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PART I: Basics of Deep Learning (DL)
--- including impact and recent history of DL (Deep 
Neural Net, DNN) in speech recognition

PART II: Deeper Substance of DL
--- including connections to other ML paradigms, 
examples of incorporating speech knowledge in DL 
architecture, and recent experiments in speech 
recognition
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Deep Learning (DL) Basics
1. Deep Learning (aka Deep Structured Learning, Hierarchical Learning): a class of machine 

learning techniques, where many layers of information processing stages in hierarchical 
architectures are exploited for unsupervised feature learning and for pattern 
analysis/classification. 

2. Deep belief nets (DBN): probabilistic generative models composed of multiple layers of 
stochastic, hidden variables. The top two layers have undirected, symmetric connections 
between them. The lower layers receive top-down, directed connections from the layer 
above. (key: stacked RBMs; Hinton: Science, 2006)

3. Boltzmann machine (BM): a network of symmetrically connected, neuron-like units that make 
stochastic decisions about whether to be on or off. 

4. Restricted Boltzmann machine (RBM): a special BM consisting of a layer of visible units and a 
layer of hidden units with no visible-visible or hidden-hidden connections. (Key: contrastive 
divergence learning)

5. Deep neural nets (DNN, or “DBN” before Nov 2012): multilayer perceptrons with many 
hidden layers, whose weights are often initialized (pre-trained) using stacked RBMs or DBN
(DBN-DNN) or discriminative pre-training. 

6. Deep auto-encoder: a DNN whose output is the data input itself, often pre-trained with DBN 
(Deng/Hinton, interspeech 2010; Hinton, Science 2006)

7. Distributed representation: a representation of the observed data in such a way that they are 
modeled as being generated by the interactions of many hidden factors. A particular factor 
learned from configurations of other factors can often generalize well. Distributed 
representations form the basis of deep learning.
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• Definition 1: A class of machine learning techniques that exploit many layers of non-linear information processing

for supervised or unsupervised feature extraction and transformation, and for pattern analysis and classification.

• Definition 2: “A sub-field within machine learning that is based on algorithms for learning multiple levels of

representation in order to model complex relationships among data. Higher-level features and concepts are thus

defined in terms of lower-level ones, and such a hierarchy of features is called a deep architecture. Most of these

models are based on unsupervised learning of representations.” (Wikipedia on “Deep Learning” around March

2012.)

• Definition 3: “A sub-field of machine learning that is based on learning several levels of representations,

corresponding to a hierarchy of features or factors or concepts, where higher-level concepts are defined from

lower-level ones, and the same lower-level concepts can help to define many higher-level concepts. Deep learning

is part of a broader family of machine learning methods based on learning representations. An observation (e.g., an

image) can be represented in many ways (e.g., a vector of pixels), but some representations make it easier to learn

tasks of interest (e.g., is this the image of a human face?) from examples, and research in this area attempts to

define what makes better representations and how to learn them.” see Wikipedia on “Deep Learning” as of this

writing in February 2013; see http://en.wikipedia.org/wiki/Deep_learning.

• Definition 4: “Deep Learning is a new area of Machine Learning research, which has been introduced with the

objective of moving Machine Learning closer to one of its original goals: Artificial Intelligence. Deep Learning is

about learning multiple levels of representation and abstraction that help to make sense of data such as images,

sound, and text.” See https://github.com/lisa-lab/DeepLearningTutorials

More on “Deep Learning”

http://research.microsoft.com/c/1040
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/w/index.php?title=Learning_representation&action=edit&redlink=1
http://en.wikipedia.org/wiki/Deep_learning
https://github.com/lisa-lab/DeepLearningTutorials


Data Science 101 (June 2013) 
Deep Learning – A Term To Know
Deep Learning is a new term that is starting to appear in the data science/machine learning news. 

•Communications of the ACM just published a story on the topic, Deep Learning Comes of Age. 
•Deep Learning was named as one of the Top 10 Breakthrough Technologies of 2013 by MIT 
Technology Review. 
•Jeremy Howard, Chief Scientist at Kaggle declared Deep Learning – The Biggest Data Science 
Breakthrough of the Decade. 
•The New York Times published Scientists See Promise in Deep-Learning Programs 

What is Deep Learning?

According to DeepLearning.net, the definition goes like this:

“Deep Learning is a new area of Machine Learning research, which has been introduced with the 
objective of moving Machine Learning closer to one of its original goals: Artificial Intelligence.”

Wikipedia provides the following definition:

“Deep learning is set of algorithms in machine learning that attempt to learn layered models of 
inputs, commonly neural networks. The layers in such models correspond to distinct levels of 
concepts, where higher-level concepts are defined from lower-level ones, and the same lower-level 
concepts can help to define many higher-level concepts.”

Deep Learning is sometimes referred to as deep neural networks since much of deep learning focuses 
on artificial neural networks. Artificial neural networks are a technique in computer science modelled 
after the connections (synapses) of neurons in the brain. Artificial neural networks, sometimes just 
called neural nets, have been around for about 50 years, but advances in computer processing power 
and storage are finally allowing neural nets to improve solutions for complex problems such as speech 
recognition, computer vision, and Natural Language Processing (NLP). 
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Useful Sites on Deep Learning

• http://www.cs.toronto.edu/~hinton/

• http://ufldl.stanford.edu/wiki/index.php/UFLDL_Recommended_R
eadings

• http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial (Andrew 
Ng’s group)

• http://deeplearning.net/reading-list/ (Bengio’s group)

• http://deeplearning.net/tutorial/

• http://deeplearning.net/deep-learning-research-groups-and-
labs/

• Google+ Deep Learning community 6

http://research.microsoft.com/c/1040
http://www.cs.toronto.edu/~hinton/
http://ufldl.stanford.edu/wiki/index.php/UFLDL_Recommended_Readings
http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial
http://deeplearning.net/reading-list/
http://deeplearning.net/tutorial/
http://deeplearning.net/deep-learning-research-groups-and-labs/


