Deep Learning: Speech & Information Processing

New-Generation Models & Methodology for Advancing Speech Technology and Information Processing

Li Deng
Microsoft Research, Redmond, USA

CCF, Beijing, July 8, 2013
(including joint work with colleagues at MSR, U of Toronto, etc.)
Outline

PART I: Basics of Deep Learning (DL)
--- including impact and recent history of DL (Deep Neural Net, DNN) in speech recognition

PART II: Deeper Substance of DL
--- including connections to other ML paradigms, examples of incorporating speech knowledge in DL architecture, and recent experiments in speech recognition
Deep Learning (DL) Basics

1. Deep Learning (aka Deep Structured Learning, Hierarchical Learning): a class of machine learning techniques, where many layers of information processing stages in hierarchical architectures are exploited for unsupervised feature learning and for pattern analysis/classification.

2. Deep belief nets (DBN): probabilistic generative models composed of multiple layers of stochastic, hidden variables. The top two layers have undirected, symmetric connections between them. The lower layers receive top-down, directed connections from the layer above. (key: stacked RBMs; Hinton: *Science, 2006*)

3. Boltzmann machine (BM): a network of symmetrically connected, neuron-like units that make stochastic decisions about whether to be on or off.

4. Restricted Boltzmann machine (RBM): a special BM consisting of a layer of visible units and a layer of hidden units with no visible-visible or hidden-hidden connections. (Key: contrastive divergence learning)

5. Deep neural nets (DNN, or “DBN” before Nov 2012): multilayer perceptrons with many hidden layers, whose weights are often initialized (pre-trained) using stacked RBMs or DBN (DBN-DNN) or discriminative pre-training.

6. Deep auto-encoder: a DNN whose output is the data input itself, often pre-trained with DBN (Deng/Hinton, interspeech 2010; Hinton, Science 2006)

7. Distributed representation: a representation of the observed data in such a way that they are modeled as being generated by the interactions of many hidden factors. A particular factor learned from configurations of other factors can often generalize well. Distributed representations form the basis of deep learning.
More on “Deep Learning”

• **Definition 1:** A class of machine learning techniques that exploit many layers of non-linear information processing for supervised or unsupervised feature extraction and transformation, and for pattern analysis and classification.

• **Definition 2:** “A sub-field within machine learning that is based on algorithms for learning multiple levels of representation in order to model complex relationships among data. Higher-level features and concepts are thus defined in terms of lower-level ones, and such a hierarchy of features is called a deep architecture. Most of these models are based on unsupervised learning of representations.” (Wikipedia on “Deep Learning” around March 2012.)

• **Definition 3:** “A sub-field of machine learning that is based on learning several levels of representations, corresponding to a hierarchy of features or factors or concepts, where higher-level concepts are defined from lower-level ones, and the same lower-level concepts can help to define many higher-level concepts. Deep learning is part of a broader family of machine learning methods based on learning representations. An observation (e.g., an image) can be represented in many ways (e.g., a vector of pixels), but some representations make it easier to learn tasks of interest (e.g., is this the image of a human face?) from examples, and research in this area attempts to define what makes better representations and how to learn them.” see Wikipedia on “Deep Learning” as of this writing in February 2013; see http://en.wikipedia.org/wiki/Deep_learning.

• **Definition 4:** “Deep Learning is a new area of Machine Learning research, which has been introduced with the objective of moving Machine Learning closer to one of its original goals: Artificial Intelligence. Deep Learning is about learning multiple levels of representation and abstraction that help to make sense of data such as images, sound, and text.” See https://github.com/lisa-lab/DeepLearningTutorials
Deep Learning is a new term that is starting to appear in the data science/machine learning news.

- Communications of the ACM just published a story on the topic, Deep Learning Comes of Age.
- Deep Learning was named as one of the Top 10 Breakthrough Technologies of 2013 by MIT Technology Review.
- Jeremy Howard, Chief Scientist at Kaggle declared Deep Learning – The Biggest Data Science Breakthrough of the Decade.
- The New York Times published Scientists See Promise in Deep-Learning Programs

What is Deep Learning?

According to DeepLearning.net, the definition goes like this:

“Deep Learning is a new area of Machine Learning research, which has been introduced with the objective of moving Machine Learning closer to one of its original goals: Artificial Intelligence.”

Wikipedia provides the following definition:

“Deep learning is set of algorithms in machine learning that attempt to learn layered models of inputs, commonly neural networks. The layers in such models correspond to distinct levels of concepts, where higher-level concepts are defined from lower-level ones, and the same lower-level concepts can help to define many higher-level concepts.”

Deep Learning is sometimes referred to as deep neural networks since much of deep learning focuses on artificial neural networks. Artificial neural networks are a technique in computer science modelled after the connections (synapses) of neurons in the brain. Artificial neural networks, sometimes just called neural nets, have been around for about 50 years, but advances in computer processing power and storage are finally allowing neural nets to improve solutions for complex problems such as speech recognition, computer vision, and Natural Language Processing (NLP).
Useful Sites on Deep Learning

- http://deeplearning.net/reading-list/ (Bengio’s group)
- http://deeplearning.net/tutorial/
- http://deeplearning.net/deep-learning-research-groups-and-labs/

- Google+ Deep Learning community
Deep Learning Research Groups

Some labs and research groups that are actively working on deep learning:

University of Toronto - Machine Learning Group (Geoff Hinton, Rich Zemel, Ruslan Salakhutdinov, Brendan Frey, Radford Neal)
Université de Montréal - Lisa Lab (Yoshua Bengio, Pascal Vincent, Aaron Courville, Roland Memisevic)
New York University – Yann LeCun’s and Rob Fergus’ group
Stanford University – Andrew Ng’s group
UBC – Nando de Freitas’s group
Google Research – Jeff Dean, Samy Bengio, Jason Weston, Marc’Aurelio Ranzato, Dumitru Erhan, Quoc Le et al
Microsoft Research – Li Deng et al
SUPSI – IDSIA (Schmidhuber’s group)
UC Berkeley – Bruno Olshausen’s group
University of Washington – Pedro Domingos’ group
IDIAP Research Institute - Ronan Collobert’s group
University of California Merced – Miguel A. Carreira-Perpinan’s group
University of Helsinki - Aapo Hyvärinen’s Neuroinformatics group
Université de Sherbrooke – Hugo Larochelle’s group
University of Guelph – Graham Taylor’s group
University of Michigan – Honglak Lee’s group
Technical University of Berlin – Klaus-Robert Müller’s group
Baidu – Kai Yu’s group
Aalto University – Juha Karhunen’s group
U. Amsterdam – Max Welling’s group
U. California Irvine – Pierre Baldi’s group
Ghent University – Benjamin Shrauwen’s group
University of Tennessee – Itamar Arel’s group
IBM Research – Brian Kingsbury et al
University of Bonn – Sven Behnke’s group
Gatsby Unit @ University College London – Maneesh Sahani, Yee-Whye Teh, Peter Dayan

Last modified on April 10, 2013, at 1:27 pm by Caglar Gulcehre
Deep Learning

With massive amounts of computational power, machines can now recognize objects and translate speech in real time. Artificial intelligence is finally getting smart.

Temporary Social Media

Messages that quickly self-destruct could enhance the privacy of online communications and make people freer to be spontaneous.

Prenatal DNA Sequencing

Reading the DNA of fetuses will be the next frontier of the genomic revolution. But do you really want to know about the genetic problems or musical aptitude of your unborn child?

Additive Manufacturing

Skeptical about 3-D printing? GE, the world's largest manufacturer, is on the verge of using the technology to make jet parts.

Baxter: The Blue-Collar Robot

Rodney Brooks’s newest creation is easy to interact with, but the complex innovations behind the robot show just how hard it is to get along with people.

Memory Implants

A maverick neuroscientist believes he has deciphered the code by which the brain forms long-term memories. Next: testing a prosthetic implant for people suffering from long-term memory loss.

Smart Watches

The designers of the Pebble watch realized that a mobile phone is more useful if you don’t have to take it out of your pocket.

Ultra-Efficient Solar Power

Doubling the efficiency of a solar cell would completely change the economics of renewable energy. Nanotechnology just might make it possible.

Big Data from Cheap Phones

Collecting and analyzing information from simple cell phones can provide surprising insights into how people move about and behave—and even help us understand the spread of diseases.

Supergrids

A new high-power circuit breaker could finally make highly efficient DC power grids practical.
Recent Developments in Deep Neural Networks

Geoffrey E. Hinton

Host: Li Deng
Learning Curve: No Longer Just A Human Trait

By JOHN MARKOFF

Using an artificial intelligence technique inspired by theories about how the brain recognizes patterns, technology companies are reporting startling gains in fields as diverse as computer vision, speech recognition, and the identification of promising new molecules for designing drugs.

