
DUDETM: Building Durable Transactions with Decoupling for
Persistent Memory

Mengxing Liu∗ Mingxing Zhang∗ Kang Chen∗ Xuehai Qian∓

Yongwei Wu∗ Jinglei Ren†
∗Tsinghua University ∓University of Southern California †Microsoft Research

Abstract
Emerging non-volatile memory (NVM) offers non-volatility,
byte-addressability and fast access at the same time. To make
the best use of these properties, it has been shown by em-
pirical evidence that programs should access NVM directly
through CPU load and store instructions, so that the over-
head of a traditional file system or database can be avoided.
Thus, durable transactions become a common choice of ap-
plications for accessing persistent memory data in a crash
consistent manner. However, existing durable transaction
systems employ either undo logging, which requires a fence
for every memory write, or redo logging, which requires
intercepting all memory reads within transactions.

This paper presents DUDETM, a crash-consistent durable
transaction system that avoids the drawbacks of both undo
logging and redo logging. DUDETM uses shadow DRAM
to decouple the execution of a durable transaction into three
fully asynchronous steps. The advantage is that only min-
imal fences and no memory read instrumentation are re-
quired. This design also enables an out-of-the-box transac-
tional memory (TM) to be used as an independent com-
ponent in our system. The evaluation results show that
DUDETM adds durability to a TM system with only 7.4% ∼
24.6% throughput degradation. Compared to the existing
durable transaction systems, DUDETM provides 1.7× to
4.4× higher throughput. Moreover, DUDETM can be im-
plemented with existing hardware TMs with minor hardware
modifications, leading to a further 1.7× speedup.

∗ Department of Computer Science and Technology, Tsinghua National
Laboratory for Information Science and Technology (TNLIST), Tsinghua
University, Beijing 100084, China; Research Institute of Tsinghua Univer-
sity in Shenzhen, Guangdong 518057, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17, April 08-12, 2017, Xi’an, China

c© 2017 ACM. ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037714

1. Introduction
Emerging non-volatile memory (NVM) technologies [5, 25,
56] are promising because they offer non-volatility, byte-
addressability and fast access at the same time. Phase change
memory (PCM) [30, 36], spin-transfer torque RAM (STT-
RAM) [2, 29] and ReRAM [1] are representative examples
of NVM. Notably, Intel and Micron recently announced 3D
XPoint, a commercial NVM product on the way to the mar-
ket [24]. As NVM enjoys DRAM-level access latency, em-
pirical studies [10, 19, 28, 47, 57, 58] suggest that NVM
should be directly accessed through the processor-memory
bus by load/store instructions, making a persistent memory,
to avoid the overhead of the legacy block-oriented file sys-
tems or databases. Persistent memory also allows program-
mers to update persistent data structures at byte level without
the need for serialization.

While persistent memory provides non-volatility, it is
challenging for an application to ensure correct recovery
from the persistent data on a system crash, namely, crash
consistency [33, 47]. A solution to this problem is using
crash-consistent durable transaction, which makes a group
of persistent memory updates appear as one atomic unit with
respect to a system crash. Durable transactions offer both
strong semantics and an easy-to-use interface. Many prior
works [19, 22, 28, 47] have provided durable transactions as
the software interface for accessing persistent memory.

Most implementations of durable transactions enforce
crash consistency through logging [10, 22, 28, 53]. How-
ever, there is a dilemma in choosing between undo logging
and redo logging [48], the two basic logging paradigms.
In undo logging, the original (old) values are stored to a
log before they are modified by a transaction. Having its
old value preserved in the log, the data can be modified in-
place. Therefore, a memory load can directly read the latest
value without being intercepted and remapped to a differ-
ent address. This avoids noticeable overheads, thus many
systems [10, 22, 28, 53] use undo logging. However, undo
logging requires each in-place update to perform after the
logged old value is persistent, so that a transaction is able
to roll back to the original value if a crash occurs. To en-
force this order, the system uses the persist operation, which

is implemented by a sequence of instructions [41], for ev-
ery update. This incurs significant overhead [19, 47, 48]. To
mitigate the overhead, one approach [22, 28] is to log all
the old values that are about to be updated in a transaction
at once, to reduce the frequency of persist ordering from
once per update to once per transaction. However, it requires
prior knowledge of the write set of a transaction and hence
supports only static transactions (accordingly, we refer to
transactions without predefined write sets as dynamic ones).

To the contrary, redo logging [19, 47, 53] imposes only
one persist order for each transaction, no matter whether the
transaction is static or dynamic. In particular, all memory
updates of a transaction are first buffered in a log in persis-
tent memory, and then applied to the real data in-place. The
process is referred to as update redirection. The system only
need to guarantee that updates of old values happen after the
whole log is persisted. However, since the data updates are
buffered in the log, the reads of them in a transaction must
be remapped to the log to obtain the latest values. Update
redirection incurs the overhead of address mapping, which
can be expensive [38, 48]. Recently, Kiln [58] avoids such
overhead by using non-volatile caches. However, it requires
non-trivial hardware changes, including modifications of the
cache coherent protocol.

The dilemma between undo and redo logging is essen-
tially a trade-off between update redirection cost and per-
sist ordering cost. For any design, either in-place update
with per-update persist ordering overhead (as in undo log-
ging) or transaction-level persist ordering with update redi-
rection overhead (as in redo logging) have to be used. Nev-
ertheless, our investigation demonstrates that it is possible
to make the best of both worlds while supporting both dy-
namic and static transactions. The key insight of our solu-
tion is decoupling a durable transaction into three fully asyn-
chronous steps. (1) Perform: execute the transaction in a
shadow memory1, and produce a redo log for the transaction.
(2) Persist: flush the redo log of each transaction to persis-
tent memory in an atomic manner. (3) Reproduce: modify
original data in persistent memory according to the persisted
redo log. It is essential that we never directly write back dirty
data from shadow memory to persistent memory – all the
updates are realized via the redo log. One implication is that
we never need to worry about whether uncontrollable CPU
cache eviction may affect the crash consistency guarantee,
because the evicted data from CPU caches is only written to
the shadow memory. By decoupling, our solution can per-
form in-place update without redirection in Perform, and
requires only transaction-level persist ordering in Persist

and Reproduce, achieving both low update redirection over-
head and low persist ordering overhead.

A core component of our decoupled framework is a
shared, cross-transaction shadow memory. It acts as a

1 The shadow memory can be either volatile or non-volatile. Considering
performance advantage, we assume use of DRAM.

volatile mirror/cache of the persistent memory. More impor-
tantly, it only requires page-level mapping, which is coarse-
grained and can be efficiently supported by the operating
system and CPU. In contrast, traditional redo logging incurs
costly object-level or even byte-level mapping.