http://deeplearning.net/deep-learning-research-groups-and-labs/

Deep Learning Research Groups
Some labs and research groups that are actively working on deep learning:
University of Toronto - Machine Learning Group (Geoff Hinton, Rich Zemel, Ruslan Salakhutdinov, Brendan Frey, Radford Neal)
Université de Montréal - Lisa Lab (Yoshua Bengio, Pascal Vincent, Aaron Courville, Roland Memisevic)
New York University – Yann Lecun‘s and Rob Fergus‘ group
Stanford University – Andrew Ng‘s group
UBC – Nando de Freitas‘s group
Google Research – Jeff Dean, Samy Bengio, Jason Weston, Marc’Aurelio Ranzato, Dumitru Erhan, Quoc Le et al
Microsoft Research – Li Deng et al
SUPSI – IDSIA (Schmidhuber’s group)
UC Berkeley – Bruno Olshausen‘s group
University of Washington – Pedro Domingos‘ group
IDIAP Research Institute - Ronan Collobert‘s group
University of California Merced – Miguel A. Carreira-Perpinan‘s group
University of Helsinki - Aapo Hyvärinen‘s Neuroinformatics group
Université de Sherbrooke – Hugo Larochelle‘s group
University of Guelph – Graham Taylor‘s group
University of Michigan – Honglak Lee‘s group
Technical University of Berlin – Klaus-Robert Muller‘s group
Baidu – Kai Yu‘s group
Aalto University – Juha Karhunen‘s group
U. Amsterdam – Max Welling‘s group
U. California Irvine – Pierre Baldi‘s group
Ghent University – Benjamin Shrauwen‘s group
University of Tennessee – Itamar Arel‘s group
IBM Research – Brian Kingsbury et al
University of Bonn – Sven Behnke’s group
Gatsby Unit @ University College London – Maneesh Sahani, Yee-Whye Teh, Peter Dayan

Last modified on April 10, 2013, at 1:27 pm by Caglar Gulcehre

http://learning.cs.toronto.edu/index.shtml?section=home
http://www.iro.umontreal.ca/rubrique.php3?id_rubrique=27
http://yann.lecun.com/ex/index.html
http://cs.nyu.edu/~fergus/pmwiki/pmwiki.php
http://www.robotics.stanford.edu/~ang/group.html
http://www.cs.ubc.ca/~nando/index.php
http://research.google.com/
http://research.microsoft.com/en-us/people/deng/
http://www.idsia.ch/
http://deeplearning.net/deep-learning-research-groups-and-labs/redwood.berkeley.edu/bruno
http://homes.cs.washington.edu/~pedrod/
http://ronan.collobert.com/
http://faculty.ucmerced.edu/mcarreira-perpinan/
http://www.hiit.fi/neuro
http://www.dmi.usherb.ca/~larocheh/index_en.html
http://www.uoguelph.ca/~gwtaylor/
http://web.eecs.umich.edu/~honglak/
http://www.ml.tu-berlin.de/menue/machine_learning/
http://www.dbs.ifi.lmu.de/~yu_k/
http://users.ics.aalto.fi/juha/
http://www.ics.uci.edu/~welling/
http://www.igb.uci.edu/~pfbaldi/
http://reslab.elis.ugent.be/benjamin
http://mil.engr.utk.edu/nmil/member/2
http://researcher.watson.ibm.com/researcher/view.php?person=us-bedk
http://www.ais.uni-bonn.de/deep_learning/
http://www.gatsby.ucl.ac.uk/
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Plenary Keynote (9:50-10:40am, May 28)

Recent Developments in 
Deep Neural Networks

Geoffrey E. Hinton

Host: Li Deng



Scientists See Promise in Deep-Learning Programs
John Markoff

November 23, 2012

Geoff Hinton

Rich Rashid in Tianjin, October, 25, 2012





Y LeCun

MA Ranzato

12
Thanks to Vincent for the permission of using his slides & discussions/corrections
of information in some slides    
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DL Took off in Speech Recognition from MSR

• Speech recognition: the first big (and real-world) 
success of deep learning 

• From MSR (initial collaboration with Hinton et al., 
2009-2010) and then to the entire speech 
industry

• Got out of “local optimum” of GMM-HMM stayed 
for many years

• Now used by Microsoft, Google, 
Apple/Nuance/IBM, Baidu, IFlyTech, etc. doing 
voice search in the cloud for smart phones (plus 
many other applications.)

19
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Renaissance of Neural Network
--- “Deep Learning,” 2006

-Geoff Hinton invented Deep Belief Networks (DBN) 
to make neural net learning fast and effective; 
Science, 2006 

- Pre-train each layer from bottom up
- Each pair of layers is an Restricted Boltzmann 

Machine (RBM)
- Jointly fine-tune all layers using back-propagation

http://research.microsoft.com/c/1040


Industry Scale Deep Learning 

-2008 NIPS: Geoff Hinton & Li Deng reconnected

-Earlier 2009: Initial exploration of DBN/DNN at MSR 
(image and speech)

-Dec 2009: NIPS workshop 
(organizers: Deng, Yu, & Hinton)

-Later 2009: Proof of concept by Mohamed et al.; 
MSR & Hinton collaborated on applying DBN-DNN 
to speech feature coding (on spectrogram) and 
speech recognition 

Started at MSR, 2009

http://research.microsoft.com/c/1040
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-2010: slowly more people in MSR-speech           
joined DBN-DNN research
-July 2010: success of bottleneck feature coding 
using speech spectrogram; Interspeech-2010 
paper Deng/Hinton et al.

-August 2010: success of DNN in large-
vocabulary speech recognition (voice search); 
paper in ICASSP-2011 (Dahl/Yu/Deng)

-Oct 2010:  MSR/MSRA collaboration started on 
Switchboard task

-March 2011: Success in the Switchboard task by 
MSR/MSRA; Interspeech-2011: Seide/Yu, et al. 
Success of deep stacking net: Deng/Yu/Platt.

Industry Scale Deep Learning 

Continued at MSR, 2010, 2011…

http://research.microsoft.com/c/1040


241989 20111999

http://research.microsoft.com/c/1040


251989 2011

http://research.microsoft.com/c/1040


PART I: Basics of Deep Learning (DL)
(including impact and recent history of DL (Deep 
Neural Net, DNN) in speech recognition)

PART II: Deeper Substance of DL
(including connections to other ML paradigms, 
example of incorporating speech knowledge in DL 
architecture, and recent experiments in speech 
recognition)
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PART I: Basics of Deep Learning (DL)
(including impact and recent history of DL (Deep 
Neural Net, DNN) in speech recognition)

PART II: Deeper Substance of DL
---Technical introduction: RBM, DBN, DNN, CNN, RNN

---Advanced: 2 examples of incorporating domain 
knowledge (speech) into DL architectures
---Novel DL architectures and recent experiments
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IEEE Signal Proc. 
Magazine
November, 2012



Restricted Boltzmann Machines (RBM)

• We restrict the connectivity to make learning 
easier.

– Only one layer of hidden units.

– No connections between hidden units.

• In an RBM, the hidden units are conditionally 
independent given the visible states.  

