
Short Tours through Large Linear Forests

Uriel Feige1⋆, R. Ravi2⋆⋆, and Mohit Singh3

1 Department of Computer Science, The Weizmann Institute, Rehovot, Israel. Email:
uriel.feige@weizmann.ac.il.

2 Tepper School of Business, Carnegie Mellon University. Email: ravi@cmu.edu
3 Microsoft Research, Redmond, USA. Email:mohits@microsoft.com

Abstract. A tour in a graph is a connected walk that visits every vertex at least
once, and returns to the starting vertex. Vishnoi [18] proved that every connected
d-regular graph with n vertices has a tour of length at most (1 + o(1))n, where the
o(1) term (slowly) tends to 0 as d grows. His proof is based on van-der-Warden’s
conjecture (proved independently by Egorychev [8] and by Falikman [9]) regard-
ing the permanent of doubly stochastic matrices. We provide an exponential im-
provement in the rate of decrease of the o(1) term (thus increasing the range of
d for which the upper bound on the tour length is nontrivial). Our proof does not
use the van-der-Warden conjecture, and instead is related to the linear arboric-
ity conjecture of Akiyama, Exoo and Harary [1], or alternatively, to a conjecture
of Magnant and Martin [12] regarding the path cover number of regular graphs.
More generally, for arbitrary connected graphs, our techniques provide an upper
bound on the minimum tour length, expressed as a function of their maximum,
average, and minimum degrees. Our bound is best possible up to a term that tends
to 0 as the minimum degree grows.

1 Introduction

A tour in a graph is a connected walk that starts at a vertex, visits every vertex of the
graph at least once, and returns to the starting vertex. The length of the tour is the
number of steps of the corresponding walk. Vishnoi [18] proved the following theorem.

Theorem 1. [18] Every n-vertex d-regular connected graph has a tour of length at
most

(
1 +

√
64

log d

)
n. Moreover, there is a randomized polynomial time algorithm that

with high probability finds such a tour.

The existential part of the proof of Theorem 1 is based on van-der-Warden’s con-
jecture (proved independently by Egorychev [8] and by Falikman [9]) regarding the
permanent of doubly stochastic matrices. (See also Section 3 of [2] for related results.)
The algorithmic part is based on randomized algorithms for approximating the perma-
nent [11]. We provide the following strengthening of Theorem 1.

⋆ Work supported in part by the Israel Science Foundation (grant No. 621/12) and by the I-
CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation
(grant No. 4/11).

⋆⋆ Work supported in part by NSF grant CCF-1218382.

Theorem 2. Every n-vertex d-regular connected graph has a tour of length at most(
1 +O

(
1√
d

))
n. Moreover, there is a randomized polynomial time algorithm that

finds such a tour.

Our proof does not use the van-der-Warden conjecture, and instead works by con-
structing a large linear forest. A linear forest is an acyclic subgraph where the degree
of any vertex is at most two. Equivalently, a linear forest is a vertex disjoint union
of paths. We prove the following theorem about existence of large linear forests in d-
regular graphs.

Theorem 3. Every n-vertex d-regular graph has a linear forest of size
(
1−O

(
1√
d

))
n,

and moreover, such a linear forest can be found in randomized polynomial time.

We observe that certain unproved conjectures (specifically, the linear arboricity con-
jecture of [1], or alternatively, a conjecture of [12] regarding the path cover number of
regular graphs) would imply that every d-regular graph has a tour of length at most(
1 +O

(
1
d

))
n. This bound would be best possible up to the hidden constant in the O

notation, as there are d-regular graphs in which every tour is of length (1 + Ω(1d))n.
See more details in Section 4.

A linear forest with a large size given by Theorem 3 is useful for constructing a
spanning tree with few odd-degree nodes: indeed, extending the forest to any spanning
tree introduces odd degree nodes of the same order as the number of components of the
forest. For an even cardinality set T of vertices, a T -join is a collection of edges which
has odd-degree exactly on vertices in T . Following Christofides’ algorithm [6], it then
suffices to construct a T -join on these few odd degree nodes. We show that, in a graph
whose minimum degree is large, there is always a small size T -join when |T | is small
in the following theorem.

Theorem 4. Let G(V,E) be an arbitrary connected graph with n vertices and mini-
mum degree δ, and let T ⊂ V be an arbitrary set of vertices of even cardinality. Then
there is a T -join with fewer than 2|T |+ 3n

δ+1 edges.

The above theorem then, along with Theorem 3, directly gives Theorem 2. We also
observe that Theorem 4 can be thought of as a generalization of the classical result [14],
up to additive constant terms, that every graph with minimum degree δ has diameter at
most 3n

δ+1 . This follows since when T = {u, v} then the smallest T -join is exactly the
shortest path between u and v.

In contrast to the result of Vishnoi [18], our results extend naturally to nearly regular
graphs and we prove the following general theorem.

Theorem 5. Let G be a connected n-vertex graph with maximum degree ∆, average
degree d, and minimum degree δ. Then G has a tour of length at most(

1 +
∆− d

∆
+O

(
1√
∆

)
+O

(
1

δ

))
n.