The advances have led to widespread enthusiasm among researchers who design software to perform human activities like seeing, listening and thinking. They offer the promise of machines that converse with humans and perform tasks like driving cars and working in factories, raising the specter of automated robots that could replace human workers.

The technology, called deep learning, has already been put to use in services like Apple's Siri virtual personal assistant, which is based on Nuance Communications' speech recognition service, and in Google's Street View, which uses machine vision to identify addresses.

But what is new in recent months is the growing speed and accuracy of deep-learning programs, often called artificial neural networks or just “neural nets” for their resemblance to the neural connections in the brain.

“There has been a number of stunning new results with deep learning methods,” said Yann LeCun, a computer scientist at New York University who did

Scientists See Promise in Deep-Learning Programs

A voice recognition program translated a speech given by Richard F. Rashid, Microsoft's top scientist, into Mandarin Chinese.

A student team led by the computer scientist Geoffrey E. Hinton used deep-learning technology to design software.

An advance in a technology that can best human brains.

the images in a set of 55,000; the top score in a group of 22 human participants was 99.32 percent, and the average for the humans was 98.54 percent.

This summer, Jeff Dean, a Google technical fellow, and Andrew Y. Ng, a Stanford computer scientist, programmed a cluster of 15,000 computers to train itself to automatically recognize images in a library of 14 million pictures of 20,000 different objects. Although the accuracy rate was low — 13.1 percent — the system did 79 percent better than the most advanced previous one.

Deep learning was given a particularly audacious display at a

list on a large screen above his head.

Then, in a demonstration that led to stunned applause, he paused after each sentence and the words were translated into Mandarin Chinese characters, accompanied by a simulation of his own voice in that language, which Dr. Rashid has never spoken.

The feat was made possible, in part, by deep-learning techniques that have spurred improvements in the accuracy of speech recognition.

Dr. Rashid, who oversees Microsoft's worldwide research organization, acknowledged that while his company's new speech recognition software made 30 percent fewer errors than previous models, it was "still far from perfect.

"Rather than having one word in four or five incorrect, now the error rate in one word in seven or eight," he wrote on Microsoft's Web site. Still, he added that this was "the most dramatic change in accuracy" since 1970, "and as we add more data to the training we believe that we will even get better results.

One of the most striking aspects of the research led by Dr. Hinton is that it has taken place largely without the patent restrictions and bitter infighting over intellectual property that characterize high-technology fields.

“We decided early on not to make money out of this, but just to sort of spread it to infect everybody," he said. "These companies are terribly pleased with this.

Referring to the rapid deep-learning advances made possible by greater computing power, and especially the rise of graphics processors, he added:

"This was a breakthrough result because it is the first one that deep learning won, and more significantly it won on a data set that it wouldn't have been expected to work on before."
Acoustic Modeling and Deep Learning

June 19th, 2013

Vincent Vanhoucke

Thanks to Vincent for the permission of using his slides & discussions/corrections of information in some slides
Neural Networks for Speech in the 90’s

- **Time-Delay Neural Networks**

- **Recurrent Neural Networks**

- **Hybrid Systems**

- **Bidirectional Recurrent Neural Networks**

- **Hierarchical Neural Networks**

- **TANDEM**
Speech Recognition

- DSP
- Feature Extraction
- Acoustic Model
- Language Model
Speech Recognition + Deep Neural Networks?
Speech Recognition + Deep Neural Networks!

3 months - 10%

word error rate relative reduction Voice Search

Application Of Pretrained Deep Neural Networks To Large Vocabulary Speech Recognition, Navdeep Jaitly, Patrick Nguyen, Andrew Senior, Vincent Vanhoucke, Interspeech 2012.
Similar Stories across the Industry

Microsoft
Li Deng
Frank Seide
Dong Yu

IBM
Tara Sainath
Brian Kingsbury

Google
Andrew Senior
Georg Heigold
Marc’Aurelio Ranzato

University of Toronto
Geoff Hinton
George Dahl
Abdel-rahman Mohamed

And many others...

Some of Microsoft’s Stories..., Since 2009...
DL Took off in Speech Recognition from MSR

• Speech recognition: the first big (and real-world) success of deep learning
• From MSR (initial collaboration with Hinton et al., 2009-2010) and then to the entire speech industry
• Got out of “local optimum” of GMM-HMM stayed for many years
• Now used by Microsoft, Google, Apple/Nuance/IBM, Baidu, IFlyTech, etc. doing voice search in the cloud for smart phones (plus many other applications.)
Renaissance of Neural Network
--- “Deep Learning,” 2006

- Geoff Hinton invented Deep Belief Networks (DBN) to make neural net learning fast and effective; *Science, 2006*

 - Pre-train each layer from bottom up
 - Each pair of layers is an Restricted Boltzmann Machine (RBM)
 - Jointly fine-tune all layers using back-propagation
Industry Scale Deep Learning

Started at MSR, 2009

- 2008 NIPS: Geoff Hinton & Li Deng reconnected

- Earlier 2009: Initial exploration of DBN/DNN at MSR (image and speech)

- Later 2009: Proof of concept by Mohamed et al.; MSR & Hinton collaborated on applying DBN-DNN to speech feature coding (on spectrogram) and speech recognition

- Dec 2009: NIPS workshop (organizers: Deng, Yu, & Hinton)
Li Deng, Dong Yu, Geoffrey Hinton

Microsoft Research; Microsoft Research; University of Toronto

Deep Learning for Speech Recognition and Related Applications

7:30am - 6:30pm Saturday, December 12, 2009

Location: Hilton: Cheakamus

Abstract: Over the past 25 years or so, speech recognition technology has been dominated by a “shallow” architecture --- hidden Markov models (HMMs). Significant technological success has been achieved using complex and carefully engineered models of HMMs. The next generation of the technology requires solutions to remaining challenges under diversified deployment environments. These challenges, not well addressed in the past, arise from the many types of variability present in the speech generation process. Overcoming these challenges is likely to require “deep” architectures with efficient learning algorithms. For speech recognition and related sequential recognition applications, some attempts have been made in the past to develop computational architectures that are “deeper” than conventional HMMs, such as...
Industry Scale Deep Learning

Continued at MSR, 2010, 2011...

- 2010: slowly more people in MSR-speech joined DBN-DNN research
- **August 2010**: success of DNN in large-vocabulary speech recognition (**voice search**); paper in ICASSP-2011 (Dahl/Yu/Deng)
- Oct 2010: MSR/MSRA collaboration started on Switchboard task
The History of Automatic Speech Recognition Evaluations at NIST

NIST STT Benchmark Test History – May. ’09

- Switchboard
- Conversational Speech
- Read Speech
- Broadcast Speech
- Air Travel Planning Kiosk Speech
- Varied Microphones
- Noisy
- News English untranscribed

Range of Human Error In Transcription

WER(%) vs Years

1989 2011
PART I: Basics of Deep Learning (DL)
(including impact and recent history of DL (Deep Neural Net, DNN) in speech recognition)

PART II: Deeper Substance of DL
(including connections to other ML paradigms, example of incorporating speech knowledge in DL architecture, and recent experiments in speech recognition)
Machine Learning Paradigms for Speech Recognition: An Overview

Li Deng, Fellow, IEEE, and Xiao Li, Member, IEEE

Abstract—Automatic Speech Recognition (ASR) has historically been a driving force behind many machine learning (ML) techniques, including the ubiquitously used hidden Markov model, discriminative learning, structured sequence learning, Bayesian learning, and adaptive learning. Moreover, ML can and occasionally does use ASR as a large-scale, realistic application to rigorously test the effectiveness of a given technique, and to inspire new problems arising from the inherently sequential and dynamic nature of speech. On the other hand, even though ASR is available commercially for some applications, it is largely an unsolved problem—for almost all applications, the performance of ASR is not on par with human performance. New insight from modern ML methodology shows great promise to advance the state-of-the-art in ASR technology. This overview article provides readers with an overview of modern ML techniques as utilized in the current and as relevant to future ASR research and systems. The intent is to foster further cross-pollination between the ML community to make assumptions about a problem, develop precise mathematical theories and algorithms to tackle the problem given those assumptions, but then evaluate on data sets that are relatively small and sometimes synthetic. ASR research, on the other hand, has been driven largely by rigorous empirical evaluations conducted on very large, standard corpora from real world. ASR researchers often found formal theoretical results and mathematical guarantees from ML of less use in preliminary work. Hence they tend to pay less attention to these results than perhaps they should, possibly missing insight and guidance provided by the ML theories and formal frameworks even if the complex ASR tasks are often beyond the current state-of-the-art in ML.

