 32 cascading
loop-back operations (N = 32). The break-down percentages of the
execution timings for the fixed point and floating point are shown
in Figures 8 and 9 respectively.

Figure 9: Execution time for matrix multiplication (32 bit Fixed
Point).

Compared to the fixed point implementation, the read-back tim-
ings from floating point PBuffers are significantly expensive for a
single operation. However, amortizing the timings for the entire
sequence of operations, the PBuffer set-up times play the domi-
nant role in both implementations. Since only a single read-back
of the results is required at the end of execution sequence, the ra-
tio of read-back to the total time for floating-point computation is
only marginally higher than that of fixed-point. Consistent with this
observation, [Bolz et al. 2003] also identified a high performance
penalty associated with PBuffer switches.

Figure 10: Execution time for matrix multiplication (8 bit Floating
Point).
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This benchmark demonstrates the effectiveness and performance
gain of cascaded loop-back computation model for both the fixed
point and the floating point pipelines. Figures 10 and 11 show
the total execution time versus number of operations for fixed-point
and floating-point computations respectively. The plots in each

figure correspond to two scenarios, the cascade loop-back model
where intermediate results are stored on GPU’s video memory and
the other depicting single independent executions where intermedi-
ate results are downloaded from video to main memory and subse-
quently, uploaded again for latter computations. From our bench-

Figure 11: Execution time for matrix multiplication (32 bit Floating
Point).

mark timings, we observe that the execution time decreases by a
factor of 3 for floating point computations. The corresponding fac-
tor for the fixed point case is about 1 W 5. This can be largely at-
tributed to the significant difference in the download timings be-
tween fixed-point and floating-point data from the GPU. This result
strongly advocates our claim that for achieving high performance,
high-precision numerical computations should be mapped onto the
GPU in a cascading loop-back model. Another important conclu-
sion is that the performance is limited by bandwidth in the current
GPUs.
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The computation efficiency is defined as the ratio of the actual GPU
computation time to the total execution time comprising of load,
setup, compute and read-back. As observed in Figure 12, the effi-
ciency of fixed point calculations is about 60 percent compared to
about 33 percent for the floating point. This can be explained on
the basis of dominating set-up and read-back timings for the float-
ing point case compared to fixed point.

An interesting observation here is that there is a peak in effi-
ciency for a vector of size approximately 16 million (8 � 2 mil-
lion). We explain this on the basis of size of the video memory
(128MB in our testbed). Since we are storing each 32 bit (4 byte)
vector as textures in the video memory, the space occupied would
be 8 � 2 � 1e6 � 4 (nearly 64MB). Therefore, the total space used for
two vectors would be about 2 � 64MB which is nearly equal to the
video memory. After the cross-over point, AGP memory would also
be used for storing the data elements. Since the transfer speeds of
AGP4x are slower compared to the video RAM, there is a decrease
in efficiency as the total time increases. The efficiency for the fixed-
point computations doesn’t exhibit the same behaviour since only
the video memory is used for storing the texture maps of the two
vectors.
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We mention here some observations we made during our implemen-
tation that may be of interest to the developer community porting
scientific applications onto the graphics hardware.
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Figure 12: Efficiency of 8-bit fixed-point v/s 32-bit floating point
(matrix multiplication - each 2 million elements).

Y Numerical Accuracy
We use 32 bit floating point pixel buffers. In many cases, nu-
merical methods have to be performed in double precision to
allow for accurate and stable computations. So, it becomes
important for the software library as well as the target archi-
tecture to support sufficient accuracy.

Figure 13: Comparison of GL QUAD v/s GL POINTS.

Y GL QUAD v/s GL POINT
To map numerical calculations to graphics, a geometric prim-
itive is used for on-screen as well as off-screen rendering. In
this experiment, we did a performance comparison between
GL POINTS and GL QUAD. For two input vectors of size
four million each, the timings in Figure 13 show a five times
speed-up using GL QUAD for floating point and a three times
speed-up for fixed point over rendering GL POINTS. Though
this observation might appear intuitive, it has strong impli-
cations for achieving high performance in scientific applica-
tions.

Y PBuffer Read-back Timings Degradation
In the matrix multiplication operation, say M1 � M2, a PBuffer
is created for each column (vector) of M2 to be multiplied
with a row (vector) of M1. For such successive PBuffer invo-
cations, we observed (Figure 14) a significant degradation in
read-back timings for floating point PBuffers as the number of
invocations increase. This degradation is also observed (Fig-
ure 15) for the fixed point case. A possible explanation could

Figure 14: Degradation in read-back timings (fixed-point PBuffer).

be the overheads in transferring the data to and fro between
the AGP and the video memory. The result also shows that
the existing GPUs are bandwidth limited and not computation
limited.

Figure 15: Degradation in read-back timings (floating-point
PBuffer).