Moreover, there is a randomized polynomial time algorithm that finds such a tour.

Theorem 5 provides tours not much larger than n when ∆ is close to d, and δ is
fairly large. The term ∆−d

∆ is best possible, but the error terms O
(

1√
∆

)
+ O

(
1
δ

)
can

possibly be improved. See more details in Section 3.1.

1.1 Related Work

There has been extensive recent work on approximation algorithms for the graph-TSP
problem, which is the same as that of finding a minimum length tour of a given undi-
rected graph. While Christofides’ algorithm [6] gives a 3

2 approximation even for graph-
TSP, a small but constant improvement was presented by Oveis-Gharan et al. [16].
Mömke and Svensson [13] improved this significantly while further improvements by
Sebö and Vygen [17] have brought the current best approximation factor for graph-TSP
down to 7

5 . The methods of Mömke and Svensson [13] also give a 4
3 approximation

algorithm for subcubic 2-connected graphs.
Another line of work has focused on graph theoretic methods to obtain improved

approximation factors: Boyd et al. [5] showed a 4
3 approximation for 2-connected cubic

graphs while Correa et al [7] gave an algorithm that finds a tour of length at most
(43 − 1

61236)n in n-node 2-connected cubic graphs. For general, d-regular connected
graphs, Vishnoi [18] gave an algorithm for finding tours of length at most (1+ 8√

log d
)n.

2 Small T -joins in Regular Graphs

In this section we prove Theorem 4 which follows directly from the following strength-
ening.

Theorem 6. Let G(V,E) be an arbitrary connected graph with n vertices and mini-
mum degree δ, and let T ⊆ V be an arbitrary set of vertices of even cardinality. Then
there is a T -join with fewer than 2|T |+ 3n

δ+1 − 2ν edges, where ν is the number of con-
nected components in the T -join. Moreover, such a T -join can be found in polynomial
time.

Proof. Given u, v ∈ V , let d(u, v) denote the number of edges along the shortest path
between u and v in G. Consider the following iterative procedure for constructing a
set S ⊂ V together with a set P of virtual edges, each of length 3. Initially, place an
arbitrary vertex v in S. Thereafter, in every iteration, consider an arbitrary vertex (say,
u) whose distance from S is exactly 3. If there is no such vertex the procedure ends.
Given such a vertex u, let w be an arbitrary vertex in S with d(w, u) = 3. Add u to S
and the virtual edge (w, u) to P . This completes the description of the iteration.

Observe that necessarily |S| ≤ n
δ+1 , because every vertex of S excludes all its

neighbors from being in S, and the neighborhoods of vertices in S are disjoint. Observe
also that the graph G′(S, P) induced on S and the virtual edges is a tree.

Associate with every vertex v ∈ T \S the vertex u ∈ S that is closest to v (breaking
ties arbitrarily), and observe that d(u, v) ≤ 2 (due to the maximality of S). Add an
auxiliary edge (u, v) to P , with length d(u, v). Consider now the tree T ′ whose vertices
are T ∪ S, and whose edge set is P . The total number of virtual edges in T ′ is exactly

|S ∪ T | − 1, exactly |S| − 1 of these virtual edges have length 3, and the remaining
edges have length at most 2. Within T ′, find the unique T -join (where a tree edge is in
the T -join iff each of the two connected components that are formed by removing it has
an odd number of vertices from T). Let ν′ denote the number of connected components
(with respect to T ′) in this T -join. Then the number of virtual edges in the T -join is
exactly |S∪T |−ν′, and their total length is at most 3(|S|−1)+2|T \S|−2(ν′−1) <
3|S|+ 2|T | − 2ν′.

Now replace the virtual edges of the T -join by edges along the corresponding short-
est paths in G. The total number of edges needed is less than 3|S|+2|T |−2ν′. In the pro-
cess of replacing virtual edges by paths, the same edge of G might be introduced mul-
tiple times. If so, any double occurrence of an edge is removed (as this does not change
the parity of degrees), so as to make the resulting T -join a simple subgraph of G with
no parallel edges. The removal of a set of edges parallel to each other might add 1 to the
number of connected components, but decreases the number of edges in the T -join by
at least 2. Hence if the final number of connected components in the T -join is ν, then
the total number of edges in the T -join is less than 3|S|+2|T |−2ν ≤ 2|T |+ 3n

δ+1 −2ν,
as desired.

We now prove the following corollary.

Corollary 1. Let G be a connected graph with n vertices and minimum degree δ, and
let F be a linear forest in G. Then given F , one can find in polynomial time a tour of G
of length smaller than 2n− |F |+ 5n

δ+1 .

Proof. Without loss of generality, assume that F is a maximal linear forest. This implies
that isolated vertices cannot be neighbors of each other or neighbors of endpoints of
paths, and endpoints of different paths cannot be neighbors of each other. The forest F
induces in G exactly n− |F | connected components, where a connected component is
either a path or an isolated vertex.