This overview article is intended to provide readers of IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE
SHALLOW

- Neural Networks
 - Perceptron
 - SVM
 - Boosting
 - RNN
 - Decision Tree

DEEP

- Probabilistic Models
 - DBN
 - Deep Neural Net
 - DBM
 - Sparse Coding
 - BayesNP
 - Bayes Nets

- Unsupervised
 - Sparse Coding
 - GMM
 - DBN
 - D-AE

- Supervised
 - SVM
 - D-AE
 - DBM

Modified from Y LeCun MA Ranzato
PART I: Basics of Deep Learning (DL) (including impact and recent history of DL (Deep Neural Net, DNN) in speech recognition)

PART II: Deeper Substance of DL

--- Technical introduction: RBM, DBN, DNN, CNN, RNN
--- Advanced: 2 examples of incorporating domain knowledge (speech) into DL architectures
--- Novel DL architectures and recent experiments
Deep Neural Networks for Acoustic Modeling in Speech Recognition

The shared views of four research groups

November, 2012
Restricted Boltzmann Machines (RBM)

• We restrict the connectivity to make learning easier.
 – Only one layer of hidden units.
 – No connections between hidden units.
• In an RBM, the hidden units are conditionally independent given the visible states.
• So we can quickly get an unbiased sample from the posterior distribution when given a data-vector.
RBM: Weights \rightarrow Energies \rightarrow Probabilities

- Joint distribution $p(v, h; \theta)$ is defined in terms of an energy function $E(v, h; \theta)$

$$p(v, h; \theta) = \frac{\exp(-E(v, h; \theta))}{Z}$$

- For a Bernoulli-Bernoulli RBM

$$E(v, h; \theta) = - \sum_{i=1}^{V} \sum_{j=1}^{H} w_{ij} v_i h_j - \sum_{i=1}^{V} b_i v_i - \sum_{j=1}^{H} a_j h_j$$

- For a Gaussian-Bernoulli RBM

$$E(v, h; \theta) = - \sum_{i=1}^{V} \sum_{j=1}^{H} w_{ij} v_i h_j + \frac{1}{2} \sum_{i=1}^{V} (v_i - b_i)^2 - \sum_{j=1}^{H} a_j h_j$$

- $p(v, h; \theta) \rightarrow$ generative model!
Restricted Boltzmann Machine (RBM)

- Conditional probabilities are very easy to calculate
- For a Bernoulli-Bernoulli RBM

\[
p(h_j = 1|v; \theta) = \sigma \left(\sum_{i=1}^{V} w_{ij} v_i + a_j \right)
\]

- For a Gaussian-Bernoulli RBM

\[
p(h_j = 1|v; \theta) = \sigma \left(\sum_{i=1}^{V} w_{ij} v_i + a_j \right)
\]

\[
p(v_i|h; \theta) = N \left(\sum_{j=1}^{H} w_{ij} h_j + b_i, 1 \right)
\]

- Proof next page. (This is a “neural net” with stochastic units rather than the deterministic MLP that you may be more familiar with)
\[P(h \mid v) = \frac{e^{-E(v, h)}}{\sum_h e^{-E(v, h)}} \]
\[= \frac{e^{b^T v + c^T h + v^T W h}}{\sum_h e^{b^T v + c^T h + v^T W h}} \]
\[= \frac{e^{c^T h + v^T W h}}{\sum_h e^{c^T h + v^T W h}} \]
\[= \frac{\prod_i e^{c_i h_i + v^T W_* i h_i}}{\sum_{\tilde{h}_1} \cdots \sum_{\tilde{h}_N} \prod_i e^{c_i \tilde{h}_i + v^T W_* i \tilde{h}_i}} \]
\[= \frac{\prod_i e^{-\gamma_i(v, h_i)}}{\sum_{\tilde{h}_i} e^{-\gamma_i(v, \tilde{h}_i)}} \]
\[= \frac{\prod_i e^{-\gamma_i(v, h_i)}}{\sum \prod_i e^{-\gamma_i(v, \tilde{h}_i)}} \] (5)
\[= \prod_i \frac{e^{-\gamma_i(v, h_i)}}{\sum \tilde{h}_i e^{-\gamma_i(v, \tilde{h}_i)}} \] (6)

Since the \(h_i \in \{0, 1\} \), the sum in the denominator of equation (5) has only two terms and thus
\[P(h_i = 1 \mid v) = \frac{e^{-\gamma_i(v, 1)}}{e^{-\gamma_i(v, 1)} + e^{-\gamma_i(v, 0)}} \]
\[= \sigma(c_i + v^T W_{*, i}), \]
yielding
\[P(h = 1 \mid v) = \sigma(c + v^T W), \] (7)
Maximum likelihood learning for RBM

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in parallel and updating all the visible units in parallel.

\[
\frac{\partial \log p(v)}{\partial w_{ij}} = \langle v_i h_j \rangle^0 - \langle v_i h_j \rangle^\infty
\]
Training RBMs

• $\Delta w_{ij} = \langle v_i h_j \rangle_{data} - \langle v_i h_j \rangle_{model}$

• Approximate $\langle v_i h_j \rangle_{model}$
 i. Initialize v_0 at data
 ii. Sample $h_0 \sim p(h|v_0)$
 iii. Sample $v_1 \sim p(v|h_0)$
 iv. Sample $h_1 \sim p(h|v_1)$
 v. Call (v_1, h_1) a sample from the model.

• (v_∞, h_∞) is a true sample from the model.
 (v_1, h_1) is a very rough estimate but worked

• Contrastive divergence algorithm (CD)
Building a Deep Network

• This is the main reason why RBM’s are interesting (as a building block)
• First train a layer of hidden units that receive input directly from the data (image, speech, coded text, etc).
• Then treat the activations of hidden units (the trained “features”) as if they were “data” and learn features of features in a second hidden layer.
• It can be proved that each time we add another layer of features we improve a variational lower bound on the log probability of the training data.
 – The proof is complicated (Hinton et al, 2006)
 – Based on an equivalence between an RBM and a deep directed model
Deep Belief Net (DBN) & Deep Neural Net (DNN)

- DBN: Undirected at top two layers which is an RBM; directed Bayes net (top-down) at lower layers (good for synthesis and recognition)
- DNN: Multi-layer perceptron (bottom up) + unsupervised pre-training w. RBM weights (good for recognition only)
First train a stack of three models each of which has one hidden layer. Each model in the stack treats the hidden variables of the previous model as data. Then compose them into a single Deep Belief Network. Then add outputs and train the DNN with backprop.

Hinton, Deng, Yu, Mohamed, Dahl... etc. IEEE Sig. Proc. Mag. (Nov 2012)
1. DBN & DNN: which one is generative? Which one is discriminative?
2. How can a generative model be used for recognition? (Bayes rule as for HMM speech recognition)
3. How does DBN do synthesis?
4. How does DBN do recognition?
5. How does DNN do recognition?
6. For recognition, is RBN or DNN better?
7. What is the difference between DBN and Dynamic Bayes Net (a.k.a. “DBN”)?
The Answer to Quiz Question 3:

- To generate data:
 1. Get an equilibrium sample from the top-level RBM by performing alternating Gibbs sampling for a long time.
 2. Perform a top-down pass to get states for all the other layers.

So the lower level bottom-up connections are **not** part of the generative model. They are just used for inference.
Samples generated by letting the associative memory run with one label clamped. There are 1000 iterations of alternating Gibbs sampling between samples (example from Hinton).
The top two layers form an associative memory whose energy landscape models the low dimensional manifolds of the digits. The energy valleys have names.

The model learns to generate combinations of labels and images.

To perform recognition we start with a neutral state of the label units and do an up-pass from the image followed by a few iterations of the top-level associative memory --- probability of that digit label; then repeat for all digit labels; then compare.

(slide modified from Hinton)
DBN & DNN: Fine-tuning for discrimination

• First learn one layer at a time greedily.
• Then treat this as “pre-training” that finds a good initial set of weights which can be fine-tuned by a local search procedure.
• For DBN: Contrastive wake-sleep (see Hinton’s)
• For DNN: Back-propagation
 – This overcomes many of the limitations of standard backpropagation (if you do not have large labeled training data).
DNN with class posteriors (not DBN)

- As stacked RBMs
- Pre-train each layer from bottom up by considering each pair of layers as an RBM.
- Transform the output of the last hidden layer into a multinomial distribution using the softmax operation

\[p(l = k | h; \theta) = \frac{\exp\left(\sum_{i=1}^{H} \lambda_{ik} h_i + a_k\right)}{Z(h)} \]

- Why? Needed for (ASR) sequence recognition (not needed for static or frame-level recognition)
- For ASR: Use GMM-HMM forced alignment to get the label for the final layer when using frame-level training.
- Jointly fine-tune all layers using back-propagation algorithm.
The current wisdom on unsupervised pre-training

- Pre-training achieves two things:
 - It makes optimization easier.
 - It reduces overfitting.
- We now know more about how to initialize weights sensibly by hand.
 - So unsupervised pre-training is not required to make the optimization work.
- Unsupervised pre-training is still very effective at preventing over-fitting when labeled data is scarce.
 - It is not needed when labeled data is abundant.