• So we can quickly get an unbiased sample 
from the posterior distribution when given a 
data-vector.

hidden

i

j

visible
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RBM: Weights  Energies  Probabilities

• Joint distribution p 𝐯, 𝐡; θ is defined in terms of an energy 
function E 𝐯, 𝐡; θ

p 𝐯, 𝐡; θ =
𝑒𝑥𝑝 −E 𝐯, 𝐡; θ

𝑍
• For a Bernoulli-Bernoulli RBM

E 𝐯, 𝐡; θ = −

𝑖=1

𝑉



𝑗=1

𝐻

𝑤𝑖𝑗 𝑣𝑖ℎ𝑗 −

𝑖=1

𝑉

𝑏𝑖𝑣𝑖 −

𝑗=1

𝐻

𝑎𝑗ℎ𝑗

• For a Gaussian-Bernoulli RBM

E 𝐯, 𝐡; θ = −

𝑖=1

𝑉



𝑗=1

𝐻

𝑤𝑖𝑗 𝑣𝑖ℎ𝑗 +
1

2


𝑖=1

𝑉

𝑣𝑖 − 𝑏𝑖
2 −

𝑗=1

𝐻

𝑎𝑗ℎ𝑗

• p 𝐯, 𝐡; θ  generative model!
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Restricted Boltzmann Machine (RBM)

• Conditional probabilities are very easy to calculate
• For a Bernoulli-Bernoulli RBM

𝑝 ℎ𝑗 = 1|𝐯; θ = 𝜎 

𝑖=1

𝑉

𝑤𝑖𝑗 𝑣𝑖 + 𝑎𝑗

𝑝 𝑣𝑖 = 1|𝐡; θ = 𝜎 

𝑗=1

𝐻

𝑤𝑖𝑗 ℎ𝑗 + 𝑏𝑖

• For a Gaussian-Bernoulli RBM

𝑝 ℎ𝑗 = 1|𝐯; θ = 𝜎 

𝑖=1

𝑉

𝑤𝑖𝑗 𝑣𝑖 + 𝑎𝑗

𝑝 𝑣𝑖|𝐡; θ = 𝑁 

𝑗=1

𝐻

𝑤𝑖𝑗 ℎ𝑗 + 𝑏𝑖 , 1

• Proof next page. (This is a “neural net” with stochastic units rather than the deterministic MLP that 
you may be more familiar with)
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Maximum likelihood learning for RBM

0 jihv  jihv

i

j

i

j

i

j

i

j

t = 0                 t = 1                  t = 2                               t = infinity





jiji

ij

hvhv
w

vp 0)(log

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in 

parallel and updating all the visible units in parallel.

a fantasy
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Training RBMs
• ∆𝑤𝑖𝑗 = 𝑣𝑖ℎ𝑗 𝑑𝑎𝑡𝑎 − 𝑣𝑖ℎ𝑗 𝑚𝑜𝑑𝑒𝑙

• Approximate 𝑣𝑖ℎ𝑗 𝑚𝑜𝑑𝑒𝑙

i. Initialize 𝐯𝟎 at data

ii. Sample 𝐡𝟎 ∼ 𝒑 𝐡|𝐯𝟎
iii. Sample 𝐯𝟏 ∼ 𝒑 𝐯|𝐡𝟎
iv. Sample 𝐡𝟏 ∼ 𝒑 𝐡|𝐯𝟏
v. Call (𝐯𝟏, 𝐡𝟏) a sample from the model.

• (𝐯∞, 𝐡∞) is a true sample from the model. 
(𝐯𝟏, 𝐡𝟏) is a very rough estimate but worked

• Contrastive divergence algorithm (CD)
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Building a Deep Network

• This is the main reason why RBM’s are interesting (as a 
building block)

• First train a layer of hidden units that receive input directly 
from the data (image, speech, coded text, etc).

• Then treat the activations of hidden units (the trained 
“features”) as if they were “data” and learn features of 
features in a second hidden layer.

• It can be proved that each time we add another layer of 
features we improve a variational lower bound on the log 
probability of the training data.

– The proof is complicated (Hinton et al, 2006)

– Based on an equivalence between an RBM and a deep 
directed model

http://research.microsoft.com/c/1040


Deep Belief Net (DBN) & Deep Neural Net (DNN)
• DBN: Undirected at top two layers which is an RBM; directed Bayes net (top-down) at 

lower layers (good for synthesis and recognition)
• DNN: Multi-layer perceptron (bottom up) + unsupervised pre-training w. RBM weights 

(good for recognition only)
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First train a stack of three models 
each of which has one hidden layer. 
Each model in the stack treats the 
hidden variables of the previous 
model as data.

Then compose 
them into a 
single Deep 
Belief Network.

Then add 
outputs and 
train the DNN 
with 
backprop.

Hinton, Deng, Yu, Mohamed, Dahl… etc. IEEE Sig. Proc. Mag. (Nov 2012)
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Quiz Questions

1. DBN & DNN: which one is generative? Which one 
is discriminative?

2. How can a generative model be used for 
recognition? (Bayes rule as for HMM speech recognition)

3. How does DBN do synthesis?
4. How does DBN do recognition?
5. How does DNN do recognition?
6. For recognition, is RBN or DNN better?
7. What is the difference between DBN and 

Dynamic Bayes Net (a.k.a. “DBN”)?

43
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The Answer to Quiz Question 3:

• To generate data: 

1. Get an equilibrium sample from 
the top-level RBM by 
performing alternating Gibbs 
sampling for a long time.

2. Perform a top-down pass to get 
states for all the other layers.

So the lower level bottom-up 
connections  are not part of the 
generative model. They are just 
used for inference.

h2

data

h1

h3

2W

3W

1W
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Samples generated by letting the associative memory run with one label clamped. There 
are 1000 iterations of alternating Gibbs sampling between samples (example from Hinton) .

http://research.microsoft.com/c/1040


Answer to Quiz Question 4: Example of digit/image recognition by DBN 

2000 top-level neurons

500 neurons

500 neurons

28 x 28 

pixel     

image

10 label 

neurons

The model learns to generate combinations of 

labels and images. 

To perform recognition we start with a 

neutral state of the label units and do an up-

pass from the image followed by a few 

iterations of the top-level associative memory 

---> probability of that digit label; then repeat 

for all digit labels; then compare.

(slide modified from Hinton)

The top two layers form an 

associative memory  whose  

energy landscape models the low 

dimensional manifolds of the 

digits

The energy valleys have names

http://research.microsoft.com/c/1040


DBN & DNN: Fine-tuning for discrimination

• First learn one layer at a time greedily.

• Then treat this as “pre-training” that finds a 
good initial set of weights which can be fine-
tuned by  a local search procedure.

• For DBN: Contrastive wake-sleep (see Hinton’s)

• For DNN: Back-propagation
– This overcomes many of the limitations of 

standard backpropagation (if you do not have 
large labeled training data).

http://research.microsoft.com/c/1040


DNN with class posteriors (not DBN)
• As stacked RBMs
• Pre-train each layer from bottom up 

by considering each pair of layers as 
an RBM.