We first describe a process for adding edges from G to the forest so that it becomes
connected. In the process we may add the same edge more than once, and hence we
shall obtain a connected spanning multigraph. The governing consideration in deciding
which edges to add is that of keeping the number of odd degree vertices as small as
possible (in particular, all odd degree vertices will be of degree one). The rules for
adding edges are as follows:

1. If a component is an isolated vertex v, add an arbitrary edge incident to v (hence v
joins some other connected component), and double this edge. Hence the number
of connected components drops by one, the number of edges grows by two, and the
number of odd degree vertices does not change.

2. If there are two vertices u and v of degree one in different connected components
Cu and Cv with d(u, v) = 2 then connect them by a shortest path. Hence the
number of connected components drops by one, the number of edges grows by two,
and the number of odd degree vertices drops by two. Observe that the path between
u and v might go through another component C ′, in which case the number of
connected components should have dropped by two. However, for uniformity of the
analysis (and without affecting its correctness) we shall count C ′ as a component
distinct from the new component formed by Cu and Cv.

When none of the above two rules applies, let q denote the number of remaining
connected components (each of which has two vertices of degree one).

The number of edges (including parallel edges) added by the above procedure is
exactly 2(n− |F | − q).

Observe that if we take one vertex of degree one from each remaining component,
no two such vertices share a neighbor (otherwise rule 2 above would apply). Hence
q ≤ n

δ+1 .
Let T denote the set of odd degree vertices that still remain, and note that |T | =

2q ≤ 2n
δ+1 . Now find a T -join in G using Theorem 6. This T -join has less than 2|T | +

3n
δ+1 − 2ν edges, where ν denotes the number of connected components that remain.

The union of the q components and the T -join is a spanning Eulerian subgraph of G
with ν connected components. It can be made connected (and kept Eulerian) by adding
ν−1 pairs of parallel edges. Thereafter, an Eulerian cycle can serve as a tour of G. The
total number of edges (counting multiplicities) in this union is less than

|F |+ 2(n− |F | − q) + 4q +
3n

δ + 1
− 2ν + 2(ν − 1) < 2n− |F |+ 5n

δ + 1

proving the theorem.

3 Large Linear Forests and Fractional Arboricity

The fractional linear arboricity of a graph G is the minimum number of linear forests
needed to cover every edge where we are allowed to pick a linear forest fractionally.
Given Corollary 1, the proof of Theorem 2 would follow from a lower bound on the
size of the maximum linear forest in regular graphs. Indeed, we prove a stronger result
and show that fractional linear arboricity of any d-regular graph is at most d−O(

√
d)

2 .

Theorem 7. There exists a randomized algorithm that given a d-regular graph G =
(V,E) returns a linear forest F such that for each edge e ∈ E, the probability e ∈ F
is at least 2

d+O(
√
d)

. Thus the fractional arboricity of any d-regular graph is at most
d−O(

√
d)

2 .

Before we prove Theorem 7, we prove Theorem 3.

Proof. Sample a random linear forest F as given by Theorem 7. The expected size of
the forest F is at least∑

e∈E

Pr[e ∈ F] ≥ |E| · 2

d+O(
√
d)

≥ nd

2
· 2

d+O(
√
d)

≥
(
1−O

(
1√
d

))
n

as required.

We can now prove Theorem 2.

Proof. Theorem 3 implies that every n-vertex d-regular graph has a linear forest of size

(1 − O(
√

1
d))n, and moreover, such a linear forest can be found in polynomial time.

Plugging this value of |F | in Corollary 1 proves the theorem.

Thus it remains to prove Theorem 7.

Proof (Proof of Theorem 7). We shall now describe an iterative algorithm for construct-
ing a random linear forest F . We shall assume for simplicity that n is a power of 2. This
assumption has negligible effect on our bounds.

In the beginning of iteration i for i = 1, 2, . . . we have a directed graph Gi =
(Vi, Ei) where the maximum out/in-degree of every vertex is di where di ≃ d

2i and
there are no parallel arcs (but there can be two anti-parallel arcs). The vertex set of Gi

is obtained by identifying vertices of G; thus each vertex of Vi corresponds to subset
of vertices in V and these subsets form a partition of V . We also maintain that edges
included in F up to iteration i − 1 have both their endpoints contracted to the same
vertex in Vi. For i = 1, we initialize G1 as follows. If d is even, we pick an Eulerian
traversing all edges of G and orient the edges by picking an orientation of the tour and
we set d1 = d

2 . If d is odd, we first add a matching of auxiliary edges to G. Observe that
the multiplicity of any edge is at most two after adding the matching. Now we pick an
Eulerian orientation which traverses any two parallel edges right after each other. Now
consider the orientation of the edges as given by the Eulerian tour. Clearly, there are no
parallel arcs as any edge of multiplicity two is oriented as a pair of anti-parallel arcs. In
this case, we set d1 = d+1

2 .
In each iteration i, we do the following steps.

1. Pair the vertices of Gi in arbitrary manner. Then form a directed bipartite graph
Di with bipartition Li ∪ Ri = Vi, where from each pair of vertices one vertex is
included in Li and the other in Ri, uniformly at random and independently for each
pair. Remove all arcs with both endpoints in Li or both endpoints in Ri to obtain a
directed bipartite graph.