Hinton: ICASSP-2013
DNN-HMM
(replacing GMM only; longer MFCC/filter-back windows w. no transformation)

Model tied triphone states directly

Many layers of nonlinear feature transformation + SoftMax
CD-DNN-HMM: Architecture
(Shallow) GMM-HMM

• Model frames of acoustic data with two stochastic processes:
 – A hidden Markov process to model state transition
 – A Gaussian mixture model to generate observations

• Train with maximum likelihood criterion using EM followed by discriminative training (e.g. MPE)
Voice Search with DNN-HMM

- First attempt in using deep models for large vocabulary speech recognition (summer 2010)
- Published in ICASSP-2011 & 2012 Special issue of T-ASLP:

Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition

George E. Dahl, Dong Yu, Senior Member, IEEE, Li Deng, Fellow, IEEE, and Alex Acero, Fellow, IEEE

Abstract—We propose a novel context-dependent (CD) model for large-vocabulary speech recognition (LVSP) that leverages recent advances in probabilistic models and deep learning. We achieve competitive performance while reducing the amount of training data need through context-dependent (CD) models. Despite the mode error in the training of large neural networks, the CD model achieves competitive performance on the large-vocabulary continuous speech corpus.

Despite the mode error in the training of large neural networks, the CD model achieves competitive performance on the large-vocabulary continuous speech corpus.
MSR Key Innovations (2009-2013)

• Scale the success to large industrial speech tasks
 – Grew output neurons from context-independent phones (100-200) to context-dependent ones (9k-32k)
 – Motivated initially by saving huge MSFT investment in huge speech decoder software infrastructure (e.g. Entropic acquisition)
 – Extremely fast decoder
 – Developed novel deep learning architectures & techniques: DCN/DSN, tensor-DSN, kernel-DCN, tensor-DNN, etc.

• Engineering for large systems:
 – Expertise in DNN and speech recognition
 – Close collaboration among MSRR, MSRA, & speech product teams (Deng, Yu, Seide, Gang Li, Jinyu Li, Jui-Ting Huang, Yifan Gong, etc.)
Some Recent News by Reporters

- DNN Research Improves Bing Voice Search (very fast decoder)
- How technology can bridge language gaps: Speech-to-speech translation promises to help connect our world
- Scientists See Promise in Deep-Learning Programs (NYT: speech to speech)
- Microsoft Research shows a promising new breakthrough in speech translation technology
- Bing Makes Voice Recognition on Windows Phone More Accurate and Twice as Fast
- Microsoft revs speedier, smarter speech recognition for phones
PART II: Deeper Substance of DL

---Technical introduction: RBM, DBN, DNN, DNN-HMM, CNN, RNN

---Examples of incorporating domain knowledge (about speech) into DL architectures
1. Hidden/articulatory Speech dynamics into RNN
2. Speech invariance/class-discrim.into deep-CNN

---A few new, promising DL architectures
Outline

PART I: Basics of Deep Learning (DL)
(including impact and recent history of DL (Deep Neural Net, DNN) in speech recognition)

PART II: Deeper Substance of DL
---Example 1: incorporating domain knowledge:
Hidden/Deep Dynamics in Human Speech
Deep/Dynamic Models are Natural for Speech

• Hierarchical structure in human speech generation
 – Global concept/semantics formation
 – Word sequence formation / prosodic planning
 – Phonological encoding (phones, distinctive features)
 – Phonetic encoding (motor commands, articulatory targets)
 – Articulatory dynamics
 – Acoustic dynamics (clean speech)
 – Distorted speech
 – Interactions between speakers and listener/machine

• Hierarchical structure in human speech perception
 – Cochlear nonlinear spectral analysis
 – Attribute/phonological-feature detection at higher level(s)
 – Phonemic and syllabic detection at still higher level(s)
 – Word and sequence detection
 – Syntactic analysis and semantic understanding at deeper auditory cortex
Production & Perception: Closed-Loop Chain

message → Internal model → decoded message

SPEAKER

motor/articulators

LISTENER

ear/auditory reception

Speech Acoustics in closed-loop chain
The Mammalian Visual Cortex is Hierarchical

- The ventral (recognition) pathway in the visual cortex has multiple stages
- Retina - LGN - V1 - V2 - V4 - PIT - AIT
- Lots of intermediate representations

[picture from Simon Thorpe]

[picture from Gallant & Van Essen]
(Deep) Dynamic Bayesian Net

message

articulation

distortion-free acoustics

distorted acoustics

distortion factors & feedback to articulation

S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \rightarrow \cdots \rightarrow S_K

t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4 \rightarrow \cdots \rightarrow t_K

z_1 \rightarrow z_2 \rightarrow z_3 \rightarrow z_4 \rightarrow \cdots \rightarrow z_K

o_1 \rightarrow o_2 \rightarrow o_3 \rightarrow o_4 \rightarrow \cdots \rightarrow o_K

y_1 \rightarrow y_2 \rightarrow y_3 \rightarrow y_4 \rightarrow \cdots \rightarrow y_K

n_1 \rightarrow n_2 \rightarrow n_3 \rightarrow n_4 \rightarrow \cdots \rightarrow n_K

N_1 \rightarrow N_2 \rightarrow N_3 \rightarrow N_4 \rightarrow \cdots \rightarrow N_K

h
Structured Speech Modeling

Li Deng, Fellow, IEEE, Dong Yu, Member, IEEE, and Alex Acero, Fellow, IEEE

Abstract—Modeling dynamic structure of speech is a novel paradigm in speech recognition research within the generative modeling framework, and it offers a potential to overcome make it indistinguishable with human–human verbal interaction, at present, when users interact with any existing speech recog-

<table>
<thead>
<tr>
<th>Method</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-HMM [26]</td>
<td>27.3%</td>
</tr>
<tr>
<td>Augmented conditional Random Fields [26]</td>
<td>26.6%</td>
</tr>
<tr>
<td>Randomly initialized recurrent Neural Nets [27]</td>
<td>26.1%</td>
</tr>
<tr>
<td>Bayesian Triphone GMM-HMM [28]</td>
<td>25.6%</td>
</tr>
<tr>
<td>Monophone HTMs [29]</td>
<td>24.8%</td>
</tr>
<tr>
<td>Heterogeneous Classifiers [30]</td>
<td>24.4%</td>
</tr>
<tr>
<td>Monophone randomly initialized DNNs (6 layers) [13]</td>
<td>23.4%</td>
</tr>
<tr>
<td>Monophone DBN-DNNs (6 layers) [13]</td>
<td>22.4%</td>
</tr>
<tr>
<td>Monophone DBN-DNNs with MMI training [31]</td>
<td>22.1%</td>
</tr>
<tr>
<td>Triphone GMM-HMMs discriminatively trained w/ BMMI [32]</td>
<td>21.7%</td>
</tr>
<tr>
<td>Monophone DBN-DNNs on fbank (8 layers) [13]</td>
<td>20.7%</td>
</tr>
<tr>
<td>Monophone mcRBM-DBN-DNNs on fbank (5 layers) [33]</td>
<td>20.5%</td>
</tr>
<tr>
<td>Monophone convolutional DNNs on fbank (3 layers) [34]</td>
<td>20.0%</td>
</tr>
</tbody>
</table>

Fig. 1. Illustration of time-varying cortical auditory vectors a_k’s for a TIMIT utterance. See text for detailed explanations.
(Hidden) Dynamic Models

- Many types of dynamic models since 90’s
- Good survey article on earlier work (Ostendorf et al. 1996)
- Hidden Dynamic Models (HDM/HTM) since late 90’s
- This is “deep” generative model with >2 layers
- Pros and cons of different models
- All intended to create more realistic speech models “deeper” than HMM for speech recognition
- But with different assumptions on speech dynamics
- How to embed such dynamic properties into the DNN framework?
DBN (Deep) vs. DBN* (Dynamic)

- Distributed vs. local representations
- Massive vs. parsimonious parameters
- Product of experts vs. mixture of experts
- Generative-discriminative hybrid vs. generative models
- Longer windows vs. shorter windows

- A neat way of “pre-training” RNN by HDM and then “fine-tuning” RNN by backprop (non-trivial gradient derivation and computation)
Building Dynamics into Deep Recurrent Models