Y RGBA pixel format
We found that 4 numbers can be packed into a single pixel
by setting R, G, B and A values to the corresponding vec-
tor components. This also results in a improved performance
compared to using RGB format.
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In this section, we analyze the important implications for the graph-
ics architectures arising from the experimental results in the pre-
vious section. We propose a set of changes to the hardware and
programming interfaces which has potential for enhancing the effi-
ciency of general-purpose computing on GPU.
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These recommendations are important from the perspective of GPU
architecture designers. Furthermore, we feel that incorporating the
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changes into the target architecture itself would be a vital factor in
boosting performance.

VP, FP as 1st class processors: For computer graphics applica-
tions, the vertex and the fragment processors perform the special-
ized task of geometry and fragment level processing respectively.
In contrast, for general purpose computing, each processing unit
should provide an access mechanism to all the hardware functional-
ities for maximum throughput and easy portability. The immediate
implications for GPUs are that both the VP and FP should be first
class processors having similar cores and instruction sets. Specifi-
cally, FP should have access to the powerful instruction set of VP
and have branching instructions. Likewise, VP should have mem-
ory access operations to fetch the operands from the texture mem-
ory. To fully exploit the parallelism, the execution speeds should
be similar so that the output from one could be consumed by the
other at the same rate without any need for expensive intermediate
register storage.

Increase GPU-CPU Memory Bandwidth: As observed from
the dominant set-up and read back timings, both transferring and
reading back the results from the GPU is a bottleneck in existing
architectures. This overhead is considerably large compared to the
actual execution time. Our proposed cascading loop-back model
attempts to alleviate this but a stronger impact can be achieved by
providing a high bandwidth memory interface between the two pro-
cessing units.

For some architectures in particular, the read back from the GPU
is implemented in software by passing the values through the de-
vice driver to the CPU. This might not be an issue for graphics ap-
plications but for scientific computing, a large volume of numerical
results need to be read from the video memory. Hence, providing a
fast hardware read back mechanism becomes all the more important
to contend as an efficient platform for these applications.

Reuse of Pixel Buffers: In our implementation framework, each
subroutine is computed on the GPU in a separate PBuffer and it’s
results, which is the rendered scene are bound as texture objects in
the video memory. Further invocations of other subroutines would
require creating new instantiations of PBuffers. As evinced by the
performance benchmarks, the PBuffer instantiation costs make up
a significant proportion of the total subroutine run-time. According
to NVIDIA’s white-papers, most developers seldom require more
than one PBuffer invocation. Hence, for graphics applications, re-
ducing the PBuffer set-up overheads might not be a priority but it
is critical for general-purpose applications which require multiple
phases. Thus, rather than creating a new PBuffer each time, an in-
terface to re-use an existing PBuffer would reduce execution times
considerably.

Multiple Texture Fetches: Currently, a texture fetch instruction
accesses the RGBA vales of a single texel in the video memory.
Enhancing the instruction set and the memory interface for read-
ing multiple texel values in one instruction (e.g. a constant, say
c, number of consecutive locations) could potentially increase the
efficiency of vector computations by a factor of c.

Furthermore, instructions having additional offsets to the texture
coordinates can be used for doing data-dependent computations.

Global Registers: Providing a set of globally read-write regis-
ters would help passing important values between subsequent exe-
cution calls. For example, an accumulation register would be useful
for doing sum-reduction operations.

Preserving state across multiple calls: Preserving state infor-
mation can lead to an effective information flow across execution
calls. Globally accessible locations is one mechanism to achieve
this - other features which can be possibly included are a stack and
a register set for passing intermediate values and state parameters.

Allow CPU to read-write GPU registers: Both the VP and FP
contain a set of input, temporary and output registers for program
execution. Currently, access to these registers is limited and there’s

a restriction on data placement ex. the developer can’t directly read
or write the individual registers from the host application. The val-
ues in the VP registers can be set using OpenGL calls such as gl-
TexCoord*, glSetColor* but the host application is not allowed to
access registers in the FP. The restriction on precision is also ob-
served when accessing VP registers. For instance, in the VP, the
values for COLOR0 register can only be fixed-point whereas the
values for Texcoord* registers can be 32 bit floating point.

Introduce a Stack: Numerical calculations (e.g. time-
dependent differential equations) often compute the results in a re-
cursive fashion. Allowing a mechanism to support stack operations,
these applications can be easily mapped onto the GPU.

Pointers: The concept of a memory pointer is meaningful for
scientific applications, but not necessarily for graphics. Again, this
has important implications from the perspective of both the porta-
bility and efficiency of numerical programs.

Introduce bit-wise operations: The logical operations (ex.
AND, XOR) are important for many image-processing applications
and in our opinion, the existing architecture can include hardware
features to support them with minimal extensions.
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These recommendations are based on the insights we gained dur-
ing the implementation of our framework. From the viewpoint of
graphics hackers, these critical points must be kept in mind while
developing high performance applications for the graphics hard-
ware.

Load important data into video memory: Since the difference
in memory latency between video and system memory is signif-
icant, the video RAM should be utilized for storing textures and
frequently accessed parameters.