2. Next, scan all vertices one by one, and if a vertex has current in- or out-degree
more than di+1 = ⌈di

2 ⌉, delete a uniformly random set of in- or out-edges until the
degree is exactly di+1. After this pass, all vertices have in- and out-degree at most
di+1 but some may have a strictly smaller degree.

3. Consider the bipartite graph formed by edges directed from Li to Ri. This bipartite
graph has maximum degree di+1. Add auxiliary edges between vertices of Li and
Ri of degree less than di+1 in an arbitrary manner (allowing also parallel edges),
until a regular bipartite multi-graph of degree di+1 is obtained.

4. Legally color the edges of this regular bipartite multi-graph with di+1 colors, thus
obtaining di+1 perfect matchings. Select uniformly at random one of the color
classes as the perfect matching Ni.

5. Let N ′
i denote the set of edges which go from Ri to Li and are anti-parallel to an

edge in Ni. Now do one of the following steps.
(a) Select N ′

i as matching Mi with probability 2
di+1

and end the algorithm.
(b) Otherwise, with probability 1− 2

di+1
, let Mi = Ni, and remove all arcs of N ′

i .
Remove all arcs that go from Li to Ri and unify the endpoints of Mi. Thus

in the contracted graph, we only retain edges that go from Ri and Li, and the
out/in-degree of each vertex is at most di+1. Observe that the contracted graph
is a simple graph, with no parallel edges and no self loops. This contracted
graph serves as Gi+1 for the next iteration i+ 1.

If step 5(a) is never invoked, the algorithm ends after log n iterations, as by them
the whole graph is contracted to a single vertex. The final output F of the algorithm is
the union of all Mi, excluding all the auxiliary edges.

Proposition 1. The output of the algorithm is a linear forest.

Proof. Add to the output of the algorithm also all the auxiliary edges that were used in
order to extend the Mi matchings into perfect matchings. Considering the graph induced
on the edges of all Mi and the auxiliary edges, it can be verified by induction that every
vertex in iteration i corresponds to a directed path with exactly 2i vertices, where the
operation performed in iteration i matches such paths in pairs, and concatenates the two
members of a pair with a directed (original or auxiliary) edge. Hence with the auxiliary
edges the final output of the algorithm is a collection of vertex disjoint paths. Removing
the auxiliary edges leaves a vertex disjoint set of paths (some of which might be isolated
vertices), which by definition is a linear forest.

Lemma 1. For any i, an edge e is deleted in Step 2 with probability at most 8√
di+1

.

Proof. Let e = (u, v) be any arc e ∈ Gi. The probability that e ∈ E(Ri, Li) is at
least 1

4 (exactly 1
2 if u and v are paired and exactly 1

4 otherwise), and likewise for
e ∈ E(Li, Ri). Let us first condition on the event that either e ∈ E(Ri, Li) or e ∈
E(Li, Ri) and calculate the probability that e is deleted in Step (2) of iteration i. This
can happen if the out-degree of u or in-degree of v is more than di+1. Let us concentrate
on the event that e is deleted due to high out-degree at u. For each pair p = {w,w′}
of vertices in Gi, let Xp denote the indicator random variable for the event that either
(u,w) or (u,w′) is in E(Ri, Li). If u has out arcs to both w and w′, then Xp = 1
with probability one. If u has an out-arc to exactly one of w or w′, then Xp = 1
with probability 1

2 . Moreover, these random variables are independent since we make
decisions for each pair independently. Thus the out-degree of u is X =

∑
p Xp where

E[X] ≤
∑

p E[Xp] ≤ di+1. Since X is a sum of {0, 1}-valued independent Bernoulli
random variables, standard Chernoff bounds imply that

Pr[degout(u) ≥ di+1 + c
√
di+1] ≤ e−

c2

3 .

Since we delete a random set of required number of edges at u, we obtain that

Pr[e is deleted due to high out-degree at u] (1)

≤
∞∑
c=0

(c+ 1)
√
di+1

di + c
√
di+1

Pr[di+1 + c
√

di+1 ≤ degout(u) ≤ di+1 + (c+ 1)
√

di+1]

(2)

≤
∞∑
c=0

(c+ 1)
√
di+1

di + c
√
di+1

· e− c2

3 (3)

≤ 1√
di+1

∞∑
c=0

(c+ 1) · e− c2

3 ≤ 4√
di+1

(4)

An identical bound holds for the event that e is deleted due to high in-degree at v.
Thus, from the union bound, it follows that

Pr[e is deleted in Step 2] ≤ 8√
di+1

.

We now lower bound the probability that any e is included in F . We prove the
following lemma for the first T = log d

2 iterations. For this lemma, we assume that d is
also a power of two for ease of analysis. This assumption has a negligible effect on the
bounds.

Lemma 2. For any 1 ≤ i ≤ T ,

Pr[e ∈ F |e ∈ Gi] ≥
1

di +
(
2

i
2+1 + 30(

√
2 + 1)

)√
di

(5)

Proof. The proof is by reverse induction on i. For i = T , we have 2T/2 = d1/4 and
dT = d

2T
=

√
d. Thus we have that

1

dT +
(
2

T
2 +1 + 30(

√
2 + 1)

)√
dT

=
1

dT +
(
2
√
dT + 30(

√
2 + 1)

)√
dT

≤ 1

3dT
.