• (Deep) recurrent neural networks for ASR: both **acoustic** and language modeling
 – generic temporal dependency
 – lack of constraints provided by hidden speech dynamics
 – Information redundancy & inconsistency: long windows for each “frame” introducing undesirable “noise”
 – Need to go beyond unconstrained temporal dependence and ESN (while easier to learn)

• An active and exciting research area to work on
PART I: Basics of Deep Learning (DL)
(including impact and recent history of DL (Deep Neural Net, DNN) in speech recognition)

PART II: Deeper Substance of DL
---Example 2: incorporating domain knowledge:
Speech invariance/variability vs. phonetic discrimination in Conv. NN
A Deep Convolutional Neural Net Using Heterogeneous Pooling to Tradeoff Acoustic Invariance w. Phonetic Distinction

Li Deng, Ossama Abdel-Hamid, and Dong Yu
Microsoft Research, Redmond
York University, Toronto

ICASSP, May 28, 2013
Background: Convolutional Nets (CNN)

- **Convolution layer** (w. tying weights): a.k.s. “time/spatial”-invariant FIR filter
- Gives maps of replicated features; neural activities “equivariant” to translation
- **Pooling layer** (max of neighboring units in conv layer): Data reduction & some degree of invariance.
- 2D deep-CNN: State of the art in object recognition (Krizhevsky et al., 2012; LeCun et al.; Ciresan et al.)
Background: Convolutional Nets (CNN)

- **Difficulties of CNN:**
 - 2D Images: Information lost about the precise positions of parts \rightarrow object confusion
 - 2D Speech spectrogram: spectral-temporal information lost about phonetic distinction
 - E.g. 1-D CNN along freq axis (Abdel-Hamid et al., 2012): (TDNN & TF-trajectory CNN)
 - local weight sharing + max pooling over a range \rightarrow invariance to freq shift (VTL normalization)
 - But if freq range too small \rightarrow not enough VTL normalization (acoustic invariance)
 - too large \rightarrow formant patterns of a sound shift \rightarrow phone confusion

- **Solutions for image recognition:** (tried some for speech, no clear success)
 - Transforming autoencoder (Hinton et al., 2011)
 - Tiled CNN (Le et al., 2012)
 - Deconvolutional nets (Zeiler et al., 2011)

- **A good solution for speech recognition** is surprisingly simple
Main Ideas of This Paper

• Bring “confusion” into designing CNN intended for “invariance”
• Exploit the knowledge of how increasing the degree of invariance (to shift along frequency-axis) may reduce phonetic discrimination
• (Kai Yu this morning: Spatial Pyramid Matching for vision)
• Examine/predict how the pooling size (i.e. range of freq-shift invariance) affects phonetic classification errors
 – Theoretic guidance possible; e.g.
 – Phonetic reduction (in casual, conversation speech) shrinks formant space \(\rightarrow\) tradeoff towards “distinction” from “invariance” \(\rightarrow\) smaller pooling size
• Use of many feature maps (afforded by CNN weight tying)
• Different pooling sizes (heterogeneous pooling) for different feature maps
 – Design and use a distribution of pooling sizes and randomly sample it.
 – Special case: use a fixed pooling size, optimized by validation or predicted by acoustic-phonetic “theory” (consistent for TIMIT; not as good as HP)
CNN with a Fixed Pooling Size
(a special case of **HP-CNN** w. **P=3**)
\[HP-CNN [P_1, N_1 | P_2, N_2 | \ldots | P_m, N_m] \]

\[P_1 = 2; \quad P_2 = 3 \]
Regularizing HP-CNN with “Dropout”

- A variant of the Dropout method for DNN (Hinton et al., 2012)
- Dropout in both conv and pooling layers of CNN is helpful, in addition to fully-connected DNN layers
- Dropout in the input layer (filterbanks) is not helpful
- In TIMIT, for CNN w. N=100 feature maps, and DNN hid=2000, the best dropout rate=0.2
- With dropout rate=0.5 & DNN hid=5000, error rate increases
Standard TIMIT Task: Core Testset Results

<table>
<thead>
<tr>
<th>Systems</th>
<th>Phone Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNN (fully-connected 5 layers)</td>
<td>22.3%</td>
</tr>
<tr>
<td>CNN-DNN; P=1 (2 CNN & 3 DNN layers)</td>
<td>21.8%</td>
</tr>
<tr>
<td>CNN-DNN; P=12</td>
<td>20.8%</td>
</tr>
<tr>
<td>CNN-DNN; P=6 (fixed P, optimal)</td>
<td>20.4%</td>
</tr>
<tr>
<td>CNN-DNN; P=6 (add dropout)</td>
<td>19.9%</td>
</tr>
<tr>
<td>CNN-DNN; P=1:m (HP, m=12)</td>
<td>19.3%</td>
</tr>
<tr>
<td>CNN-DNN; above (add dropout)</td>
<td>18.7%</td>
</tr>
</tbody>
</table>

CNN-DNN; P=1 → equivariance: 21.8% > 20.4% (invariance w. fixed, optimal pooling size=6)
CNN-DNN; P=1:12 → Heterogeneous pooling: 19.3% < 20.4%
Dropout is always helpful (thanks Geoff!): 18.7% < 19.3% ; 19.9% < 20.4%
18.7% WAS the record low error rate on this standard task (until this morning by LSTM-RNN)
PART II: Deeper Substance of DL

--- Technical introduction: RBM, DBN, DNN, DNN-HMM, CNN, RNN

--- Examples of incorporating domain knowledge (about speech) into DL architectures
1. Hidden/articulatory Speech dynamics into RNN
2. Speech invariance/class-discrim into deep-CNN

--- A few new, promising DL architectures
Deep Convex Networks

• A simple approach to build a deep model using only convex optimization techniques.
• Successfully ‘convexifying’ the problem is an interesting line of research.
• Very competitive and fast to train.
• So far, best performance still obtained with non-convex fine tuning and many more layers than DNNs.

Deep Tensor Networks

• One example of several attempts at incorporating multiplicative nodes into deep networks.

• Very promising area of research attempting to factor out ‘style’ (speaker, environment) from ‘content’ (phonetic label) using multiplicative gating interactions.
Tensor Deep Stacking Networks

Brian Hutchinson, Student Member, IEEE, Li Deng, Fellow, IEEE, and Dong Yu, Senior Member, IEEE

Abstract—A novel deep architecture, the Tensor Deep Stacking Network (T-DSN), is presented. The T-DSN consists of multiple stacked blocks, where each block contains a bilinear mapping from two hidden layers to the output layer, using a weight tensor to incorporate higher-order statistics of the hidden binary ([0, 1]) features. A learning algorithm for the T-DSN's weight matrices and tensors is developed and described, in which the main parameter estimation burden is shifted to a convex sub-problem with a closed-form solution. Using an efficient and scalable parallel implementation for CPU clusters, we train sets of T-DSNs in three popular tasks in an increasing order of the data size: handwritten digit recognition using MNIST (60k), isolated state/phone classification and continuous phone recognition using TIMIT (1.1m), and isolated phone classification using WSJ0 (5.2m). Experimental results in the three tasks demonstrate the effectiveness of the T-DSN and the associated learning methods in a consistent manner. In particular, a sufficient depth of the T-DSN, a symmetry in the two hidden layers structure in each T-DSN block, our model parameter learning algorithm, and a softmax layer on top of T-DSN are shown to have all contributed to the low error rates observed in the experiments for all three tasks.

Index Terms—Deep learning, stacking networks, tensor, bilinear models, handwriting image classification, phone classification and recognition, MNIST, TIMIT, WSJ

INTRODUCTION

Recently, a deep classification architecture built the T-DSN retains the same linear-nonlinear interleaving structure as DSN in building up the deep architecture...
Fig. 1. An example T-DSN architecture with three stacking blocks, where each block consists of three layers, and superscript is used to indicate the block number or layer.