This paper presents DUDETM, a durable decoupled
transaction system for persistent memory that implements
the above insight and design. Besides resolving the dilemma
between undo and redo logging, DUDETM offers three ad-
vantages. First, Perform in DUDETM can be easily built
with any out-of-the-box transactional memory (TM) imple-
mentation. It can be a software TM (STM) or even a hard-
ware TM (HTM). Second, each thread conducts Perform of
consecutive transactions back-to-back, without stalling due
to persistence. By design, DUDETM reduces persistence-
induced stalls with less complexity than recently proposed
relaxed persistence models [26, 28]. Third, the fully decou-
pled steps bring many unique optimization opportunities,
such as 1) overlapping the three steps, and 2) applying cross-
transaction write combination and data compression to the
redo logs before flushing them in Persist. These optimiza-
tions can improve the throughput and, in certain cases, sig-
nificantly reduce the amount of writes to persistent memory,
whose endurance is much lower than DRAM [8, 18].

In summary, we make the following contributions.
• We propose a decoupled framework for implement-

ing durable transactions on persistent memory. It in-
corporates a shared, cross-transaction shadow memory,
and achieves advantages of both traditional undo and
redo logging. Our implementation, based on an exist-
ing STM named TinySTM [16], achieves 1.7× to 4.4×
higher throughput than prior systems, NVML [22] and
Mnemosyne [47], with various benchmarks including
TPC-C [45] and TATP [43].

• We demonstrate the benefits of several optimizations
that are uniquely enabled by our decoupled framework.
Specifically, we apply cross-transaction write combina-
tion and data compression to the redo logs. Our experi-
ments show that these techniques can reduce the amount
of writes to persistent memory by up to 93%.

• For the first time, an out-of-the-box TM, either STM or
HTM (with minor modification), can be used as a stand-
alone component for implementing durable transactions
on persistent memory. Most prior implementations are
coupled with and bound to a specific TM. Besides, our
evaluation shows that HTM gives an additional 1.7×
speedup compared to a STM based implementation.

2. Background and Motivation
2.1 Requirements of Durable Transactions
Requirements of durable transactions have been well inves-
tigated in databases and file systems. They are applicable
to persistent memory. We briefly review their four basic

2

properties, atomicity, consistency, isolation, and durability
(ACID) [20].

First, a persistent memory system may contain volatile
storage components, such as CPU caches and possibly
DRAM for performance purpose [34]. Still, it has to re-
tain each data update of acknowledged transactions despite
power loss or system crashes. This is referred to as the dura-
bility property. Second, a logical update of data records per-
formed by a transaction typically constitutes a sequence of
writes to various addresses in persistent memory. To ensure
correctness of application semantics, these writes have to be
executed “all or nothing”. That means, either all writes of a
transaction are successfully performed, or none of them are
performed (i.e., data in persistent memory is intact). This
property is called atomicity. Third, when multiple transac-
tions execute concurrently in the system, each transaction
should see an isolated local view of the memory data. Specif-
ically, data updates made by one transaction should be in-
visible to other concurrent transactions until the transaction
is committed. This property is isolation. Finally, the consis-
tency property means that each update to the memory data
only brings the data from one consistent state to another.
The definition of a consistent state is application-specific. It
is typical that the application rather than the storage system
is responsible for defining consistent data updates. Prior re-
search [16, 17, 20, 21] has shown that the transaction with
atomicity and isolation guarantees is a powerful and conve-
nient interface to realize consistency.

2.2 Drawbacks of Undo and Redo Logging
In order to develop ACID transactions for persistent mem-
ory, many logging techniques have been proposed. For ex-
ample, NVML [22], NV-Heap [10], and DCT [28] are based
on undo logging, which records old values to a separate log
before actually modifying the data. Undo logging is preva-
lent because it enables transactions to perform in-place up-
dates, avoiding the overhead of redirecting updates. How-
ever, undo logging has to ensure the following persist or-
der: for each single update, the undo log is flushed to per-
sistent memory before the corresponding in-place update is
applied to the real data structure. Typically, the persist order
is enforced by a persist operation which includes cache line
flushing (e.g. CLFLUSHOPT, CLWB) and store ordering (e.g.
SFENCE, or deprecated PCOMMIT) [41], incurring significant
overhead [8, 15, 44, 47]. Hence, it is prohibitively expensive
to enforce persist ordering for every memory write in a trans-
action. To mitigate this issue, DCT [28] and NVML [22]
perform all undo logging of old data at the beginning of a
transaction, so that only one persist ordering is needed for
the transaction. However, this solution requires prior knowl-
edge of the write set of a transaction and hence only supports
static transactions.

Another approach of supporting ACID transactions is
based on redo logging, which requires only one persist or-
dering for each transaction, no matter if it is a static or

dynamic transaction. Take Mnemosyne [47] as an exam-
ple. Every memory write in a transaction is intercepted and
transformed to an append operation to the redo log, which
stores the new values (uncommitted data); at the same time,
all memory reads of the transaction to the uncommitted
data are redirected to the redo log to obtain the latest val-
ues. After the transaction is committed, all the redo log
records of the transaction are flushed to persistent memory
at once. The trade-off is that one can reduce the number of
persist ordering (as in undo logging), at the cost of inter-
cepting and redirecting writes and reads. Although object-
based [3, 31, 42] or block-based [40, 54] storage systems can
alleviate the cost by increasing the redirection or mapping
granularity, TM systems for persistent memory have to sup-
port fine-grained byte-level redirection or mapping [17, 49].
Indeed, a page-level mapping mechanism (e.g., as used in
eNVy [53]), incurs lower overhead than a finer-grained map-
ping mechanism (e.g., as used in Mnemosyne [47] or Soft-
WrAP [19]) because page-level mappings occupy relatively
small memory space and can be accelerated by CPU TLB
hardware. However, it introduces the write amplification is-
sue in which an entire page may have to be read or written
in order to update just a few bytes of the page. In contrast, a
fine-grained mapping can minimize the write amplification.
Overall, the redirection-induced cost in the traditional redo
logging mechanisms is significant [38, 48].

Consider both undo and redo logging, we realized that the
overhead of persist ordering and address mapping are intro-
duced due to the lack of efficient control of when a memory
store actually modifies the data in persistent memory. With
undo logging, the system does not know when an in-place
update will be evicted from the CPU caches to the persistent
memory. To guarantee the ability to rollback a transaction,
we have to ensure that the undo log becomes persistent be-
fore issuing the in-place data update to persistent memory.
With redo logging, the new data is stored in a redo log, so
that the evictions do not matter. Unfortunately, as a result,
the address mapping mechanism and its overhead become
inevitable.

In essence, current systems couple the memory stores in
volatile memory with their persistence in NVM. Without sig-
nificant hardware modifications, we believe that decoupling
the persistence is the best (and possibly the only) way to
avoid the drawbacks of both undo and redo logging and re-
duce the performance penalty.

3. DUDETM Design
Based on the principle of decoupling, this section describes
the design of DUDETM, a C library that provides 1) an easy-
to-use interface that is almost identical to traditional TM;
and 2) the guarantees of complete ACID in spite of a system
crash. DUDETM requires almost no hardware modifications
and supports both static and dynamic transactions.