• Transform the output of the last 
hidden layer into a multinomial 
distribution using the softmax
operation 

p 𝑙 = 𝑘|𝐡; θ =
𝑒𝑥𝑝 σ𝑖=1

𝐻 𝜆𝑖𝑘ℎ𝑖 + 𝑎𝑘
𝑍 𝒉

• Why? Needed for (ASR) sequence 
recognition (not needed for static or 
frame-level recognition)

• For ASR: Use GMM-HMM forced 
alignment to get the label for the final 
layer when using frame-level training.

• Jointly fine-tune all layers using back-
propagation algorithm.
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The current wisdom on 

unsupervised pre-training

 Pre-training achieves two things:

◦ It makes optimization easier. 

◦ It reduces overfitting.

 We now know more about how to initialize weights 
sensibly by hand. 

◦ So unsupervised pre-training is not required to make the 
optimization work.

 Unsupervised pre-training is still very effective at 
preventing over-fitting when labeled data is scarce. 

◦ It is not needed when labeled data is abundant.

Hinton: ICASSP-2013

http://research.microsoft.com/c/1040


DNN-HMM
(replacing GMM only; longer MFCC/filter-back windows w. no transformation)

50

Model tied triphone states directly

Many layers of 

nonlinear 

feature 

transformation 

+ SoftMax

Deep Learning and Its Applications in Signal Processing
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CD-DNN-HMM: Architecture

51

http://research.microsoft.com/c/1040


(Shallow) GMM-HMM
• Model frames of acoustic data with two stochastic 

processes:
– A hidden Markov process to model state transition
– A Gaussian mixture model to generate observations

• Train with maximum likelihood criterion using EM 
followed by discriminative training (e.g. MPE)

52
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Voice Search with DNN-HMM
• First attempt in using deep models for large 

vocabulary speech recognition (summer 2010)

• Published in ICASSP-2011 & 2012 Special issue 
of T-ASLP:

53
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MSR Key Innovations (2009-2013)
• Scale the success to large industrial speech tasks

– Grew output neurons from context-independent phones (100-200) 
to context-dependent ones (9k-32k)

– Motivated initially by saving huge MSFT investment in huge speech 
decoder software infrastructure (e.g. Entropic acquisition)

– Extremely fast decoder 

– Developed novel deep learning architectures & techniques: 
DCN/DSN, tensor-DSN, kernel-DCN, tensor-DNN, etc.  

• Engineering for large systems:

– Expertise in DNN and speech recognition

– Close collaboration among MSRR, MSRA, & speech product teams 

(Deng, Yu, Seide, Gang Li, Jinyu Li, Jui-Ting Huang, Yifan Gong, etc.)

http://research.microsoft.com/c/1040


Some Recent News by Reporters

• DNN Research Improves Bing Voice Search (very fast decoder)

• How technology can bridge language gaps: Speech-to-speech translation 
promises to help connect our world

• Scientists See Promise in Deep-Learning Programs (NYT: speech to speech)

• Microsoft Research shows a promising new breakthrough in speech 
translation technology

• Bing Makes Voice Recognition on Windows Phone More Accurate and 
Twice as Fast

• Microsoft revs speedier, smarter speech recognition for phones

55

http://research.microsoft.com/c/1040
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http://news.cnet.com/8301-10805_3-57589465-75/microsoft-revs-speedier-smarter-speech-recognition-for-phones/


PART I: Basics of Deep Learning (DL)
(including impact and recent history of DL (Deep 
Neural Net, DNN) in speech recognition)

PART II: Deeper Substance of DL
---Technical introduction: RBM, DBN, DNN,

DNN-HMM, CNN, RNN
---Examples of incorporating domain knowledge 
(about speech) into DL architectures
1. Hidden/articulatory Speech dynamics into RNN
2. Speech invariance/class-discrim.into deep-CNN

---A few new, promising DL architectures
56
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PART I: Basics of Deep Learning (DL)
(including impact and recent history of DL (Deep 
Neural Net, DNN) in speech recognition)

PART II: Deeper Substance of DL
---Example 1: incorporating domain knowledge: 

Hidden/Deep Dynamics in Human Speech

57

Outline
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Deep/Dynamic Models are Natural for Speech

• Hierarchical structure in human speech generation
– Global concept/semantics formation 
– Word  sequence formation / prosodic planning
– Phonological encoding (phones, distinctive features)
– Phonetic encoding (motor commands, articulatory targets)
– Articulatory dynamics
– Acoustic dynamics (clean speech)
– Distorted speech
– Interactions between speakers and listener/machine

• Hierarchical structure in human speech perception
– Cochlear nonlinear spectral analysis
– Attribute/phonological-feature detection at higher level(s)
– Phonemic and syllabic detection at still higher level(s)
– Word and sequence detection
– Syntactic analysis and semantic understanding at deeper auditory cortex

58
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Production & Perception: Closed-Loop Chain

message
Internal

model

decoded

message

SPEAKER LISTENER

Speech Acoustics in 

closed-loop chain

http://research.microsoft.com/c/1040


Y LeCun

MA Ranzato

The Mammalian Visual Cortex is Hierarchical

[picture from Simon Thorpe]

[Gallant & Van Essen] 

The ventral (recognition) pathway in the visual cortex has multiple stages

Retina - LGN - V1 - V2 - V4 - PIT - AIT ....

Lots of intermediate representations



(Deep) Dynamic Bayesian Net

message

Speech Acoustics

SPEAKER

articulation

targets

distortion-free acoustics

distorted acoustics

distortion factors & 
feedback to articulation

http://research.microsoft.com/c/1040
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(Hidden) Dynamic Models

• Many types of dynamic models since 90’s

• Good survey article on earlier work 
(Ostendorf et al. 1996)

• Hidden Dynamic Models (HDM/HTM) since 
late 90’s

• This is “deep” generative model with >2 
layers

• More recent work: book 2006

• Pros and cons of different models

• All intended to create more realistic speech 
models “deeper” than HMM for speech 
recognition

• But with different assumptions on speech 
dynamics 

• How to embed such dynamic properties 
into the DNN framework? 63

http://research.microsoft.com/c/1040


DBN (Deep) vs. DBN* (Dynamic)

• DBN-DNN (2009-2012) vs. HDM/HTM (1990’s-2006)

• Distributed vs. local representations

• Massive vs. parsimonious parameters

• Product of experts vs. mixture of experts

• Generative-discriminative hybrid vs. generative models

• Longer windows vs. shorter windows

• A neat way of “pre-training” RNN by HDM and then 
“fine-tuning” RNN by backprop (non-trivial gradient 
derivation and computation) 64

http://research.microsoft.com/c/1040


Building Dynamics into Deep Recurrent Models

• (Deep) recurrent neural networks for ASR: both 
acoustic and language modeling  
– generic temporal dependency

– lack of constraints provided by hidden speech 
dynamics 

– Information redundancy & inconsistency: long 
windows for each “frame” introducing undesirable 
“noise”

– Need to go beyond unconstrained temporal 
dependence and ESN (while easier to learn)

• An active and exciting research area to work on

65
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PART I: Basics of Deep Learning (DL)
(including impact and recent history of DL (Deep 
Neural Net, DNN) in speech recognition)

PART II: Deeper Substance of DL
---Example 2: incorporating domain knowledge: 

Speech invariance/variability vs. 
phonetic  discrimination in Conv. NN

66

Outline
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A Deep Convolutional Neural Net 

Using Heterogeneous Pooling 

to Tradeoff Acoustic Invariance w. 