(6)
We will show that

Pr[e ∈ F |e ∈ GT] ≥
1

3dT
≥ 1

dT +
(
2

T
2 +1 + 30(

√
2 + 1)

)√
dT

which will prove the base case.
The chance that e ∈ E(Li, Ri) is at least 1

4 . From Lemma 1, e is removed in Step
2 with probability at most 8√

dT+1

. Since, each color class is chosen with probability
1

dT+1
, we obtain that

Pr[e ∈ NT |e ∈ GT] ≥

(
1

4
− 8√

dT+1

)
· 1

dT+1

But then it is included in MT with probability 1 − 2
dT+1

independent of the earlier
events. Thus

Pr[e ∈ MT |e ∈ GT] ≥

(
1

4
− 8√

dT+1

)
1

dT+1
·
(
1− 2

dT+1

)
≥ 1

6dT+1
=

1

3dT

This proves the base case of the induction.
Now consider any i and let e ∈ Gi. Then e can be included in F in the following

three events. Firstly, if it is in E(Li, Ri), then it can included in Ni and then chosen in
Mi. Secondly, if it is in E(Ri, Li) and if one of the anti-parallel edges to it is chosen in
Ni then it is included in N ′

i and can be chosen in Mi. Lastly, if it is E(Ri, Li) but Mi is
chosen as Ni and it is not deleted in Step 5, it can be chosen in Gi+1. We will calculate
the probabilities of the first two events and apply induction to the last event to prove the
inductive hypothesis. We have the following inequalities. All events are conditioned on
the event that e ∈ Gi.

Pr[e ∈ F] =Pr[e ∈ E(Li, Ri)] · Pr[e ∈ F |e ∈ E(Li, Ri)]

+ Pr[e ∈ E(Ri, Li)] · Pr[e ∈ Mi|e ∈ E(Ri, Li)]

+ Pr[e ∈ E(Ri, Li)] · Pr[e ∈ Gi+1|e ∈ E(Ri, Li)] · Pr[e ∈ F |e ∈ Gi+1]

Now, we calculate each of terms.

Pr[e ∈ E(Li, Ri)] ≥
1

4

Pr[e ∈ F |e ∈ E(Li, Ri)] ≥

(
1− 8√

di+1

)
· 1

di+1
·
(
1− 2

di+1

)
Now Pr[e ∈ E(Ri, Li)] =

1
4 . Conditioned on the event that e ∈ E(Ri, Li), let r

be the multiplicity of the anti-parallel arc to e in E(Li, Ri) after the addition of dummy
edges in Step 3. Then, one of these arcs in selected in Ni with probability r

di+1
.

Pr[e ∈ Mi|e ∈ E(Ri, Li)] ≥

(
1− 8√

di+1

)
· r

di+1
· 2

di+1

In the last case, e is included in Gi+1 if one of the anti-parallel edges is not chosen
in Ni but we chose Mi = Ni

Pr[e ∈ Gi+1|e ∈ E(Ri, Li)] ≥

(
1− 8√

di+1

)
·
(
1− r

di+1

)
·
(
1− 2

di+1

)
By induction, we have

Pr[e ∈ F |e ∈ Gi+1] ≥
1

di+1 + f(i+ 1)
√
di+1

where we let f(j) = 2j/2+1 + 30(
√
2 + 1) for any j for ease of notation.

Combining all the above inequalities, we obtain that

Pr[e ∈ F |e ∈ Gi] ≥
1

4
·
(
1− 8√

di+1

)
· 1

di+1
·
(
1− 2

di+1

)
+

1

4
·
(
1− 8√

di+1

)
· r

di+1
· 2

di+1

+
1

4
·
(
1− 8√

di+1

)
·
(
1− r

di+1

)
·
(
1− 2

di+1

)
· 1

di+1 + f(i+ 1)
√
di+1

We first notice that the coefficient at r is always positive and hence the expression is
minimized when r = 0. Simplifying we get

Pr[e ∈ F |e ∈ Gi] ≥
1

4
·
(
1− 8√

di+1

)(
1− 2

di+1

)(
1

di+1
+

1

di+1 + f(i+ 1)
√
di+1

)
≥ 1

4
·
(
1− 10√

di+1

)(
1

di+1
+

1

di+1 + f(i+ 1)
√
di+1

)
≥ 1

4

(
1

di+1 + 30
√
di+1

+
1

di+1 + f(i+ 1)
√
di+1

)

where the last inequality is true for large enough d. Using the fact that di+1 = di

2 and
simplifying the above expression further, a simple check shows that

Pr[e ∈ F |e ∈ Gi] ≥
1

2di + 60
√
2
√
di

+
1

2di + 2
√
2f(i+ 1)

√
di

(7)

≥ 2

2di +
(
30
√
2 +

√
2f(i+ 1)

)√
di

(8)

=
1

di +
(
15
√
2 + f(i+1)√

2

)√
di

(9)

≥ 1

di + f(i)
√
di

(10)

=
1

di +
(
2

i
2+1 + 30(

√
2 + 1)

)√
di

(11)

where inequality (8) follows from the inequality 1
x + 1

y ≥ 2
(x+y)/2 whenever x, y >

0. Inequality (10) follows from the inequality that f(i) ≥ 15
√
2+ f(i+1)√

2
which can be

simply verified since f(j) = 2
j
2+1 + 30(

√
2 + 1) for any j. This completes the proof

of lemma by induction.