Fig. 2. Equivalent architecture to the bottom block of Fig. 1, where the tensor is unfolded into a large matrix.
Deep Stacking Networks for Information Retrieval

Li Deng, Xiaodong He, and Jianfeng Gao
Microsoft Research, Redmond

ICASSP, May 30, 2013
Outline

• Motivation: deep learning for Information Retrieval (IR)
 – Learning to rank
 – Semantic feature extraction for ranking

• Deep Stacking Net (DSN)
 – Basic modular architectures
 – Novel discriminative learning algorithm

• Applying DSN for IR --- learning to rank
 – Formulating IR as a classification problem
 – Special role of regularization

• Experiments
 – IR task, data sets, and features
 – Relationship between NDCG score & classification error rate
 – NDCG results on an IR task (Ads selection)
Background of IR

• Goal of IR: ranking text documents (D) for a query (Q)

• Common methods:
 – Lexical matching: suffers from text discrepancy btw Q and D (e.g. vocabulary, word usage, expression style, etc.)
 • E.g., TF-IDF weighted vector space model
 – Semantic matching: to bridge lexical gaps btw Q and D
 • E.g., Latent Semantic Analysis (LSA), PLSA, LDA, etc.
 – Learning Q-D matching using clickthrough data
 • E.g., translation models, bilingual topic models etc.
 – These linear models suffer from restricted expressive power
Deep Learning for IR

• Multilayers of nonlinearities
 – Greater expressive power
 – Better able to capture semantic contents in Q and D
 • E.g., semantic hashing (Hinton et al., 2007)
 – More effective use of supervised clickthrough data

• Use of (labeled) clickthrough data for IR ranking
 – Shallow linear models: Gao et al., 2010;2011
 – Shallow nonlinear models: Burges et al., 2005;2006
Deep Stacking Net (DSN)

- Deep Stacking Nets (Deng & Yu, Interspeech’10; Deng, Yu, Platt, ICASSP’12)
- Interleave linear/nonlinear layers
- Exploit closed-form constraints among network’s weights
- Much easier to learn than DNN
- Naturally amenable to parallel training
- (Largely) convex optimization
- Extended to tensor version (Hutchinson et al, ICASSP’12, TPAMI-2013)
- Extended to kernel version (Deng et al, SLT’12)
- Works very well for MNIST, TIMIT, WSJ, SLU
- This paper: a more recent application to IR ranking
Learning DSN Weights --- Main Ideas

- Learn weight matrices U and W in individual modules separately.
- Given W and linear output layer, U can be expressed as explicit nonlinear function of W.
- This nonlinear function is used as the constraint in solving nonlinear least square for learning W.
- Initializing W with RBM (bottom layer)
- For higher layers, part of W is initialized with the optimized W from the immediately lower layer and part of it with random numbers
Learning DSN Weights --- Single Module

\[E = \frac{1}{2} \sum_n ||y_n - t_n||^2, \quad \text{where} \ y_n = U^T h_n = U^T \sigma(W^T x_n) = G_n(U, W) \]

\[\frac{\partial E}{\partial U} = 2H(U^T H - T)^T \Rightarrow U = (HHT)^{-1} HT^T = F(W), \quad \text{where} \ h_n = \sigma(W^T x_n) \]

\[E = \frac{1}{2} \sum_n ||G_n(U, W) - t_n||^2, \quad \text{subject to} \ U = F(W), \]

Use of Lagrange multiplier method:

\[E = \frac{1}{2} \sum_n ||G_n(U, W) - t_n||^2 + \lambda ||U - F(W)|| \]

to learn \(W \) and then \(U \) \(\rightarrow \) no longer backpropagation

• Advantages found:
 --- less noise in gradient than using chain rule ignoring explicit constraint \(U = F(W) \)
 --- batch learning is effective, aiding parallel training
Experimental Evaluation

• **IR task**
 – Sponsored Search: retrieve and rank relevant ads given a query

• **Data sets**
 – Training: 189K query–ads pairs
 – Testing: 58K query–ads pairs

• **Features to DSN**
 – A total of 160 features in two categories
 • Text features: TF-IDF, word overlap, length, etc.
 • User click features: clickthrough, clicked queries, etc.

• **State-of-the-art baseline system (Burges et al. 2006)**
 – LambdaRank, a single-hidden-layer neural network
 – Trained to maximize (a smoothed approximation of) NDCG via heuristic lambda-function
Evaluation Metric

- Metric: Normalized Discounted Cumulative Gain (NDCG)
- DCG at rank \(p = relevance_1 + \sum_{i=2}^{p} \frac{relevance_i}{\log_2 i}; \)
 - \(relevance_i \): human label of \(doc_i \), scale 0-4
- IDCG: Ideal DCG, DCG score when assuming docs are ranked by human label
- NDCG = DCG/ IDCG
- 1 NDCG pt (0.01) in our setting is statistically significant
NDCG Results

IR Quality measures (NDCG) for the DSN System vs. Baseline

<table>
<thead>
<tr>
<th>IR Systems</th>
<th>NDCG@1</th>
<th>NDCG@3</th>
<th>NDCG@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>LambdaRank</td>
<td>0.331</td>
<td>0.347</td>
<td>0.382</td>
</tr>
<tr>
<td>DSN system</td>
<td>0.359</td>
<td>0.366</td>
<td>0.402</td>
</tr>
</tbody>
</table>
Analysis

Relationship between classification error rates and NDCG@1 measure

Observations:
- Correlation is clearly evidenced for NDCG1 < 0.35
- Weaker correlation in the high IR-quality region, i.e., NDCG1 > 0.35

Implication:
- Due to the inconsistency between the training objective and the IR-quality measure
- It is desirable to train the model to optimize the end-to-end IR quality directly
Learning Curves

![Learning Curves Graph]

- NDCG1
- NDCG3
- NDCG10
Conclusions (of this ICASSP-2013 paper)

• First study on the use of deep learning techniques for learning-to-rank in IR problems
• Significantly better than shallow neural network
• Model trained by MSE
 – Generally correlated well with the NDCG as the IR quality measure
 – But weaker correlation in the region of high IR quality
• Deep learning using end-to-end IR-relevant metric is a key future direction
PART II: Deeper Substance of DL

--- Technical introduction: RBM, DBN, DNN, DNN-HMM, CNN, RNN

--- Examples of incorporating domain knowledge (about speech) into DL architectures

1. Hidden/articulatory Speech dynamics into RNN
2. Speech invariance/class-discrim. into deep-CNN

-A few new, promising DL architectures (CONTINUED)
New Types of Deep Neural Network & Learning for Speech Recognition+ An Overview

Li Deng, Geoffrey Hinton, Brian Kingsbury

MSR, U. Toronto/Google, IBM

ICASSP Special Session, May 28, 2013
Special Session Motivations

• Huge impact of deep neural nets (DNN) in speech (and vision, language, etc.)
Special Session Motivations

- Review article (2011-2012)
- Key factors:
 - Deeper network
 - Faster hardware
 - Larger network output layer (& hidden, input layers)
 - Better network initialization (not essential with big data)
- Rather standard MLP architecture
- Also standard backprop learning (1980’s)
Take-Away from This Special Session

• New models and new learning methods
• Key capabilities of DNNs in knowledge transfer, learning representations, etc.
• Advances in DNNs since the SPM overview paper
Recent History of “Deep” Models in Speech

- U Toronto’s DBN-DNN (2006-2009)

Figure 2: The DBN architectures used in this work.

Mohamed, Dahl, Hinton, NIPS-WS, 2009 (a simple “recipe”)

Phones/words ➔ $S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \rightarrow \cdots \rightarrow S_K$

targets ➔ $t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4 \rightarrow \cdots \rightarrow t_K$

articulation ➔ $z_1 \rightarrow z_2 \rightarrow z_3 \rightarrow z_4 \rightarrow \cdots \rightarrow z_K$

distortion-free acoustics ➔ $o_1 \rightarrow o_2 \rightarrow o_3 \rightarrow o_4 \rightarrow \cdots \rightarrow o_K$

distorted acoustics ➔ $y_1 \rightarrow y_2 \rightarrow y_3 \rightarrow y_4 \rightarrow \cdots \rightarrow y_K$

distortion factors & feedback to articulation ➔ $n_1 \rightarrow n_2 \rightarrow n_3 \rightarrow n_4 \rightarrow \cdots \rightarrow n_K$

(a) A 2-layer BP-DBN
(b) A 3-layer AM-DBN
Hinton’s 2009 “Recipe”

[FIG1] The sequence of operations used to create a DBN with three hidden layers and to convert it to a pretrained DBN-DNN. First, a GRBM is trained to model a window of frames of real-valued acoustic coefficients. Then the states of the binary hidden units of the GRBM are used as data for training an RBM. This is repeated to create as many hidden layers as desired. Then the stack of RBMs is converted to a single generative model, a DBN, by replacing the undirected connections of the lower level RBMs by top-down, directed connections. Finally, a pretrained DBN-DNN is created by adding a “softmax” output layer that contains one unit for each possible state of each HMM. The DBN-DNN is then discriminatively trained to predict the HMM state corresponding to the central frame of the input window in a forced alignment.
Deep Learning for Phone Recognition
(a stunning discovery at MSR, 2009)