Phonetic Distinction

Li Deng, Ossama Abdel-Hamid, and Dong Yu

Microsoft Research, Redmond

York University, Toronto

ICASSP, May 28, 2013



Background: Convolutional Nets (CNN)

68

• Convolution layer (w. tying weights): a.k.s. “time/spatial”-invariant 
FIR filter

• Gives maps of replicated features; neural activities “equivariant” to 
translation

• Pooling layer (max of neighboring units in conv layer): Data 
reduction & some degree of invariance.

• 2D deep-CNN: State of the art in object recognition (Krizhevsky et al., 
2012; LeCun et al.; Ciresan et al.)

LeCun et al. 90’s



Background: Convolutional Nets (CNN)

69

• Difficulties of CNN: 
– 2D Images: Information lost about the precise positions of parts  object confusion
– 2D Speech spectrogram: spectral-temporal information lost about phonetic distinction
– E.g. 1-D CNN along freq axis (Abdel-Hamid et al., 2012):  (TDNN & TF-trajectory CNN)

local weight sharing + max pooling over a range invariance to freq shift 
(VTL normalization)

But if freq range too small  not enough VTL normalization (acoustic invariance)
too large  formant patterns of a sound shift  phone confusion

• Solutions for image recognition: (tried some for speech, no clear success)

– Transforming autoencoder (Hinton et al., 2011)
– Tiled CNN (Le et al., 2012)
– Deconvolutional nets (Zeiler et al., 2011)

• A good solution for speech recognition is surprisingly simple 



Main Ideas of This Paper

• Bring “confusion” into designing CNN intended for “invariance” 
• Exploit the knowledge of how increasing the degree of 

invariance (to shift along frequency-axis) may reduce phonetic 
discrimination

• (Kai Yu this morning: Spatial Pyramid Matching for vision)
• Examine/predict how the pooling size (i.e. range of freq-shift 

invariance) affects phonetic classification errors
– Theoretic guidance possible; e.g.
– Phonetic reduction (in casual, conversation speech) shrinks formant space 
tradeoff towards “distinction” from “invariance” smaller pooling size

• Use of many feature maps (afforded by CNN weight tying)

• Different pooling sizes (heterogeneous pooling) for different 
feature maps
– Design and use a distribution of pooling sizes and randomly sample it.
– Special case: use a fixed pooling size, optimized by validation or predicted by 

acoustic-phonetic “theory” (consistent for TIMIT; not as good as HP)
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CNN with a Fixed Pooling Size
(a special case of HP-CNN w. P=3)

71

P=3

P=3

(limited weight sharing)



Pooling size P1

Pooling size P2

HP-CNN [P1, N1  P2, N2  … ,  Pm, Nm] 

P1=2; P2=3

P1=2

P2=3



Regularizing HP-CNN with “Dropout”

• A variant of the Dropout method for DNN (Hinton 
et al., 2012)

• Dropout in both conv and pooling layers of CNN is 
helpful, in addition to fully-connected DNN layers

• Dropout in the input layer (filterbanks) is not 
helpful

• In TIMIT, for CNN w. N=100 feature maps, and DNN 
hid=2000, the best dropout rate=0.2 

• With dropout rate=0.5 & DNN hid=5000, error rate 
increases

73



Standard TIMIT Task:  Core Testset Results

74

bandwidth training data.

Systems Phone Error Rate
DNN (fully-connected 5 layers) 22.3%
CNN-DNN; P=1 (2 CNN & 3 DNN layers) 21.8%
CNN-DNN; P=12       20.8%
CNN-DNN; P=6 (fixed P, optimal)                  20.4%
CNN-DNN; P=6 (add dropout) 19.9%
CNN-DNN; P=1:m (HP, m=12) 19.3%
CNN-DNN; above  (add dropout) 18.7% 

CNN-DNN; P=1   equivariance:  21.8% > 20.4% (invariance w. fixed, optimal pooling size=6) 
CNN-DNN; P=1:12    Heterogeneous pooling: 19.3% < 20.4%
Dropout is always helpful (thanks Geoff!): 18.7% < 19.3% ;  19.9% < 20.4%
18.7% WAS the record low error rate on this standard task (until this morning by LSTM-RNN) 



PART I: Basics of Deep Learning (DL)
(including impact and recent history of DL (Deep 
Neural Net, DNN) in speech recognition)

PART II: Deeper Substance of DL
---Technical introduction: RBM, DBN, DNN,

DNN-HMM, CNN, RNN
---Examples of incorporating domain knowledge 
(about speech) into DL architectures
1. Hidden/articulatory Speech dynamics into RNN
2. Speech invariance/class-discrim.into deep-CNN

--- A few new, promising DL architectures
75
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Deep Stacking Networks for

Information Retrieval

Li Deng, Xiaodong He, and Jianfeng Gao

Microsoft Research, Redmond

ICASSP, May 30, 2013



Outline
• Motivation: deep learning for Information Retrieval (IR)

– Learning to rank

– Semantic feature extraction for ranking

• Deep Stacking Net (DSN)
– Basic modular architectures

– Novel discriminative learning algorithm

• Applying DSN for IR --- learning to rank
– Formulating IR as a classification problem

– Special role of regularization

• Experiments

– IR task, data sets, and features

– Relationship between NDCG score & classification error rate

– NDCG results on an IR task (Ads selection)
81



Background of IR

• Goal of IR: ranking text documents (D) for a query (Q)

• Common methods: 

– Lexical matching: suffers from text discrepancy btwn Q and D 
(e.g. vocabulary, word usage, expression style, etc.)
• E.g., TF-IDF weighted vector space model

– Semantic matching: to bridge lexical gaps btw Q and D 
• E.g., Latent Semantic Analysis (LSA), PLSA, LDA, etc.

– Learning Q-D matching using clickthrough data

• E.g., translation models, bilingual topic models etc.