Using the fact d1 ≥ d
2 , we obtain that

Pr[e ∈ F] = Pr[e ∈ F |e ∈ G1] ≥
1

d1 +
(
2

3
2 + 30(

√
2 + 1)

)√
d1

≥ 2

d+ 120
√
d

(12)
This completes the proof of Theorem 7.

3.1 Extensions to Nearly Regular Graphs

Here we prove Theorem 5.

Proof. Let G be a connected graph of maximum degree ∆, average degree d, and
minimum degree δ. Simply replacing d by ∆ in the proof of Theorem 3 establishes
that the fractional linear arboricity of G is ∆

2 + O(
√
∆). As G has dn/2 edges, this

implies that it has at least one linear forest F with n(d
∆ − O(1√

∆
)) edges. More-

over, such a linear forest can be found in polynomial time by sampling linear forests
from the distribution generated by the algorithm appearing in the proof of Theorem 3.
Given such a linear forest, Corollary 1 finds a tour of length 2n − |F | + O(nδ) =(
1 + ∆−d

∆ +O
(√

1
∆

)
+O(1δ)

)
n, as specified in Theorem 5.

The term ∆−d
∆ in Theorem 5 is best possible, as shown by the following example.

Let G be a bipartite graph in which the larger side has ∆n
∆+δ vertices of degree δ, whereas

the smaller side has δn
∆+δ vertices of degree ∆. As a tour must visit every vertex in

the large side, the length of the shortest tour is at least 2∆n
∆+δ . The average degree is

d = 2∆δ
∆+δ , and a simple manipulation show that expressing the minimum tour length as

a function of d gives
(
1 + ∆−d

∆

)
n, as desired.

The term O
(√

1
∆

)
in Theorem 5 is carried over from Theorem 2, and possibly can

be replaced by O(1
∆). See discussion in Section 4.

An interesting question is whether the term O(1δ) can be replaced by O(1d). If so,
the bound in Theorem 5 would become independent of δ. Our proof of Theorem 5 uses
Corollary 1, and there the term O(1δ) cannot be replaced by O(1d). Consider for example
a path of length (roughly) n/2 in which one endpoint is connected to a triangle and the
other to a clique of size n/2. This graph has a Hamiltonian path (and hence a linear
forest of size n−1), but the shortest tour is of length roughly 3n/2, despite the fact that
its average degree is very high, roughly n/4. However, the above graph does not show
that the term O(1δ) cannot be replaced by O(1d) in Theorem 5, because for this graph
∆−d
∆ ≃ 1

2 .

4 Some Conjectures

Linear arboricity of a graph G is a covering of all its edges by linear forests. The linear
arboricity conjecture of [1] states that every d-regular graph has a linear arboricity with
⌈d+1

2 ⌉ linear forests. If true, then one of these forests must be of size at least (1− 2
d+2)n,

and Theorem 4 would then imply that every d-regular graph has a tour of length (1 +
O(1d))n. The linear arboricity conjecture has been proved for small values of d, and is
known to be true up to low order terms for large values of d (see [3] or [4]). The known

upper bounds on the linear arboricity number translate to a (1 − O

((
log d
d

)1/3)
n

lower bound on the sizes of linear forests, which is weaker than the bound that we
prove in Theorem 3.

The path cover number of a graph G is the minimum number of vertex disjoint
paths required to cover the vertices of G. Magnant and Martin [12] conjecture that the
path cover number of d-regular graphs is at most n

d+1 (and even smaller if the graph
is required to be connected). They prove the conjecture for all d ≤ 5. Observe that
every path cover is a linear forest, and that the size of the forest plus the respective
cover number is exactly n. Hence the path cover number conjecture, if true, could be
combined with our Corollary 1 to show that every d-regular graph has a tour of length
(1 +O(1d))n.

A minimum Hamiltonian completion of a graph is the minimum size-set of edges
that, when added to the graph, makes it Hamiltonian [10]. The size of such a set is
exactly one more than the size of a minimum path cover of the graph.

An upper bound of (1 + O(1d))n on the shortest tour length is the best that one
can hope for, and likewise, a lower bound of (1 − Ω(1d))n on the largest linear forest
would be best possible. This can be demonstrated by taking a d-regular tree of depth
ℓ ≃ logd n (the root node has d children whereas internal nodes have d − 1 children),
and converting it to a d-regular graph as follows (assume for simplicity that d is odd).
Add a single child to each leaf, connect this child to every sibling of its parent leaf
(by now original leaves have degree d), and add a matching on the set of newly added
children in which two such vertices can be matched if they are children of sibling leaves
(so now all vertices have degree d). In this d-regular graph, a path can contain at most
two vertices from the penultimate level of the tree (the parents of the leaves). It follows
that a path cover contains at least Ω(n/d) paths, implying the desired lower bound on
the length of a tour and upper bound on size of the linear forest.