3

3.1 The Decoupled Framework
To realize the efficient decoupled execution, we make the
following design choices. First, we maintain a single shared,
cross-transaction shadow memory, which is logically a
volatile mirror or cache of the whole persistent memory
space. The key feature is that the shadow memory is shared
among transactions rather than transaction-local [19, 47, 53].
It enables cost-effective page-level management of the
shadow memory, which requires less metadata than finer-
grained management and enables use of hardware support
such as TLB. A transaction-local shadow memory hardly
uses page-level management because of excessive memory
I/O. When a small object is to be updated, a full shadow
page may have to be read from the persistent memory. In
DUDETM, the page is not discarded after the transaction
ends. That means subsequent transactions can still access
that page. Therefore, the cost of extra memory I/O is amor-
tized among multiple transactions in DUDETM.

Second, we use an out-of-the-box TM to execute transac-
tions on the shadow memory for isolation and consistency.
A TM implementation, either HTM or STM, can by defini-
tion execute transactions in isolation and ensure application-
defined consistency, by detecting and resolving conflicts.
Decoupled with TM, the durability and atomicity of the up-
dates of each transaction are ensured by DUDETM library
during flushing the updates to persistent memory after TM
commits the transaction.

Third, we use a redo log as the only means to transfer up-
dates on the shadow memory to the persistent memory. The
reason why we do not choose undo logging is that its persist
ordering requirement would inevitably introduce persistence
latency into the critical path of transaction execution. The
redo log ensures that no dirty data is ever directly written
back to the persistent memory. This design guarantees that
a TM can safely execute on the shadow memory without af-
fecting persistent memory. Also, all updates to the persistent
memory are crash consistent.

Following the above design choices, we build a frame-
work to realize the whole execution of a ACID transaction
into three decoupled, asynchronous steps as follows.
Perform: Transactions execute with an out-of-the-box TM
on top of the shadow memory and access volatile data by
load/store instructions. Each committed transaction2 gen-
erates one redo log, which is temporarily stored into one
of thread-local log buffers. This avoids contention among
threads.
Persist: The committed transactions are persisted by flush-
ing their redo logs to a log region in persistent memory.
It can be done by the background threads (typically one is
enough). This step ensures the atomicity and durability prop-
erties of the transactions.

2 Here, commit is in terms of the TM, which guarantees isolation, consis-
tency and atomicity with regard to the shadow memory, but not durability.

Shadow	Memory		

Persistent	Memory	

Vola4le	redo	log	

Map� Write	Back�

	
	�

a'�

c'�

b'�

X’�

Y’	

Z’�

	
	�

a�

c�

b�

X�

Y�

Z�

…
a	
	
X’�

b	
	
Y’�

c	
	
Z’	

E
n
d�

…

…
a	
	
X’�

b	
	
Y’�

c	
	
Z’�

E
n
d�

…

Persistent	redo	log	

Vola4le	data	

Persistent	data	

Perform	

Persist	

Reproduce	

Figure 1. DUDETM memory architecture and data move-
ment in the three steps. Data X, Y and Z locate at addresses
a, b and c in the persistent memory, respectively. These ad-
dresses are mapped to a’, b’ and c’ in the shadow memory.

Reproduce: The system finally reproduces the updates of
a transaction and modifies the data in persistent memory
according to the redo log. This is the only step that operates
on the actual persistent data structures of the application.
Reproduce can be performed in background.

Although Reproduce is necessary for completing a
transaction, a transaction is considered to be persistent in
DUDETM once its Persist step is finished, because we
can always perform Reproduce as long as the redo log is
persisted.

Figure 1 depicts DUDETM’s memory architecture and
demonstrates the three decoupled steps. The NVM and (part
of) DRAM are mapped to an application’s address space.
Different from the regular memory mapping, DUDETM
maintains two physical pages for a logical page: 1) one
volatile shadow page as the shadow memory in DRAM,
which is visible to the application and can be directly ac-
cessed by load/store instructions of transactions (in the
Perform step); and 2) one persistent page stored in the per-
sistent memory or NVM, which is only modified by back-
ground threads in the Reproduce step. The two pages com-
municate only via redo logs, which also occupy two regions
in DRAM and NVM — the volatile log region and persistent
log region, respectively. The arrows show data movement in
the three steps. We can see that each of the two log regions
acts as a channel connecting two steps. If the size of the
shadow memory is equal to that of the persistent memory,
the address mapping between them is simply a constant off-
set; otherwise, we implement dynamic address mappings
and page-in/out as will be described later in Section 4.3.
Next, we introduce more details of the three steps.

4

3.2 Perform
DUDETM offers five APIs for applications to use: dtmBegin,
dtmEnd, dtmAbort, dtmRead, and dtmWrite. A transaction
should be wrapped with a pair of dtmBegin and dtmEnd.
Users need to replace all memory reads/writes in a transac-
tion with dtmRead and dtmWrite, respectively. Algorithm 1
gives an example of using DUDETM to perform a transac-
tion that transfers $1 from one account to another in a bank.

Algorithm 1: Transactional Transfer
Func transfer(src, dst)

/* transcation begin */

dtmBegin();
/* using dtmRead to read */

srcBalance = dtmRead(accounts[src]);
/* checking balance */

if srcBalance ≤ 0 then
/* abort in transaction */

dtmAbort();
end
/* using dtmWrite to write */

dtmWrite(accounts[src], srcBalance - 1);

dstBalance = dtmRead(accounts[dst]);
dtmWrite(accounts[dst], dstBalance + 1);
/* transaction end */

dtmEnd();

DUDETM integrates an out-of-the-box TM system to per-
form the functions of the five APIs in the shadow mem-
ory. Algorithm 2 presents the pseudo-code to implement
DUDETM’s APIs with an existing TM, whose correspond-
ing functions are referred to as tmBegin, tmEnd, tmAbort,
tmRead, and tmWrite. dtmBegin and dtmRead simply call
tmBegin and tmRead, respectively. dtmWrite has to ap-
pend an entry to the local volatile redo log of the transac-
tion, in addition to calling tmWrite. The entry consists of
the address and the value of the write. dtmEnd appends an
end mark to the volatile redo log, and dtmAbort clears redo
log entries generated by the aborted transaction.

For simplicity, DUDETM assumes that the TM provides
transaction ID that is a globally unique and monotonically
increasing number. The transaction ID indicates the global
order of committed transactions in Perform. DUDETM fol-
lows this order to Reproduce transactions based on redo
logs from different threads. Most existing TM techniques
can produce this ID as they already maintain a global clock
in their implementations [16, 17]. Meanwhile, according to
our experiments, the current maximum transaction through-
put has not reached such a level that the global clock is the
bottleneck.

In DUDETM, each volatile redo log is stored in a fixed-
length, circular buffer, which maintains a pair of cursors
pointing to the log head and end, respectively. Because the
size of a volatile log buffer is limited, if the buffer is full,
the Perform thread will be blocked and wait for a thread
doing Persist to flush the log and unblock the thread in

Algorithm 2: DUDETM APIs Implementation
Func dtmBegin()

return tmBegin();

Func dtmRead(addr)
return tmRead(addr);

Func dtmWrite(addr, val)
/* the thread-local redo log recording the

address and value */

vlog.AppendEntry(addr, val);
/* transactional memory write */

return tmWrite(addr,val);

Func dtmAbort()
/* clear log entries generated in this

transaction */

vlog.PopToLastTx();
tmAbort();

Func dtmEnd()
/* get transaction id */

tid = tmEnd();
/* append an end mark */

vlog.AppendTxEnd(tid);

Perform step. In our evaluation, we find that the log flushing
of Persist is generally faster than the log entry generation
of Perform. Therefore, a thread rarely blocks for this reason
in practice.