Texture Interpolation: A primary requirement for supporting
scientific applications is to provide floating point arithmetic. Mod-
ern day GPUs support 8, 16, 24 and 32 bit floating point PBuffers
and texture objects.

It is noteworthy that fixed-point PBuffers and texture objects
need to be dimensions of size, power of 2. In addition, fixed-
point PBuffers do not inherently provide support for negative val-
ues. A potential workaround is to introduce a bias which involves
additional computation after downloading the GPU computation re-
sults. However, these restrictions are not present in floating-point
PBuffers or texture objects.

During the course of our implementation, we also found float-
ing point PBuffers and texture objects easier to work with. Using
fixed-point PBuffers, the texture coordinates are clamped to [0, 1]
and often during computation, we realized that our texture coor-
dinates are off by some precision. However, when using floating-
point PBuffers, the texture coordinates are not clamped and are in-
dexed relative to the width and height dimensions. This has con-
tributed to easier programming and removed the computation costs
required to clamp some texture coordinate.

From our survey, we found that current hardware im-
plementing the CineFX architecture just has hardware sup-
port for the GL FLOAT R32 NV, GL FLOAT RGBA16 NV and
GL FLOAT RGBA32 NV internal formats. The other formats are
supported but currently expanded into the driver using one of the
three formats in the list. In practical terms, that means that a 2
component texture takes up as much space as a 4 component tex-
ture. As such it is prudent to use 4 components even if we are going
to use 2 or 3 components.

Maximum use of Fixed-Point Pipeline: As evinced by the ex-
periments, there is a big performance gap between the fixed point
8-bit pipeline vis-a-vis it’s 16-bit and 32-bit counterparts. This can
be used effectively for computing applications which can trade-off
numerical accuracy for higher speed. Another important point is
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that the fixed point pipeline in graphics architectures has been well-
tested and comparatively more stable than the floating point ones.

Geometric Primitives: As discussed in the previous section, the
performance gain using GL QUAD is significant compared to using
GL POINTS as the geometric primitive.

Code Optimization (Instruction, Memory): In conjunction
with the compiler optimizations, we feel that the developer also
needs to optimize the vertex and the shader program in terms of
instructions and memory accesses. This is based on the following
observations in the Cg language:

Y Using In-built functions
We observed that using the library functions from the lan-
guage was more efficient than doing the same computation
from the basic set. For example,

-���/��0#8j$>����N!�/"#F+C&�/$(:5$#F3 -$��/��"#��*+����	�O3
�����*3
������?�?�A

is faster compared to :

-���/��0#8j$>�����&���� Vk1����	����&���� =k1���������&������k1������iA

Y Register accesses vis-a-vis number of computations
We observed that for complex calculations, it is often faster
and easier to break into small sub-expressions and re-using the
common terms by storing in temporary variables (registers).
For example, (mi are matrices for i � 1 ��W�W�W � 4)

E$>��:'��"#�� f��:1Lf��$1Lf���1Lf���� f��01�������1Lf�� ������!�1Lf��$1Rf"��1Lf��iA

is slower than executing the following calls :

fO�"#��#�$� f���1 f��*A
fO�"#����%� f"�21 f��FA
E$>��:'��"#�� f��#�21 f"��� �&�����81 f��'���&����!81 f��21�f"�(�FA

Video Card Drivers: Debugging graphics hardware is a difficult
task considering the non-stability of the video device drivers. Ac-
cording to our literature survey, ATI’s drivers are more stable but do
not achieve optimum performance. On the other hand, NVIDIA’s
drivers are smarter but generate more errors. Thus to harness the
capabilities of the hardware, it is pertinent to frequently update the
drivers.

In our experience, the techniques to extract the maximum per-
formance from the graphics hardware are certainly non-trivial and
moreover, not well documented. A fairly detailed set of experi-
ments and many trials are required to figure out how to make things
run fast and sometimes, even in a correct or expected manner.

� i � � ��� 9S|Eo-<Em ;Gv

During the course of our implementation, we found the following
bugs in NV30 device driver and Cg compiler respectively. These
bugs are reproducible and have been confirmed by NVIDIA.

Y After rendering to a PBuffer and making a PBuffer a texture,
it is not possible to do a read-back from the texture object.
This bug exists on the actual NV30 machine but works fine
on the NV30 emulator. One workaround is to do a read-back
on the PBuffer instead of the texture object.

Y cgSetColor function call does not update the alpha component
of the color register. One workaround is to use the OpenGL
glSetColor4f function instead.
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In this research, we have investigated the GPU’s potential as an
efficient computing engine for scientific, specifically linear algebra
computations. We describe a framework for the implementation
of linear algebra operators on GPUs, providing the building blocks
for the design of more complex numerical algorithms. We identify
the potential architectural bottlenecks and analyze their pros and
cons based on our experiments. Furthermore, in order to achieve
maximum performance, we propose important enhancements for
future graphics architectures.
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