– These linear models suffer from restricted expressive power

82



Deep Learning for IR

• Multilayers of nonlinearities
– Greater expressive power 

– Better able to capture semantic contents in Q and D

• E.g., semantic hashing (Hinton et al, 2007)

– More effective use of supervised clickthrough data

• Use of (labeled) clickthrough data for IR ranking

– Shallow linear models: Gao et al., 2010;2011

– Shallow nonlinear models: Burges et al., 2005;2006
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Deep Stacking Net (DSN)

84

bandwidth training data.

• Deep Stacking Nets (Deng & Yu, Interspeech’10; 

Deng, Yu, Platt, ICASSP’12)

• Interleave linear/nonlinear layers

• Exploit closed-form constraints among 
network’s weights

• Much easier to learn than DNN

• Naturally amenable to parallel training

• (Largely) convex optimization

• Extended to tensor version (Hutchinson et al, 
ICASSP’12, TPAMI-2013)

• Extended to kernel version (Deng et al, SLT’12)

• Works very well for MNIST, TIMIT, WSJ, SLU 

• This paper: a more recent application to IR 
ranking

X
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Y1

H2

H3

X

X

Y3

Y2

...



Learning DSN Weights --- Main Ideas

85

... ...

... ...

...

W2

U2

... ...

... ...

...

W1

U1

Wrand

... ... ...

... ...

...

W3Wrand

U3

...... ... ...

... ...

...

Wrand
W4

U4

• Learn weight matrices U and W in 
individual modules separately.

• Given W and linear output layer, U 
can be expressed as explicit nonlinear 
function of W.

• This nonlinear function is used as the 
constraint in solving nonlinear least 
square for learning W.

• Initializing W with RBM (bottom layer)
• For higher layers, part of W is 

initialized with the optimized W from 
the immediately lower layer and part 
of it with random numbers



Learning DSN Weights --- Single Module

86

𝜕𝐸

𝜕𝑼
= 2𝑯 𝑼𝑇𝑯− 𝑻 𝑇

 𝑼 = 𝑯𝑯𝑻 −1
𝑯𝑻𝑇 = F(𝑾),   where 𝒉𝑛 = 𝜎 𝑾𝑇𝒙𝑛

X

H

Y

U

W

E =
1

2


𝑛

||𝒚𝑛 −𝒕𝑛||
2, where 𝒚𝑛 = 𝑼𝑇𝒉𝑛 = 𝑼𝑇𝜎 𝑾𝑇𝒙𝑛 = 𝐺𝑛(𝑼,𝑾)

E =
1

2
σ𝑛 ||𝐺𝑛(𝑼,𝑾) − 𝒕𝑛||

2, subject to U= F(𝑾), 

E =
1

2
σ𝑛 ||𝐺𝑛(𝑼,𝑾) − 𝒕𝑛||

2 + 𝜆 ||U −F 𝑾 ||

Use of Lagrange multiplier method:

to learn W and then U no longer backpropagation

• Advantages found: 
--- less noise in gradient than using chain rule ignoring explicit constraint U= F(𝑾)
--- batch learning is effective, aiding parallel training 



Experimental Evaluation

• IR task 
– Sponsored Search: retrieve and rank relevant ads given a query

• Data sets
– Training: 189K query–ads pairs
– Testing: 58K query–ads pairs

• Features to DSN
– A total of 160 features in two categories

• Text features: TF-IDF, word overlap, length, etc.
• User click features: clickthrough, clicked queries, etc.

• State-of-the-art baseline system (Burges et al. 2006)
– LambdaRank, a single-hidden-layer neural network
– Trained to maximize (a smoothed approximation of) NDCG via 

heuristic lambda-function
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Evaluation Metric

• Metric: Normalized Discounted Cumulative Gain 
(NDCG)

• DCG at rank 𝑝 = 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒1 +σ𝑖=2
𝑝 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑖

log2 𝑖
; 

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑖: human label of doc𝑖, scale 0-4

• IDCG: Ideal DCG, DCG score when assuming docs 
are ranked by human label

• NDCG = DCG/ IDCG

• 1 NDCG pt (0.01) in our setting is statistically 
significant



NDCG Results

89

IR Systems NDCG@1 NDCG@3 NDCG@10

LambdaRank 0.331 0.347 0.382

DSN system 0.359 0.366 0.402

IR Quality measures (NDCG) for the DSN System vs. Baseline 



Analysis

90

Relationship between classification error rates and NDCG@1 measure)

14.5%

15.0%

15.5%

16.0%

16.5%

17.0%

0.33 0.335 0.34 0.345 0.35 0.355 0.36

Error rate vs NDCG1

Observations: 
• Correlation is clearly evidenced for NDCG1 < 0.35 
• Weaker correlation in the high IR-quality region, i.e., NDCG1 > 0.35 

Implication: 
• Due to the inconsistency between the training objective and the IR-quality measure 
• It is desirable to train the model to optimize the end-to-end IR quality directly 



Learning Curves
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Conclusions (of this ICASSP-2013 paper)

• First study on the use of deep learning techniques 
for learning-to-rank in IR problems

• Significantly better than shallow neural network 

• Model trained by MSE
– Generally correlated well with the NDCG as the IR 

quality measure 

– But weaker correlation in the region of high IR quality 

• Deep learning using end-to-end IR-relevant metric 
is a key future direction
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PART I: Basics of Deep Learning (DL)
(including impact and recent history of DL (Deep 
Neural Net, DNN) in speech recognition)

PART II: Deeper Substance of DL
---Technical introduction: RBM, DBN, DNN,

DNN-HMM, CNN, RNN
---Examples of incorporating domain knowledge 
(about speech) into DL architectures
1. Hidden/articulatory Speech dynamics into RNN
2. Speech invariance/class-discrim.into deep-CNN

-A few new, promising DL architectures (CONTINUED)
93
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New Types of Deep Neural 

Network & Learning for 

Speech Recognition+

An Overview

Li Deng, Geoffrey Hinton, Brian Kingsbury

MSR, U. Toronto/Google, IBM
ICASSP Special Session, May 28, 2013



Special Session Motivations

• Huge impact of deep neural nets (DNN) in 
speech (and vision, language, etc.)



Special Session Motivations

• Review article (2011-2012)       IEEE Sig. Proc. Mag, Nov 2012

• Key factors: 
– Deeper network
– Faster hardware
– Larger network output layer 

(& hidden, input layers)
– Better network initialization

(not essential with big data)

• Rather standard MLP
architecture 

• Also standard backprop
learning (1980’s)
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Take-Away from This Special Session

• New models and new learning methods

• Key capabilities of DNNs in knowledge 
transfer, learning representations, etc.