3.3 Persist
DUDETM maintains one or more background threads (typ-
ically one is enough) to continuously flush redo logs from
the volatile log region to the persistent log region. These
Persist threads work together to determine a global latest
durable transaction ID (“durable ID” for short) so that all
transactions with smaller durable IDs are persistent. Conse-
quently, a Perform thread can query the global durable ID
and response to callers of earlier transactions with the status
of durability.

When a Perform thread is created, DUDETM assigns a
Persist thread that is responsible for flushing redo logs
of that Perform thread. The Persist thread maintains, in
the persistent log region, a thread-local persistent log buffer,
similar to the volatile log buffer access by the Perform

thread. The redo logs do not have to be flushed accord-
ing to the commit order of transactions, because only the
Reproduce step updates actual data in persistent memory.
In another word, only Reproduce needs to follow the trans-
action commit order. Due to the potential out-of-order redo
log flushing, Persist of a transaction is only considered
to be finished when the global durable ID is larger than its
transaction ID. In any case, DUDETM does not need to wait
for the finish of Reproduce to acknowledge durability of a
transaction, because the transactions with Persist finished
can be always replayed with the redo log to reproduce all
memory updates.

5

Moreover, although the redo log of a transaction can be
flushed to persistent memory immediately after the transac-
tion is committed in Perform, DUDETM have the freedom
to persist redo logs in a batched manner. This brings new
optimization opportunities that is only possible in our de-
coupled framework. We use cross-transaction log combina-
tion and log compression to reduce the amount of writes to
persistent memory which has limited endurance compared
with DRAM.
Log Combination. If two writes modify the same memory
address, they can be coalesced when flushed to the persis-
tent log. The earlier write of them can be saved as long
as they are flushed atomically. Such log combination has
been applied to the cross-transaction case in other fields,
e.g., MobiFS [37]. However, for durable transaction systems,
this technique is only applicable with our decoupled frame-
work. The Persist thread splits successive transactions into
groups. In each group, it reads log entries by the order of
their transaction ID and insert them into a hash table. Later
log entries can overwrite earlier entries if they write the same
data addresses. Finally, a group of log entries is flushed in an
atomic manner.
Log Compression. The write size of Persist can be further
reduced by compressing the combined logs before flushing
them to persistent memory. DUDETM uses the lz4 [11]
algorithm and achieves a compression ratio over 69% in our
experiments. It is important to note that the decompression
is not always needed. We can keep a redo log in the volatile
log region even after the log has been flushed to persistent
memory, if extra memory space is available. Reproduce
can directly read redo logs from the volatile log region.
Therefore, without a crash, the overhead to read out and
decompress the redo logs from persistent memory can be
avoided.

3.4 Reproduce
In Reproduce, DUDETM replays redo logs according to
the order determined by transaction IDs and recycles the
replayed logs. The only necessary persistence ordering in
this step is to ensure that recycling happens after the logs
have reproduced their updates to the persistent memory.
DUDETM can only start reproducing a transaction after it
is durable, i.e., its transaction ID is smaller than the current
global durable ID. When cross-transaction log combination
is used, the recycle granularity is enlarged to a group of
transactions.

3.5 Recovery
During recovery, DUDETM scans the whole persistent log
region and replays logs that have not been processed by
Reproduce. Similar to Reproduce, the recovery procedure
replays the redo logs in an increasing order of their transac-
tion IDs until it finds a transaction whose log is omitted or
incomplete. The incomplete log, along with its correspond-
ing transaction, is abandoned. Since the transaction must

have not been acknowledged with durability, the application
should notice that and may re-execute the transaction after
recovery according to its own application-specific policy.

Another step in recovery is to restore persistent mem-
ory allocation information. Similar to other durable trans-
action systems [19, 22, 47], DUDETM provides pmalloc

and pfree for applications to allocate and free persistent
memory. The specific allocation algorithm is orthogonal to
our design, but the system needs a separate log for each
thread to record all the pmalloc/pfree operations of each
transaction. On recovery, these logs are also scanned so that
DUDETM can determine which regions of persistent mem-
ory are allocated.

4. Implementation
In this section, we describe two implementations of DUDETM
based on STM and HTM. We also discuss the details of
memory management.

4.1 STM-based Implementation
We developed an implementation of DUDETM using Tiny-
STM [16], a lightweight STM that represents the category of
time-based software TM [16, 17, 39]. TinySTM maintains a
timestamp for every object and tries to linearize concurrent
transactions. If a transaction fails to access a “snapshot” of
all the objects it accesses during execution, it is aborted via
a longjump to roll back to the begin of execution. One of
the following two methods can be used to support rollback
of memory updates in TinySTM: Write-back access does not
modify the shadow memory during a transaction, but records
the write set, which is simply discarded if the transaction is
aborted. Write-through access directly modifies the shadow
memory but records old values before modification. If the
transaction is aborted, the old values are restored. We choose
the write-through access in our implementation as it permits
in-place update3.

By design, the three steps in DUDETM’s framework are
asynchronous, ensuring different properties of ACID. In the
implementation, applications can use different options to
ensure these properties. One option is to let dtmEnd wait
for Persist until the transaction is durable. In that case,
DUDETM directly provides full ACID transactions through
its APIs as specified in Section 3.2. The other option is
more flexible and may have performance advantage. In this
case, dtmEnd immediately returns without waiting for its
log to be durable, so that the Perform thread can execute
transactions back-to-back and the execution does not suffer
from persistence-induced stalls. At this point, the transaction
is not guaranteed to be durable. An application may require
that a transaction should be durable before responding to
external users. To fulfill such requirement, DUDETM can
expose the application individual transaction IDs and the

3 Essentially, this is a form of undo logging, but as the shadow memory is
volatile, there is no costly persistence ordering issue.

6

global durable ID to the users. Then the application based
on DUDETM can periodically check the global durable ID
and notify the users that all transactions with smaller IDs
than durable ID can be acknowledged with full ACID.

4.2 HTM-based Implementation
Intel’s Haswell processor supports Restricted Transactional
Memory (RTM) [23]. As a representative HTM implementa-
tion, RTM offers XBEGIN and XEND to specify an HTM trans-
action, a code region to be executed atomically and in isola-
tion. Conflicts between HTM transactions on different cores
are detected by the cache coherence protocol. Programs can
choose to re-execute aborted transaction or execute a fall-
back routine.

The interface of HTM is largely identical to a STM, so
using HTM for DUDETM is straightforward. We replace
tmBegin, tmAbort, tmRead and tmWrite in Algorithm 2
with XBEGIN, XABORT, regular memory read, and regular
memory write, respectively.