<table>
<thead>
<tr>
<th>METHOD</th>
<th>Error rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Shallow) GMM-HMM (1987-2010)</td>
<td>27.3%</td>
</tr>
<tr>
<td>AUGMENTED CONDITIONAL RANDOM FIELDS [26]</td>
<td>26.6%</td>
</tr>
<tr>
<td>RANDOMLY INITIALIZED RECURRENT NEURAL NETS [27]</td>
<td>26.1%</td>
</tr>
<tr>
<td>BAYESIAN TRIPHONE GMM-HMM [28]</td>
<td>25.6%</td>
</tr>
<tr>
<td>Deep/hidden trajectory model (MSR, 2006)</td>
<td>24.8%</td>
</tr>
<tr>
<td>MONOPHONE RANDOMLY INITIALIZED DNNs (SIX LAYERS) [13]</td>
<td>23.4%</td>
</tr>
<tr>
<td>MONOPHONE DBN-DNNs (SIX LAYERS) [13]</td>
<td>22.4%</td>
</tr>
<tr>
<td>MONOPHONE DBN-DNNs WITH MMI TRAINING (MSR, 2010)</td>
<td>22.1%</td>
</tr>
<tr>
<td>TRIPHONE GMM-HMMs DT W/ BMMI (IBM, 2010)</td>
<td>21.7%</td>
</tr>
<tr>
<td>MONOPHONE DBN-DNNs ON FBANK (EIGHT LAYERS) [13]</td>
<td>20.7%</td>
</tr>
<tr>
<td>MONOPHONE MCRBM-DBN-DNNs ON FBANK (FIVE LAYERS) [33]</td>
<td>20.5%</td>
</tr>
<tr>
<td>Deep convolutional nets w. Dropout & Heter. Pooling (MSR, 2012)</td>
<td>18.7%</td>
</tr>
</tbody>
</table>
Deep Learning for Large-Vocabulary Speech Recognition

<table>
<thead>
<tr>
<th>TASK</th>
<th>HOURS OF TRAINING DATA</th>
<th>DNN-HMM</th>
<th>GMM-HMM WITH SAME DATA</th>
<th>GMM-HMM WITH MORE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCHBOARD</td>
<td>309</td>
<td>16.1</td>
<td>23.6</td>
<td>17.1 (2,000 H)</td>
</tr>
<tr>
<td>ENGLISH BROADCAST NEWS</td>
<td>50</td>
<td>17.5</td>
<td>18.8</td>
<td></td>
</tr>
<tr>
<td>BING VOICE SEARCH (SENTENCE ERROR RATES)</td>
<td>24</td>
<td>30.4</td>
<td>36.2</td>
<td></td>
</tr>
<tr>
<td>GOOGLE VOICE INPUT</td>
<td>5,870</td>
<td>12.3</td>
<td></td>
<td>16.0 (>> 5,870 H)</td>
</tr>
<tr>
<td>YOUTUBE</td>
<td>1,400</td>
<td>47.6</td>
<td></td>
<td>52.3</td>
</tr>
</tbody>
</table>
New Discoveries about the DNN “Recipe” since 2009

• Pre-training not needed when a lot of labeled data are available (2010)
• The recipe works well for LVCSR when DNN output units correspond to CD HMM states (2010)
• Decoding alg. & infrastructure largely unchanged, enabling industry-scale speech recognition (2010-2013)
• Filterbank features (closer to waveform) better than MFCCs for DNNs (opposite to GMM systems) (2011-2013)
• DNN works surprisingly well for noisy speech (2012)
• Fully-connected DNN can be modified to include “convolutional” layers to handle speech variability (2012-2013)
• DNN highly effective for multi-task/transfer learning (e.g. multilingual ASR, 2012-2013)
• DNN effective for applications beyond ASR.
Five Technical Papers in Our Special Session

- **RECENT ADVANCES IN DEEP LEARNING FOR SPEECH RESEARCH AT MICROSOFT**
- **IMPROVING DEEP NEURAL NETWORKS FOR LVCSR USING RECTIFIED LINEAR UNITS AND DROPOUT**
- **DEEP CONVOLUTIONAL NEURAL NETWORKS FOR LVCSR**
- **MULTILINGUAL ACOUSTIC MODELS USING DISTRIBUTED DEEP NEURAL NETWORKS**
- **ADVANCES IN OPTIMIZING RECURRENT NETWORKS**
Themes in the Session
Themes: Better Inputs

MFCCs → log Mel spectra
Themes: **Nonlinearities**

- Softmax \rightarrow NADE
- Logistic \rightarrow ReLU

[Diagram showing layers and nonlinearities]
Themes: Architectures

Recurrent NNs

Convolutional NNs
Themes: Optimization

- Distributed asynchronous SGD
- Distributed Hessian-free optimization
- Nesterov's accelerated gradient method
- Gradient clipping
Themes: **Regularization**

- Sparsity in hidden representations
- Dropout
Themes: **Hyperparameters**

Grid search → Sampling

Bayesian optimization
Themes: **Multi-task Learning**

- **Multi-lingual acoustic modeling**
- **Mixed-bandwidth acoustic modeling**
Recent Advances in Deep Learning for Speech Research at Microsoft

Li Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu, Frank Seide, Mike Seltzer, Geoff Zweig, Xiaodong He, Jason Williams, Yifan Gong, Alex Acero
Outline

• Advances in deep learning for features/representations
• Advances in deep learning for models/architectures
• Systems and applications in acoustic modeling, language modeling, dialogue, (and information retrieval/search)
Learning Features/Representations

• Advances in deep learning for features/representations
• Advances in deep learning for models/architectures
• Systems and applications in acoustic modeling, language modeling, dialogue, (and information retrieval/search)
Scientists See Promise in Deep-Learning Programs

John Markoff

November 23, 2012
Back to Primitive Spectral Features

• Philosophy of deep learning:
 – Learning representations automatically instead of manually engineering/design them (e.g., MFCC, PLP)

• DNN capability in representing correlated feature dimensions

• \(\rightarrow \) eliminate cosine transform in MFCC in favor of filterbanks in spectral domain
Back to Primitive Spectral Features

• Philosophy of deep learning:
 – Learning representations automatically instead of manually engineering/design them (e.g., MFCC, PLP)

• DNN capability in representing correlated feature dimensions

• → eliminate cosine transform in MFCC in favor of filterbanks and spectrograms in the spectral domain
In early 2010, we discovered:

For deep autoencoding of speech features:
- Both spectrogram/filterbank features are better than MFCCs
- Better to use spectrogram features than filterbanks
- “Better” in terms of coding efficiency (i.e., errors/energy)
LVCSR Using Spectral Features

<table>
<thead>
<tr>
<th>LVCSR Systems</th>
<th>Word error rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best GMM-HMM (MFCCs; fMPE+BMMI)</td>
<td>34.7%</td>
</tr>
<tr>
<td>DNN (MFCCs)</td>
<td>31.6%</td>
</tr>
<tr>
<td>DNN (Spectrogram --- 256 log FFT bins)</td>
<td>32.3%</td>
</tr>
<tr>
<td>DNN (29 log filter-banks)</td>
<td>30.1%</td>
</tr>
<tr>
<td>DNN (40 log filter-banks)</td>
<td>29.9%</td>
</tr>
</tbody>
</table>

- Filterbanks > MFCC > Spectrograms
- Not quite consistent with deep autoencoder results
- Further research: regularization, online feature normalization at sentence level, etc.
Learning Multi-Task Features

Mixed-Band DNN architecture:

Multilingual DNN architecture:
Shared Hidden Layers with Language-Specific Output Layers

Input Layer: A window of acoustic feature frames

Many Hidden Layers

Language 1 senones
Language 2 senones
Language 3 senones
Language 4 senones

Shared Feature Transformation

Lang 1 Lang 2 Lang 3 Lang 4 Training or Testing Samples
Learning Multi-Task Features

8KHz waveforms
16KHz waveforms
English training data
French training data
Chinese training data

8KHz or 16KHz English or French or Chinese speech input

English or French or Chinese words with fewer errors
Multilingual ASR Summary Results

<table>
<thead>
<tr>
<th>Speech Recognizers</th>
<th>WER on ENU</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNN trained with only ENU data</td>
<td>30.9%</td>
</tr>
<tr>
<td>+FRA, retrain all layers with ENU</td>
<td>30.6%</td>
</tr>
<tr>
<td>or +FRA, retrain the top layer with ENU</td>
<td>27.3%</td>
</tr>
<tr>
<td>or +FRA+ DEU+ ESP+ITA, retrain top layer</td>
<td>25.3%</td>
</tr>
</tbody>
</table>
• \[\text{Prob} \left[\text{CorrectUserGoals}_t \mid \text{DialogueHistory}_{\{1,2,\ldots,t-1\}}, \text{UserInfo}_{\{1,2,\ldots,t-1\}} \right] \]
DSN Results for Dialogue State Tracking