• Advances in DNNs since the SPM overview 
paper
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Recent History of “Deep” Models in Speech

• MSR’s (deep) Dyn. Bayes Net (2004-2007)

articulation

targets

distortion-free acoustics

distorted acoustics

distortion factors & 

feedback to articulation

Phones/words

• U Toronto’s DBN-
DNN (2006-2009)

Mohamed, Dahl, Hinton, NIPS-WS, 2009
(a simple “recipe”)



Hinton’s 2009“Recipe”
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Deep Learning for Phone Recognition 
(a stunning discovery at MSR, 2009)

100

Error 
pattern A

Error 
pattern B



101

Deep Learning for Large-Vocabulary Speech Recognition



New Discoveries about the DNN 
“Recipe” since 2009

• Pre-training not needed when a lot of labeled data are available 
(2010)

• The recipe works well for LVCSR when DNN output units 
correspond to CD HMM states (2010) 

• Decoding alg. & infrastructure largely unchanged, enabling 
industry-scale speech recognition (2010-2013)

• Filterbank features (closer to waveform) better than MFCCs for 
DNNs (opposite to GMM systems) (2011-2013)

• DNN works surprisingly well for noisy speech (2012)
• Fully-connected DNN can be modified to include 

“convolutional” layers to handle speech variability (2012-2013)
• DNN highly effective for multi-task/transfer learning

(e.g. multilingual ASR, 2012-2013)
• DNN effective for applications beyond ASR.
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Five Technical Papers in Our Special Session

• RECENT ADVANCES IN DEEP LEARNING FOR SPEECH 

• RESEARCH AT MICROSOFT

• IMPROVING DEEP NEURAL NETWORKS FOR LVCSR 

• USING RECTIFIED LINEAR UNITS AND DROPOUT

• DEEP CONVOLUTIONAL NEURAL NETWORKS 

• FOR LVCSR

• MULTILINGUAL ACOUSTIC MODELS USING DISTRIBUTED

• DEEP NEURAL NETWORKS

• ADVANCES IN OPTIMIZING RECURRENT NETWORKS

http://www.icassp2013.com/Papers/ViewPapers.asp?PaperNum=4734
http://www.icassp2013.com/Papers/ViewPapers.asp?PaperNum=4734
http://www.icassp2013.com/Papers/ViewPapers.asp?PaperNum=4864
http://www.icassp2013.com/Papers/ViewPapers.asp?PaperNum=4864
http://www.icassp2013.com/Papers/ViewPapers.asp?PaperNum=3667
http://www.icassp2013.com/Papers/ViewPapers.asp?PaperNum=5011
http://www.icassp2013.com/Papers/ViewPapers.asp?PaperNum=5011
http://www.icassp2013.com/Papers/ViewPapers.asp?PaperNum=4979


Themes in the Session



Themes:  Better Inputs



Themes:  Nonlinearities



Themes:  Architectures



Themes:  Optimization



Themes:  Regularization



Themes:  Hyperparameters



Themes:  Multi-task Learning



Recent Advances in Deep 

Learning for Speech 

Research at Microsoft

Li Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong 
Yu, Frank Seide, Mike Seltzer, Geoff Zweig, Xiaodong 

He, Jason Williams, Yifan Gong, Alex Acero 

ICASSP Special Session, May 28, 2013



Outline

• Advances in deep learning for features/ 
representations

• Advances in deep learning for models/ 
architectures

• Systems and applications in acoustic 
modeling, language modeling, dialogue, 
(and information retrieval/search)

113



Learning Features/Representations

• Advances in deep learning for features/ 
representations

• Advances in deep learning for models/ 
architectures

• Systems and applications in acoustic 
modeling, language modeling, dialogue, 
(and information retrieval/search)
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Scientists See Promise in Deep-Learning Programs
John Markoff

November 23, 2012



Back to Primitive Spectral Features

• Philosophy of deep learning: 

– Learning representations automatically instead of 
manually engineering/design them (e.g., MFCC, PLP)

• DNN capability in representing correlated 
feature dimensions 

•  eliminate cosine transform in MFCC in favor 
of filterbanks in spectral domain
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Back to Primitive Spectral Features

• Philosophy of deep learning: 

– Learning representations automatically instead of 
manually engineering/design them (e.g., MFCC, PLP)

• DNN capability in representing correlated 
feature dimensions 

•  eliminate cosine transform in MFCC in favor 
of filterbanks and spectrograms in the spectral 
domain

117



118

In early 2010, we discovered:

For deep autoencoding of speech 
features:
• Both spectrogram/filterbank

features are better than MFCCs
• Better to use spectrogram features 

than filterbanks
• “Better” in terms of coding 

efficiency (i.e., errors/energy)



LVCSR Using Spectral Features

119

LVCSR Systems Word error rate

Best GMM-HMM (MFCCs; fMPE+BMMI) 34.7%

DNN (MFCCs) 31.6%

DNN (Spectrogram --- 256 log FFT bins) 32.3%

DNN (29 log filter-banks) 30.1%

DNN (40 log filter-banks) 29.9%

• Filterbanks > MFCC > Spectrograms
• Not quite consistent with deep autoencoder results
• Further research: regularization, online feature normalization at sentence level, etc.



Learning Multi-Task Features

120

Mixed-Band DNN architecture: Multilingual DNN architecture: 



Shared Hidden Layers with
Language-Specific Output Layers
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Training

English training data

English words, 

with some errors

English

speech input

Learning Multi-Task Features

with fewer errors

Runtime
French training data

or French words

or French

Chinese training data

or Chinese words

or Chinese

16KHz waveforms

8KHz waveforms

8Khz or 16KHz



Multilingual ASR Summary Results

123

bandwidth training data.

Speech Recognizers WER on ENU

DNN trained with only ENU data 30.9%

+FRA, retrain all layers with ENU 30.6%

or +FRA, retrain the top layer with ENU 27.3%

or +FRA+ DEU+ ESP+ITA, retrain top layer 25.3%



63
Observed-count: 1
Latest-conf-score: 0.4
Confirmed: no
…

53
Observed-count: 1
Latest-conf-score: 0.4
Confirmed: no
…

System output User speech
SLU output 

+ confidence Per-hypothesis features General features
Distribution over 
dialog state hyps

Hello, which bus route? sixty one c 61B 0.4 61B
Observed-count: 1
Latest-conf-score: 0.4
Confirmed: no
…