The only issue is that XEND does not return a transaction
ID for DUDETM to determine the transaction order. It is
easy to maintain a global transaction ID generator in soft-
ware, such as simply a long integer incremented in every
HTM transaction. Unfortunately, it will lead to prohibitive
abort rate in the current HTM system, because the global in-
teger itself will introduce conflicts. We cannot manipulate
the ID generator outside a HTM transaction, otherwise the
ID value is not guaranteed to reflect the real order of trans-
actions. To resolve this issue, a minor hardware change is
proposed: we simply require the HTM to ignore conflicts on
certain memory addresses. In this way, the software main-
tained transaction ID could be allocated in this region and
does not cause aborts due to its increment. In our evaluation,
as the proposed hardware support is not available, we report
a good estimate of the HTM-based performance (see details
in Section 5.7).

4.3 Memory Management
In practical system configuration, the shadow memory, typ-
ically DRAM, is typically smaller than the persistent mem-
ory. A paging mechanism is required to swap shadow and
persistent pages. The implementation of paging mechanism
is critical for the performance of the DUDETM system.

Our paging mechanism is similar to the one used in the
operating system. When a transaction accesses a memory
address whose page is not present in the shadow memory,
a page fault is triggered and the page in persistent memory
is swapped in as a shadow page. If no shadow memory space
is available, DUDETM has to evict an existing shadow page.
Consequently, the persistent-shadow page address mappings
have to be updated accordingly. Different from the tradi-
tional OS paging, the evicted page is simply discarded. It is
correct because all updates to that pages by different threads
have already been recorded in redo logs, which will be even-

tually reproduced in persistent memory asynchronously (if
the transaction is successfully committed in Perform step).

Since a page could be evicted without writing back, we
address a subtle issue: we need to ensure that all updates
to a persistent page have been reproduced when the page
needs to be swapped into the shadow memory. To ensure
this requirement, we maintain a touching ID for each page,
which is the ID of the last transaction that writes on the page.
Before loading a persistent page into the shadow memory,
DUDETM compares its touching ID and the ID of the most
recent transaction that has finished Reproduce. If touching
ID is bigger, that is, modified data in this page has not
been updated in persistent memory yet, therefore, the page
loading needs to wait until the touching ID become smaller.

In DUDETM, we implement both hardware-based and
software-based paging mechanisms.
Hardware-based Paging. We use Dune [6] to trigger page
faults and manage page mappings. Dune utilizes Intel’s VT-
x virtualization technique to enable user-space programs to
manipulate their own page tables and use other privileged
CPU features. One advantage of this approach is that the ad-
dress translation between virtual memory and shadow mem-
ory is efficiently done by TLB. But accordingly, we have to
flush TLBs of all processors, i.e., do TLB shootdown, when
a thread modifies a page mapping. We add a TLB shootdown
feature to Dune by reusing the inter-processor interrupt facil-
ity in the Linux kernel. DUDETM has to stall all threads and
issue the INVVPID instruction to perform TLB shootdown.
Software-based Paging. We maintain a simple one-level
page table in DRAM. Every dtmRead/dtmWrite operation
has to look up the page table to translate a virtual address to
an address4 in the shadow memory. The address translation
and page swapping are all controlled by our software library.
To ensure that a page to swap out is not being used by
other transactions, we record a reference in each page that is
the number of transactions accessing the page. A page with
reference more than zero is not allowed to swap out.

5. Evaluation
5.1 Setup
Environment. We perform all our experiments on a 12-
core Intel(R) Xeon(R) CPU E5-2643 v4 machine (3.4 GHz,
supporting RTM) with 64 GB physical DRAM, running x86-
64 Linux version 3.16.0 kernel. The results are the average
of ten runs. We use 1 GB DRAM to emulate NVM and up to
1 GB DRAM as shadow memory.
Persistent Memory Emulation. As real NVM is not yet
available, we emulate persistent memory using DRAM.
Similar to prior works [7, 19, 47], our method models the
slow writes of persistent memory, and ignores the small ad-
ditional latency of reads. Specifically, 1) if a single write

4 In the software-based approach, this address is also a virtual address
managed by OS. But this address is not exposed by DUDETM to the
application.

7

Figure 2. Throughput of evaluated systems with different NVM bandwidth.

to persistent memory is required to become persistent right
away, we model the persist ordering overhead by adding a
fixed extra delay. The write latency of PCM can be as large
as 1 us [8, 15], hence we set the extra delay to 3500 cycles,
the same as prior works [19, 50]. In addition, we believe the
write latency would drop in future, so we also run experi-
ments with the extra delay set to 1000 cycles (about 300 ns).
The delay is realized by looping on the processor’s time-
stamp counter via RDTSC. 2) If a sequence of writes are per-
sisted together, we consider both the latency and bandwidth
limit of persistent memory. Only one persist order is re-
quired for all these writes, so the extra delay is calculated by
max{latency, (total write size)/(NVM bandwidth)}.
We test various bandwidth values in our experiments.
Benchmarks. We evaluate DUDETM with both micro
benchmarks (HashTable and B+-Tree), and realistic work-
loads in TPC-C [45] and TATP [43]. (1) The HashTable
benchmark inserts randomly generated inputs to a simple
fixed-size hash table that maps 64-bit integer keys to 64-
bit integer values. Hash collisions are resolved by circularly
testing the next bucket. We guarantee the ACID of every
operation by wrapping it in a transaction. (2) The B+-Tree
benchmark inserts randomly generated inputs to a B+-tree
that maps 64-bit integer keys to 64-bit integer values. Sim-
ilar to HashTable, we build a concurrent B+-tree by trans-
ferring a single-thread B+-tree with transaction APIs. (3)
TPC-C [45] is a well-known on-line transaction processing
(OLTP) benchmark. We implement its New Order transac-
tion, which simulates a customer buying different items from
a local warehouse. The transaction is write-intensive and re-
quires atomic updates to different tables. We implement the
TPC-C with both B+-tree and hash table as its table stor-
age. As our implementation is identical to [7], we omit the
details. (4) TATP [43] is a benchmark that models a mobile

carrier database. We implement the Update Location trans-
action of it, which records the handoff of a user from one
cell tower to another. The transaction is much shorter than
New Order in TPC-C, because there is only one search and
one update in it. Similar to TPC-C, we also implement both
a B+-tree version and a hash table version of TATP.
Evaluated Systems. Our evaluation involves the following
four systems. (1) Volatile-STM, the regular TinySTM run-
ning on DRAM without the durability guarantee. This gives
the theoretical performance upper bound of DUDETM based
on TinySTM. (2) DUDETM, the standard asynchronous im-
plementation based our decoupled framework. The capac-
ity of its log buffers is one million log entries per thread.
If the log buffer is full, the Perform step has to block and
wait for Persist to flush more logs to persistent memory
and release space. (3) DUDETM-Inf, an asynchronous im-
plementation of DUDETM that has infinite log buffers. In
this case, Perform never has to block. (4) DUDETM-Sync, a
synchronous implementation of DUDETM that immediately
flushes logs to persistent memory after Perform step. The
transaction returns after it becomes durable. In other words,
the first and second steps of DUDETM are merged and trans-
actions cannot be executed back-to-back.