- **Task:** Dialog state tracking (defined in Spoken Dialogue Challenge 2010)
- **Strong interactions among features** → **strength of deep networks**
- **Can be framed as a multiple binary classification problem**
- **Baseline:** carefully tuned, highly optimized Max Entropy classifier (J. Williams)
- **Deep Stacking Nets** (slightly tuned) achieve similar accuracy% for all 5 slots:

<table>
<thead>
<tr>
<th>Slot</th>
<th>State of the Art baseline</th>
<th>Deep Stacking Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus route</td>
<td>58.0%</td>
<td>58.1%</td>
</tr>
<tr>
<td>Origin location</td>
<td>56.4%</td>
<td>57.1%</td>
</tr>
<tr>
<td>Destination location</td>
<td>66.5%</td>
<td>65.4%</td>
</tr>
<tr>
<td>Date</td>
<td>83.9%</td>
<td>84.6%</td>
</tr>
<tr>
<td>Time</td>
<td>63.1%</td>
<td>62.5%</td>
</tr>
</tbody>
</table>
Summary

PART I: Basics of Deep Learning (DL)
--- including impact and recent history of DL (Deep Neural Net, DNN) in speech recognition

PART II: Deeper Substance of DL
--- including connections to other ML paradigms
--- two examples of incorporating speech knowledge in DL architectures,
--- recent experiments in speech recognition with new DL architectures beyond DNN
Perspective: What Types of Problems Fit (not fit) Deep Learning (some conjectures)

“Perceptual” AI
- Image/video recognition
- Speech recognition
- Speech/text understanding
- Sequential data with temporal structure (stock market prediction?)

“Data matching”
- Malware detection (ICASSP-2013)
- Movie recommender, speaker/language detection?

Non-obvious data representations
- Easy data representation
 - e.g., histogram of events, user-watched movies, etc.

Deep learning already shows tremendous benefits
- Deep learning may not win over standard machine learning
Deep Learning involves non-convex loss functions

- With non-convex losses, all bets are off
- Then again, every speech recognition system ever deployed has used non-convex optimization (GMMs are non convex).

But to some of us all “interesting” learning is non convex

- Convex learning is invariant to the order in which sample are presented (only depends on asymptotic sample frequencies).
- Human learning isn't like that: we learn simple concepts before complex ones. The order in which we learn things matter.
No generalization bounds?

- Actually, the usual VC bounds apply: most deep learning systems have a finite VC dimension.
- We don't have tighter bounds than that.
- But then again, how many bounds are tight enough to be useful for model selection?

It's hard to prove anything about deep learning systems

- Then again, if we only study models for which we can prove things, we wouldn't have speech, handwriting, and visual object recognition systems today.
Deep Learning is about representing high-dimensional data
- There has to be interesting theoretical questions there
- What is the geometry of natural signals?
- Is there an equivalent of statistical learning theory for unsupervised learning?
- What are good criteria on which to base unsupervised learning?

Deep Learning Systems are a form of latent variable factor graph
- Internal representations can be viewed as latent variables to be inferred, and deep belief networks are a particular type of latent variable models.
- The most interesting deep belief nets have intractable loss functions: how do we get around that problem?

Lots of theory at the 2012 IPAM summer school on deep learning
- Wright's parallel SGD methods, Mallat's "scattering transform", Osher's "split Bregman" methods for sparse modeling, Morton's "algebraic geometry of DBN",
Deep Learning has been the hottest topic in speech recognition in the last 2 years

- A few long-standing performance records were broken with deep learning methods
- Microsoft and Google have both deployed DL-based speech recognition system in their products
- Microsoft, Google, IBM, Nuance, AT&T, and all the major academic and industrial players in speech recognition have projects on deep learning

Deep Learning is the hottest topic in Computer Vision

- Feature engineering is the bread-and-butter of a large portion of the CV community, which creates some resistance to feature learning
- But the record holders on ImageNet and Semantic Segmentation are convolutional nets

Deep Learning is becoming hot in Natural Language Processing

Deep Learning/Feature Learning in Applied Mathematics

- The connection with Applied Math is through sparse coding, non-convex optimization, stochastic gradient algorithms, etc...
In Many Fields, Feature Learning Has Caused a Revolution
(methods used in commercially deployed systems)

- **Speech Recognition I (late 1980s)**
 - Trained mid-level features with Gaussian mixtures (2-layer classifier)

- **Handwriting Recognition and OCR (late 1980s to mid 1990s)**
 - Supervised convolutional nets operating on pixels

- **Face & People Detection (early 1990s to mid 2000s)**
 - Haar features generation/selection (Viola-Jones 2001)

- **Object Recognition I (mid-to-late 2000s: Ponce, Schmid, Yu, YLC....)**
 - Trainable mid-level features (K-means or sparse coding)

- **Low-Res Object Recognition: road signs, house numbers (early 2010's)**
 - Supervised convolutional net operating on pixels

- **Speech Recognition II (circa 2011)**
 - Deep neural nets for acoustic modeling

- **Object Recognition III, Semantic Labeling (2012, Hinton, YLC,...)**

Selected References

Li Deng, Jinyu Li, Jui-Ting Huang, Kaisheng Yao, Dong Yu, Frank Seide, Michael Seltzer, Geoff Zweig, Xiaodong He, Jason Williams, Yifan Gong, and Alex Acero, *Recent Advances in Deep Learning for Speech Research at Microsoft*, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2013

Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and Yifan Gong, *CROSS-LANGUAGE KNOWLEDGE TRANSFER USING MULTILINGUAL DEEP NEURAL NETWORK WITH SHARED HIDDEN LAYERS*, in *IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, May 2013

Po-Sen Huang, Kshitiz Kumar, Chaojun Liu, Yifan Gong, and Li Deng, *PREDICTING SPEECH RECOGNITION CONFIDENCE USING DEEP LEARNING WITH WORD IDENTITY AND SCORE FEATURES*, in *Proc. ICASSP*, May 2013

TABLE OF CONTENTS

Chapter 1: Introduction
1.1 What Are Speech Dynamics?
1.2 What Are Dynamic Speech Models?
1.3 Why Modeling Speech Dynamics?
1.4 Outline of the Book

Chapter 2: A General Modeling And Computational Framework
2.1 Background and Literature Review
2.2 Model Design Philosophy and Overview
2.3 Model Components and the Computational Framework
2.4 Summary

Chapter 3: Modeling: From Acoustic Dynamics To Hidden Dynamics
3.1 Background and Introduction
3.2 Statistical Models for Acoustic Speech Dynamics
3.3 Statistical Models for Hidden Speech Dynamics
3.4 Summary

Chapter 4: Models With Discrete Valued Hidden Speech Dynamics
4.1 Basic Model with Discretized Hidden Dynamics
4.2 Extension of the Basic Model
4.3 Application to Automatic Tracking of Hidden Dynamics

Chapter 5: Models With Continuous Valued Hidden Speech Trajectories
5.1 Overview of the Hidden Trajectory Model
5.2 Understanding Model Behavior by Computer Simulation
5.3 Parameter Estimation
5.4 Application to Phonetic Recognition
5.5 Summary
References
“DBN vs DBN” (for fun)

<table>
<thead>
<tr>
<th>DBN</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBN</td>
<td>1, 5-Diazabicyclo(4.3.0)Non-5-Ene (chemical compound)</td>
</tr>
<tr>
<td>DBN</td>
<td>Doing Business - Not</td>
</tr>
<tr>
<td>DBN</td>
<td>Dialog Broadband Networks (Dialog Telekom PLC; Sri Lanka)</td>
</tr>
<tr>
<td>DBN</td>
<td>De Bonis Non (Legal: appointment of a personal representative to a vacancy)</td>
</tr>
<tr>
<td>DBN</td>
<td>Divisible by None (band)</td>
</tr>
<tr>
<td>DBN</td>
<td>Deep Belief Network (machine learning)</td>
</tr>
<tr>
<td>DBN</td>
<td>Dynamic Bayes Network</td>
</tr>
<tr>
<td>DBN</td>
<td>Data Bus Network</td>
</tr>
<tr>
<td>DBN</td>
<td>Dial-Back Number</td>
</tr>
<tr>
<td>DBN</td>
<td>Day Beacon</td>
</tr>
<tr>
<td>DBN</td>
<td>Domain-Border Node</td>
</tr>
<tr>
<td>DBN</td>
<td>Digital Billboard Network (Australia)</td>
</tr>
<tr>
<td>DBN</td>
<td>Drunk Before Noon</td>
</tr>
<tr>
<td>DBN</td>
<td>District Borough Number (New York City Department of Education school identifier)</td>
</tr>
<tr>
<td>DBN</td>
<td>Database Notification</td>
</tr>
<tr>
<td>DBN</td>
<td>Directed Bipartite Network</td>
</tr>
</tbody>
</table>