Acknowledgements

Part of this work was done while the first two authors were visiting Microsoft Research
in Redmond, Washington. We thank Noga Alon and Jeff Kahn for directing us to rele-
vant literature.

References

1. Jin Akiyama, Geoffrey Exoo and Frank Harary. Covering and Packing in Graphs IV: linear
Arboricity. Networks, Vol. 11 (1981) 69–72.

2. Noga Alon. Problems and results in extremal combinatorics, Part I. Discrete Math. 273
(2003), 31–53.

3. Noga Alon and Joel Spencer. The Probabilistic Method.
4. N. Alon, V. J. Teague and N. C. Wormald. Linear arboricity and linear k-arboricity of regular

graphs. Graphs and Combinatorics 17 (2001), 11–16.

5. Sylvia Boyd, Rene Sitters, Suzanne van der Ster, and Leen Stougie. Tsp on cubic and sub-
cubic graphs. Proceedings of IPCO, 2011.

6. N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon
University, 1976.

7. José R. Correa, Omar Larré, and José A. Soto. TSP tours in cubic graphs: beyond 4/3.
Proceedings of the 20th Annual European conference on Algorithms (ESA’12), 790–801,
2012

8. G. P. Egorychev. The solution of van der Waerden’s problem for permanents, Advances in
Mathematics 42.3 (1981): 299-305.

9. D. I. Falikman. Proof of the van der Waerden conjecture regarding the permanent of a doubly
stochastic matrix, Mathematical Notes 29.6 (1981): 475-479.

10. D. S. Franzblau, and A. Raychaudhuri. Optimal Hamiltonian completions and path covers
for trees, and a reduction to maximum flow. ANZIAM Journal 44 (02): 193204, 2002.

11. Mark Jerrum, Alistair Sinclair and Eric Vigoda. A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. J. ACM 51(4): 671–697 (2004).

12. Colton Magnant and Daniel M. Martin. A note on the path cover number of regular graphs,
Australasian Journal of Combinatorics. Volume 43 (2009), Pages 211-217.

13. Tobias Mömke and Ola Svensson. Approximating graphic tsp by matchings (best paper in
FOCS 2011). CoRR, abs/1104.3090, 2011.

14. J. W. Moon. On the diameter of a graph, The Michigan Mathematical Journal 12.3 (1965):
349-351.

15. Robin A. Moser and Gabor Tardos. A constructive proof of the general lovsz local lemma. J.
ACM 57(2) (2010)

16. Amin Saberi Shayan Oveis Gharan and Mohit Singh. A randomized rounding approach to
the traveling salesman problem. In FOCS, 2011.

17. András Sebö and Jens Vygen. Shorter Tours by Nicer Ears. CoRR, abs/1201.1870, 2012.
18. Nisheeth K. Vishnoi. A Permanent Approach to the Traveling Salesman Problem. FOCS

2012: 76–80.

A Weaker Deterministic Algorithm

In this section, we present an alternate deterministic algorithm for finding a large linear
forest with slightly weaker guarantees.

Theorem 8. Let G be an n-vertex d-regular graph. Then G has a linear forest of size

(1−O(
√

log d
d))n. Moreover, such a linear forest can be found in polynomial time.

Proof. Orient all edges of G such that every vertex has indegree and outdegree equal
to d/2 (when d is even), or either (d − 1)/2 or (d + 1)/2 (when d is odd). This can
be achieved as described earlier by orienting the edges according to a directed Eulerian
tour through G (when d is even), or through G plus an arbitrary perfect matching on
non-edges of G (when d is odd).

We shall now describe an iterative algorithm for constructing a linear forest. Each
iteration i will involve a corresponding error term ϵi. We shall later explain how to
control these error terms. We shall assume for simplicity that n is a power of 2. This
assumption has negligible effect on our bounds.

Iteration i for i = 0, 1, 2, . . . starts with 2−in vertices, where every vertex has in-
degree and outdegree in the range 2−i−1d(1 ± ϵi). Hence ϵ0 ≤ 1/d. The algorithm
partitions the vertices into two equal size sets Ai and Bi subject to the following con-
ditions.

– For every v ∈ Ai its outdegree into Bi is in the range 2−i−2d(1 ± ϵi+1) and its
indegree from Bi is in the range 2−i−2d(1± ϵi+1). Likewise, for every v ∈ Bi its
outdegree into Ai is in the range 2−i−2d(1 ± ϵi+1) and its indegree from Ai is in
the range 2−i−2d(1± ϵi+1).

The algorithm now considers only the edges directed from Ai to Bi, denoted by
E(Ai, Bi), and finds a maximum matching Mi with respect to these edges.

Proposition 2. The maximum matching Mi over E(Ai, Bi) satisfies |Mi| ≥ (1 −
2ϵi+1)|Ai|.