5.2 Throughput
5.2.1 Performance Analysis
Theoretically, if ordered by throughput from high to low, the
above four systems should be Volatile-STM, DUDETM-Inf,
DUDETM, and DUDETM-Sync. The throughput differences
between them represent the overhead of log generation, log
buffer saturation, and log persistence, respectively. To mea-
sure these overheads, we evaluated the four systems using
the benchmarks described in Section 5.1, with various per-

8

Benchmark # writes Throughput # writes per tx
B+-tree 28.9 M/s 1.83 MTPS 15.8

TPC-C (B+-tree) 17.2 M/s 93.5 KTPS 183.5
TATP (B+-tree) 4.87 M/s 4.87 MTPS 1.0

HashTable 15.5 M/s 5.16 MTPS 3.0
TPC-C (hash) 30.5 M/s 195 KTPS 156.5
TATP (hash) 5.77 M/s 5.77 MTPS 1.0

Table 1. Statistics of memory writes in different bench-
marks (1 GB/s NVM bandwidth, 1000 cycles latency, 4
threads). “M/s” stands for millions per second.

sistent memory bandwidth, from 1 GB/s to 16 GB/s. Because
the latency only affects DUDETM-Sync, we only use 1000
cycles latency for other systems. Figure 2 presents the re-
sults, from which we can derive the following three findings.

Finding (1): DUDETM incurs minor overhead (7.4% ∼
24.6% less throughput) over the original volatile STM.

As expected, Volatile-STM provides the highest through-
put among all systems under all benchmarks. Based on
TinySTM, DUDETM adds a small performance penalty
to the original STM. The throughput of DUDETM is only
7.4% (B+-tree based TPC-C) to 24.6% (HashTable) less
than that of Volatile-STM. The different performance penal-
ties among benchmarks are due to the different write inten-
sity. Since the main overhead introduced in DUDETM is
log generation, a benchmark that has higher write intensity
typically suffers from a higher overhead. For example, as the
major operations of a hash table insertion are memory writes
and the HashTable benchmark consists of 100% insertions,
HashTable is the most write intensive benchmark and hence
sees the largest performance penalty.

Finding (2): Log flushing is not the bottleneck of the
decoupled framework in DUDETM.

We see that DUDETM-Inf produces almost the same
throughput as DUDETM, which means that the Perform

step of a transaction is rarely blocked by a full log buffer.
More importantly, the observation applies to not only 16 GB/s
NVM but also 1 GB/s NVM. For more direct evidence, Ta-
ble 1 shows the number of memory writes executed by each
benchmark when the NVM bandwidth is set to 1 GB/s and
latency is 1000 cycles. We can calculate that around 78 MB
(TATP based on B+-tree) to 488 MB (TPC-C based on hash
table) redo logs are generated per second, which are less
then the bandwidth of persistent memory.

Finding (3): Decoupling enables high performance of
DUDETM and avoids the bottleneck in log flushing.

Although flushing is not a bottleneck with decoupling, it
does impact the performance if a transaction immediately
flushes its log to persistent memory after it is performed
and blocks until the log is persisted (DUDETM-Sync), es-
pecially when the bandwidth of persistent memory is low
(e.g., 1GB/s). We can see that the throughput of DUDETM-
Sync is gradually improved with the increase of persistent

memory bandwidth (unless the latency of persistent memory
is the bottleneck). When the bandwidth is beyond 8 GB/s,
the throughput of most benchmarks is hardly improved by
higher bandwidth. However, for transactions that have a lot
of instructions (e.g., a TPC-C transaction costs about 110k
cycles), the latency of persistent memory (i.e. 3500 cycles)
is negligible compared to the whole execution time. As a
result, for those benchmarks, the performance gap between
DUDETM and DUDETM-Sync is small. In contrast, for
transactions that have fewer instructions (e.g. a TATP trans-
action costs about 3000 cycles), they show a clear perfor-
mance decline from DUDETM to DUDETM-Sync, when la-
tency is increased from 1000 cycles to 3500 cycles.

5.2.2 Comparison to Current Systems
Mnemosyne [47] is a transactional memory library for per-
sistent memory, with the same guarantees as DUDETM.
It uses Intel’s STM compiler to instrument memory read-
s/writes and TinySTM to manage transactions. Mnemosyne
uses TinySTM’s write-back access scheme (redo logging)
rather than the write-through scheme (undo logging) as
in DUDETM. Since it does not follow our decoupling ap-
proach, Mnemosyne faces the trade-off as described in Sec-
tion 2.2, i.e., a redo logging scheme requires less fences but
costly address mapping.

We also evaluate NVML [22], an undo logging based
durable transaction library for persistent memory developed
by Intel. NVML requires that users have prior knowledge of
the memory write set of a transaction, which means that it
supports only static transactions. As NVML transactions do
not guarantee the isolation property, users of NVML need
to use separate concurrency control mechanism (e.g., lock-
ing). Accordingly, we implement a hash table using fine-
grained locks with NVML, but the complex changes leading
to a high performance lock-based concurrent B+-tree would
make the comparison with other systems unfair. Therefore,
we only run the hash table based benchmarks over NVML.
In our evaluation, all the memory allocation operations are
moved to the beginning of the program, so that our compar-
ison is focused on transaction execution excluding the slow
NVML allocation.

Benchmark DUDE DUDE-Sync Mnem. NVML
B+-tree /MTPS 1.83 1.02 0.77 -

TPC-C(B+-tree) /KTPS 93.5 71.0 42.1 -
TATP(B+-tree) /MTPS 4.87 4.16 2.81 -

HashTable /MTPS 5.16 4.47 1.95 2.04
TPC-C(hash) /KTPS 195 133 76.6 44.7
TATP(hash) /MTPS 5.77 5.05 2.56 2.70

Table 2. Throughput of DUDETM (“DUDE”), DUDETM-
Sync (“DUDE-Sync”), Mnemosyne (“Mnem.”) and NVML
(1 GB/s NVM bandwidth, 1000 cycles latency, 4 threads).

Table 2 shows the result. As we can see, DUDETM
and DUDETM-Sync are about 1.7×–4.4× and 1.3×–3.0×
faster, respectively, than Mnemosyne and NVML running

9

various benchmarks. Mnemosyne is slow for the following
reasons: (1) Intel STM Compiler instruments all the mem-
ory accesses of every transaction, resulting in a noticeable
performance degradation [38]; (2) Mnemosyne needs to use
CLFLUSH, which invalidates the cache line and hence in-
creases cache misses. This problem is avoided in DUDETM
because the shadow memory resides in DRAM; (3) Each
transaction requires a costly synchronous persist, which is
similar to DUDETM-Sync. Finally, (4) the address map-
ping overhead of redo logging. In contrast, although NVML
also suffers from the cache invalidation and persist issues,
it avoids excessive instrumentation and address mapping by
asking users to manually annotate NVM writes and by using
undo logging. However, NVML’s specific implementation
details affect its performance. For example, NVML dynam-
ically allocates transaction meta data and undo logs for each
transaction, which is very expensive5. As a result, NVML
can only run at most 1.14 million empty transactions per
second per thread. In contrast, the maximum throughput of
running empty transaction on DUDETM/Mnemosyne is 30+
millions per second.