61D 0.3

61C 0.1

61D
Observed-count: 1
Latest-conf-score: 0.4
Confirmed: no
…

61C
Observed-count: 1
Latest-confidence: 0.1
Confirmed: no

QuestionType: Ask
Times-asked: 1
Times-confirmed: 0
Hyp-count: 3

61B

61D

61C

Rest

61B
Observed-count: 1
Latest-conf-score: 0.4
Confirmed: no
…

61D
Observed-count: 1
Latest-conf-score: 0.4
Confirmed: no
…

61C
Observed-count: 2
Latest-confidence: 0.2
Confirmed: no

QuestionType: Ask
Times-asked: 2
Times-confirmed: 0
Hyp-count: 5

Tracker inputs

Dialog 
state hyps

Tracker output

Sorry, which bus route? sixty one c 63 0.5

53 0.4

61C 0.2

61B

61D

61C

63

53

Rest

63
Observed-count: 1
Latest-conf-score: 0.4
Confirmed: no
…

53
Observed-count: 1
Latest-conf-score: 0.4
Confirmed: no
…

61B
Observed-count: 1
Latest-conf-score: 0.4
Confirmed: no
…

61D
Observed-count: 1
Latest-conf-score: 0.4
Confirmed: no
…

61C
Observed-count: 2
Latest-confidence: 0.2
Confirmed: yes

QuestionType: Confirm
Times-asked: 2
Times-confirmed: 1
Hyp-count: 5

Sixty one c, is that right? yes YES 0.9 61B

61D

61C

63

53

Rest

Each hypothesis is 
described by M 

features in each turn.  
In this example, M=3.

Each turn also has K 
features that describe 
general dialog context. 
In this example, K=4.

At a given turn, there 
are G dialog state 

hypotheses to score.  
At this turn, G=5.

• Prob [ CorrectUserGoals_t | DialogueHistory_{1,2,…,t-1}, UserInfo_{1,2,…,t-1} ] 

Dialogue State Tracking Example (Jason Williams) 
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bandwidth training data.

State of the Art
baseline

Deep Stacking
Networks

Bus route 58.0% 58.1%

Origin location 56.4% 57.1%

Destination location 66.5% 65.4%

Date 83.9% 84.6%

Time 63.1% 62.5%

• Task: Dialog state tracking (defined in Spoken Dialogue Challenge 2010)

• Strong interactions among features  strength of deep networks 

• Can be framed as a multiple binary classification problem

• Baseline: carefully tuned, highly optimized Max Entropy classifier (J. Williams)

• Deep Stacking Nets (slightly tuned) achieve similar accuracy% for all 5 slots: 



PART I: Basics of Deep Learning (DL)
--- including impact and recent history of DL (Deep 
Neural Net, DNN) in speech recognition

PART II: Deeper Substance of DL
--- including connections to other ML paradigms
--- two examples of incorporating speech knowledge 
in DL architectures,
---recent experiments in speech recognition with 
new DL architectures beyond DNN
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http://research.microsoft.com/c/1040


Perspective: What Types of Problems Fit (not fit)  

Deep Learning (some conjectures) 

e.g.: Image/video recognition

Speech recognition

Speech/text understanding

Sequential data with temporal 

structure (stock market prediction?)

e.g.: Malware detection(ICASSP-2013)

movie recommender, speaker/language 

detection?

“Perceptual” AI “Data matching”

Easy data representation 

e.g., histogram of events,

user-watched movies, etc.

Non-obvious data representations

Deep learning may not win over 

standard machine learning
Deep learning already shows

tremendous benefits 

http://research.microsoft.com/c/1040
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Deep Learning: A Theoretician's Nightmare? 

Deep Learning involves non-convex loss functions

With non-convex losses, all bets are off

Then again, every speech recognition system ever deployed 

has used non-convex optimization (GMMs are non convex).

But to some of us all “interesting” learning is non convex

Convex learning is invariant to the order in which sample are 

presented (only depends on asymptotic sample frequencies).

Human learning isn't like that: we learn simple concepts 

before complex ones. The order in which we learn things 

matter.
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Deep Learning: A Theoretician's Nightmare? 

No generalization bounds?

Actually, the usual VC bounds apply: most deep learning 

systems have a finite VC dimension

We don't have tighter bounds than that. 

But then again, how many bounds are tight enough to be 

useful for model selection?

It's hard to prove anything about deep learning systems

Then again, if we only study models for which we can prove 

things, we wouldn't have speech, handwriting, and visual 

object recognition systems today.
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Deep Learning: A Theoretician's Paradise? 

Deep Learning is about representing high-dimensional data

There has to be interesting theoretical questions there

What is the geometry of natural signals?

Is there an equivalent of statistical learning theory for 

unsupervised learning?

What are good criteria on which to base unsupervised 

learning?

Deep Learning Systems are a form of latent variable factor graph

Internal representations can be viewed as latent variables to 

be inferred, and deep belief networks are a particular type of 

latent variable models.

The most interesting deep belief nets have intractable loss 

functions: how do we get around that problem?

Lots of theory at the 2012 IPAM summer school on deep learning

Wright's parallel SGD methods, Mallat's “scattering 

transform”, Osher's “split Bregman” methods for sparse 

modeling, Morton's “algebraic geometry of DBN”,....
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Deep Learning and Feature Learning Today

Deep Learning has been the hottest topic in speech recognition in the last 2 years

A few long-standing performance records were broken with 

deep learning methods

Microsoft and Google have both deployed DL-based speech 

recognition system in their products

Microsoft, Google, IBM, Nuance, AT&T, and all the major 

academic and industrial players in speech recognition have 

projects on deep learning

Deep Learning is the hottest topic in Computer Vision

Feature engineering is the bread-and-butter of a large portion 

of the CV community, which creates some resistance to 

feature learning

But the record holders on ImageNet and Semantic 

Segmentation are convolutional nets

Deep Learning is becoming hot in Natural Language Processing

Deep Learning/Feature Learning in Applied Mathematics

The connection with Applied Math is through sparse coding, 

non-convex optimization, stochastic gradient algorithms, etc... 
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In Many Fields, Feature Learning Has Caused a Revolution
(methods used in commercially deployed systems)

Speech Recognition I (late 1980s)

Trained mid-level features with Gaussian mixtures (2-layer 

classifier)

Handwriting Recognition and OCR (late 1980s to mid 1990s)

Supervised convolutional nets operating on pixels

Face & People Detection (early 1990s to mid 2000s)

Supervised convolutional nets operating on pixels (YLC 1994, 

2004, Garcia 2004) 

Haar features generation/selection (Viola-Jones 2001)

Object Recognition I (mid-to-late 2000s: Ponce, Schmid, Yu, YLC....)

Trainable mid-level features (K-means or sparse coding)

Low-Res Object Recognition: road signs, house numbers (early 2010's)

Supervised convolutional net operating on pixels

Speech Recognition II (circa 2011)

Deep neural nets for acoustic modeling

Object Recognition III, Semantic Labeling (2012, Hinton, YLC,...)

Supervised convolutional nets operating on pixels
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