Proof. Give every edge of E(Ai, Bi) a weight of 2i+2

(1+ϵi+1)d
. The sum of weights in-

cident to a vertex is at most 1, and hence these weights form a feasible point in the
bipartite matching polytope. It follows that there is a bipartite matching of at least the
same total weight, which is at least |Ai| 1−ϵi+1

1+ϵi+1
≥ (1− 2ϵi+1)|Ai|.

Complete the matching Mi to a perfect matching between Ai and Bi in an arbitrary
way (adding auxiliary edges between Ai and Bi if needed). For every pair of matched
vertices u ∈ Ai and v ∈ Bi, merge them to one new vertex, whose outgoing edges are
those edge going out of v, and its incoming edges are those incoming to u. If the edge
(v, u) exists, remove it. This completes the description of iteration i. Observe that the
number of vertices, their indegrees and outdegrees at the end of iteration i are exactly
as required to be in the beginning of iteration i+ 1.

The algorithm ends when no edges remain in the graph. When it ends, it outputs the
union of all Mi.

Proposition 3. The output of the algorithm is a linear forest.

Proof. Add to the output of the algorithm also all the auxiliary edges that were used in
order to extend the Mi matchings into perfect matchings. Considering the graph induced
on the edges of all Mi and the auxiliary edges, it can be verified by induction that every
vertex in iteration i corresponds to a directed path with exactly 2i vertices, where the
operation performed in iteration i is matching such paths in pairs, and concatenating the
two members of a pair. Hence with the auxiliary edges the final output of the algorithm
is a Hamiltonian path. Removing the auxiliary edges leaves a vertex disjoint set of paths
(some of which might be isolated vertices), which by definition is a linear forest.

The size of the linear forest output by the algorithm is at least∑
i≥0

Mi ≥
∑
i≥1

(1− 2ϵi)n2
−i = n− 1− 2n

∑
i≥1

ϵi
2i

where the middle inequality follows from Proposition 2 and straightforward change of
indices.

Lemma 3. For some universal constant c independent of n and d, there is a polynomial

time version of the algorithm above that ensures for every i ≥ 1 that ϵi ≤ c2i/2
√

log d
d .

Proof. We prove the lemma by induction on i. The base of the induction is served by
ϵ0 which was already noted to be at most 1/d. We now proceed with the inductive step.
Observe that ϵi measures the deviation of degrees (outdegree or indegree) of vertices
of Ai (and Bi) from a postulated average value of d2−i−2. We shall use the Lovasz
local lemma, or rather, its algorithmic version [15], since we want our results to be
algorithmic. At the beginning of iteration i, arrange the vertices in pairs arbitrarily. Now
from each pair, place one vertex in Ai and the other in Bi, randomly and independently
across pairs. In expectation, the out-degree and in-degree of each vertex is halved. A
bad event is one in which the (out/in)-degree of vertex v deviates from its expectation

by more than c′
√

logD
D times its expectation where we let D = 2−id. Observe that

vertices have degree at least D
4 and at most D = 2−id. Thus such an event depends

on at most O(D2) other events (only on events involving either a neighbor of v or a
neighbor of a neighbor). If the constant c is sufficiently large, standard Chernoff bounds
imply that the probability that a bad event happens is O(D−3) for appropriately chosen
constant c′. Hence the local lemma implies that there is a choice making none of the bad
events happen, and the algorithmic version of the local lemma provides an algorithm
for finding such a partition into Ai and Bi.

Now we bound the error obtained due to this partition. There are three sources for
the error ϵi.

1. An error inherited from ϵi−1. As degrees are halved between iterations, this error
is halved as well. However, as the error is relative to the new degrees which are
halved, the net effect is that ϵi−1 is inherited as is.

2. A possible loss of 1 in the degree due to a removal of an edge (v, u) between
vertices matched in Mi−1. This effect is negligible compared to the other terms
contributing to ϵi+1.

3. An error since we did not partition the degree exactly by half and achieved an

additional multiplicative error of c′
√

logD
D .

Thus the relevant degree of each vertex after this iteration is in the range 2−i−2d(1±
ϵi)(1 ± c′

√
logD
D) ± 1. Ignoring the lower order terms, which can be simply absorbed

in any of the inequalities that follow, we obtain

ϵi+1 ≤ ϵi + c′
√

logD

D
(13)

≤ c2i/2
√

log d

d
+ c′2i/2

√
log d− i

d
(14)

≤ c2i/2
√

log d

d
+

c

4
2i/2

√
log d

d
(15)

≤ c2(i+1)/2

√
log d

d
(16)

where we obtain the first inequality by induction and the definition of D = 2−id, second
inequality follows from c being sufficiently large. Thus the error term remains below
the upper bound stated in the lemma.

Thus the number of edges in linear forest F is at least

|F | ≥ n− 1− 2n
∑
i≥1

ϵi
2i

(17)

≥ n− 1− 2cn

√
log d

d

∑
i≥1

1

2i/2
(18)

≥ n− 1− 8cn

√
log d

d
(19)

and thus proving Theorem 8.