5.3 Latency
The transaction implemented in a decoupled manner can re-
turn to users immediately after the Perform step but, at that
point, the transaction is not durable yet. For applications that
require an explicit acknowledgement of the durability of a
transaction, users of DUDETM can periodically inquire the
global latest durable transaction ID as mentioned in Sec-
tion 3.3. Particularly, an application thread can work this
way: executing a transaction of ID ti; getting the durable
ID di and acknowledging transactions whose ID ≤ di; ex-
ecuting a transaction of ID ti+1; getting the durable ID
di+1 and acknowledging transactions whose ID ≤ di+1; ...
In certain cases, the latency of a transaction (measured by
the time between the beginning of the transaction and its
durability acknowledgement) may increase in DUDETM be-
cause Persist is done asynchronously. In this section, we
discuss our evaluation results of this latency by comparing
DUDETM, DUDETM-Sync, Mnemosyne and NVML.

Percentage DUDE DUDE-Sync Mnem. NVML
50% 45 us 18 us 62 us 112 us
90% 73 us 40 us 87 us 161 us
99% 124 us 90 us 126 us 254 us

Table 3. Durable transaction latency of the hash table based
TPC-C benchmark in DUDETM (“DUDE”), DUDETM-
Sync (“DUDE-Sync”), Mnemosyne (“Mnem.”) and NVML

Table 3 presents the distribution of latency (e.g., in
DUDETM, 50% of the transactions can be durable within
45 us). We see that decoupling only introduces a moder-

5 In DUDETM and Mnemosyne, both the meta data and log buffers are
allocated collectively on thread creation

ate extra latency compared to DUDETM-Sync. The extra
latency is mainly due to the fact that we do not check the
latest durable transaction ID in the middle of a transac-
tion. According to our evaluation, about 99% of the trans-
actions can be persisted before the end of their next trans-
action’s Perform. It means that in most cases, the back-
ground Persist thread can finish flushing the log of a
transaction during the Perform step of the next transac-
tion. Therefore, the latency of DUDETM is about 2× the
ideal latency that is 1/(throughput of DUDETM). Because
DUDETM’s throughput is more than 2× that of Mnemosyne
and NVML, DUDETM even has a better latency perfor-
mance than those existing synchronous durable transaction
systems. Compared to them, DUDETM achieves both higher
throughput and lower latency.

5.4 Log Optimization
The decoupled framework enables log optimization tech-
niques to apply before the log is flushed. The effect of log
combination is determined by the skewness of workload. In
one extreme, if all the writes access the same address, all
but the last one can be omitted. In reality, according to the
“power law” [4, 13], many real-world workloads are indeed
skewed. In this experiment, we use the Session Store work-
load of YCSB [12] and runs it on a B+-tree based key-value
store. The store is loaded with 10K records, and the ratio of
read/update transactions is 50 to 50. Transactions follow the
Zipfian distribution with a constant of 0.99.

Figure 3 presents our evaluation results. We see that a
higher optimization ratio can be obtained if the transactions
are grouped to persist. Around 7% NVM writes can be saved
if the log combination is performed for every 10 transac-
tions, and the ratio increase to 93% when each group con-
tains 100,000 transactions. Figure 3 also shows the result of
using lz4 [11] to compress logs. It can stably achieve a com-
pression ratio as high as 69% even when applying to only
10 transaction groups. However, log compression per se can
only reduce NVM writes in Persist. Reproduce still needs
to execute the same number of writes as Perform.

DUDETM allows users to explore the trade-off in log
optimization – a larger group of transactions means a higher
latency and more memory usage, but leads to less NVM
write traffic. Besides, we find that log optimization typically
has no influence on the throughput of applications (unless
the size of each group is too large). This is because that log
flushing is not the bottleneck of the system, i.e., Finding (2).
However, the latency of our system is proportional to the
number of grouped transactions, as a transaction has to wait
other transactions in the same group to persist.

5.5 Swapping Overhead
We evaluate the overhead of swapping in/out when the size
of shadow memory is smaller than NVM. Overall overhead
of swapping largely depends on its frequency, which is de-
termined by (1) the ratio of shadow memory to NVM and

10

Figure 3. Log optimization Figure 4. Swap overhead Figure 5. Scalability

(2) how skew the transactional access is. Figure 4 depicts
the throughput of updating a B+-tree based key-value store.
The workloads are generated following the Zipfian distribu-
tion with two constants, 0.99 and 1.07. We use 1 GB NVM
and a shadow DRAM that varies from 64 MB to 1 GB. The
total working set of each workload is around 650 MB. The
figure indicates that the throughput decreases as the size of
shadow memory shrinks or when the workload becomes less
skew.

Our software-based and hardware-based implementa-
tions have different sensitivity over the shadow memory
size. Figure 4 shows that hardware-based paging has better
performance than software-based paging when the shadow
memory is relatively large, but its performance drops more
quickly as the size of shadow memory decreases. The reason
is that hardware-based paging has less overhead in address
translation due to use of TLB, but more overhead in page
fault and swapping mainly because it has to do a VM exit
to shoot down invalid TLB entries when it evicts a shadow
page6. In contrast, software-based paging does not involve
TLB shootdown but incurs more overhead in address transla-
tion (at least two memory accesses per address translation).
It turns out that modification of page references, though by a
simple compare-and-swap instruction, is costly too, as mul-
tiple cores visit the same page frequently.

5.6 Scalability
Figure 5 presents our results on the scalability of DUDETM.
It shows the throughput of running B+-tree based TPC-C
with different numbers of threads. The NVM bandwidth
is set to 1 GB/s and the latency is 1000 cycles (actually
they have negligible impact on results). The results are nor-
malized to the throughput of one thread. We see that our
TinySTM-based DUDETM implementation achieves a sim-
ilar speedup as TinySTM itself. DUDETM has even a lit-
tle better speedup, because its throughput of one thread is
slower than TinySTM.

The scalability bottleneck of DUDETM lies in the con-
currency control mechanism of TinySTM, instead of other
parts of DUDETM. To manifest the bottleneck, we imple-

6 This is due to our implementation with Dune, and it can be improved in
future work.

ment another version of TPC-C with less conflicts, where
each thread serves customer requests for a fixed district. As
each B+-tree in Order tables is responsible for a certain dis-
trict, this eliminates most conflicts in concurrency control.
Therefore, the bottleneck in TinySTM is avoided. We can
see from Figure 5 that scalability of DUDETM shows almost
linear scalability in this case. In another word, DUDETM-
specific overhead has little influence on scalability.

5.7 HTM-based DUDETM
As discussed in Section 4.2, we can only estimate the possi-
ble speedup of using HTM by generating the transaction ID
with atomic operations that are not wrapped in HTM trans-
actions. Such methodology is reasonable because, although
the order of transactions may not be accurate, it does not
affect the performance evaluation. Moreover, in our imple-
mentation, if a HTM transaction fails more than five times,
a fallback routine is called to execute the transaction using a
global lock.

B+-Tree HashTable TATP (B+-tree)

Volatile-STM/MTPS 2.36 6.84 6.69
DUDETM-STM/MTPS 1.83 5.16 5.77

Slowdown 22% 26% 14%

Volatile-HTM/MTPS 3.59 11.8 6.96
DUDETM-HTM/MTPS 3.21 7.47 6.50

Slowdown 11% 28% 7%

Table 4. Throughput of DUDETM based on STM and HTM
(1 GB/s NVM bandwidth, 1000 cycles latency, 4 threads).

Table 4 shows the throughput of HTM-based DUDETM7.
It achieves up to 1.7× higher throughput than the STM-
based implementation. Among all benchmarks, B+-Tree
shows the largest speedup. That is because a transaction in
this benchmark is bigger than other benchmarks and conflict
management in HTM is more effective than STM. In con-
trast, TATP has less speedup (about 1.33×) because there is
only one concurrent write in a transaction, which means that
most of the execution time is spent on local reads that can not
be improved by replacing STM with HTM. The same rea-
son applies to the HashTable benchmark in which aborted

7 TPC-C is not shown because its transaction issues such a large write set
that Intel Haswell’s HTM cannot handle.

11

transactions are less than 0.3%. In addition, HashTable has a
very high write ratio (72%) and inserting logs for each write
has a great influence on performance. That also results in
higher overhead on pure HTM. However, the overhead of
DUDETM is still within 28% for both STM and HTM. That
means our decoupled framework is compatible to and effec-
tive with many kinds of transactional memory technologies.

6. Related Work
Durable Transaction Systems. Previous NVM-based durable
transaction systems [10, 19, 28, 47] usually suffer from a
dilemma between per-update persist ordering and update
redirection overhead. DCT [28] and NVML [22] bypass
this issue by supporting only static transactions. They also
require that all the locks should be acquired at transac-
tion start and released after the transaction is committed.
It leads to less parallelism than TM implementations [35].
Mnemosyne [47] also provides an alternative asynchronous
reproducing method which replays redo logs on background,
similar to the asynchronous Reproduce step in DUDETM.
However, it does not decouple the Perform and Persist

steps of a transaction. In other words, it does not solve the
dilemma and shows low performance especially when the
write latency of persistent memory is large.

Moreover, although SoftWrAP and DUDETM both use
the concept of shadow memory, they are different in several
fundamental aspects: 1) SoftWrAP is still using object-level
mapping. Due to its “double-buffered” alias table mecha-
nism, SoftWrAP needs up to three times of indirection for
reading a value. 2) Changing SoftWrAP’s mapping granu-
larity to relieve its indirection overhead is not easy. In Soft-
WrAP’s implementation, a page-level mapping will lead
to excessive write amplification overhead. Meanwhile, a
straightforward one-to-one mapping will result in both unac-
ceptable memory consumption (> 3× due to the use of two
alias tables) and increased execution time (due to tracking
modified memory to avoid scanning the whole alias table
for dumping). 3) SoftWrAP argues that concurrency control
can be decoupled, but it requires non-trivial modifications
to work in a concurrent environment. It claims that isola-
tion can be implemented by using local alias table, but it is
not clear how to merge it into global alias table automati-
cally. Moreover, dedicated mechanisms are required to find
a quiescent point that SoftWrAP can safely switch alias table
from active to closed, which would incur further delay and
complexity. According to our investigation, the reason why
SoftWrAP suffers from the above disadvantages is because
that SoftWrAP tries to directly copy data from shadow mem-
ory to NVM. As a result, copying data from the per-thread
redo log can fundamentally avoid these issues.
Database Systems. Some in-memory databases [27, 46, 51]
flush logs into disks to provide ACID guarantees. These
systems usually achieve a better throughput than TM tech-
niques, but their data can only be accessed by specific

database operations. In contrast, the TM interface is more
flexible. Moreover, certain databases may have extra con-
strains. For example, the main technique used in FOE-
DUS [27] is dual-page, which requires data to be fit in
fixed-size pages and hence is not usable in transactions for
persistent memory.
NVM-Oriented Data Structures. Some researchers [8, 9,
14, 52, 55] focus on the best method of implementing a cer-
tain kind of data structure on NVM. For example, Yang el
al. [55] design a high-performance persistent B+-tree, which
reduces the number of reuqired write operations by disor-
dering the keys in leaf nodes. Different from these works
that deal with a specific kind of data structure, DUDETM
attempts to provide a general transactional library for wider
use (e.g., mingling of different data structures).
Hardware Support. Kiln [58] adds a non-volatile cache to
eliminate logging, and WSP [32] achieves similar improve-
ments by assuming that residual power could flush data in
caches and registers to NVM. DUDETM makes more con-
servative hardware assumptions.

7. Conclusion
This paper presents DUDETM, a decoupled framework to
implement atomic, durable transactions on persistent mem-
ory. DUDETM avoids the inefficiencies of traditional undo
logging and redo logging based techniques. Its key design
is to decouple an ACID transaction into three asynchronous
steps, which enable us to run an out-of-the-box TM on the
shadow memory as a stand-alone component in our system.
Our evaluation results show that DUDETM adds guarantees
of crash consistency and durability to TinySTM by adding
only 7.4% ∼ 24.6% overhead, and is 1.7× to 4.4× faster
than existing works Mnemosyne and NVML. Through de-
coupling, we have also enabled the possibility of 1) reduc-
ing the write traffic to NVM by log optimization (up to 93%
reduction) and 2) improving throughput by using HTM (a
further 1.7× speedup).

Acknowledgement
We thank anonymous reviewers for their valuable feed-
back. This work is supported by Natural Science Founda-
tion of China (61433008, 61373145, 61572280, 61133004,
61502019, U1435216), National Key Research & Develop-
ment Program of China (2016YFB1000504), National Ba-
sic Research (973) Program of China (2014CB340402), In-
tel Labs China (Funding No.20160520). This work is also
supported by NSF CRII-1657333, Spanish Gov. & Euro-
pean ERDF under TIN2010-21291-C02-01 and Consolider
CSD2007-00050.

References
[1] AKINAGA, H., AND SHIMA, H. Resistive random access

memory (ReRAM) based on metal oxides. Proc. IEEE 98,
12 (2010).

12

[2] APALKOV, D., KHVALKOVSKIY, A., WATTS, S., NIKITIN,
V., TANG, X., LOTTIS, D., MOON, K., LUO, X., CHEN,
E., ONG, A., DRISKILL-SMITH, A., AND KROUNBI, M.
Spin-transfer torque magnetic random access memory (STT-
MRAM). ACM J. Emerg. Technol. Comput. Syst. 9, 2 (May
2013), 13:1–13:35.

[3] ARULRAJ, J., PAVLO, A., AND DULLOOR, S. R. Let’s talk
about storage & recovery methods for non-volatile memory
database systems. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (2015),
SIGMOD ’15, pp. 707–722.

[4] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S.,
AND PALECZNY, M. Workload analysis of a large-scale key-
value store. In Proceedings of the 12th ACM SIGMETRIC-
S/PERFORMANCE Joint International Conference on Mea-
surement and Modeling of Computer Systems (2012), SIG-
METRICS ’12, pp. 53–64.

[5] ATWOOD, G. Current and emerging memory technology
landscape. Flash memory summit (2011), 9–11.

[6] BELAY, A., BITTAU, A., MASHTIZADEH, A., TEREI, D.,
MAZIÈRES, D., AND KOZYRAKIS, C. Dune: Safe user-
level access to privileged CPU features. In Proceedings of
the 10th USENIX Conference on Operating Systems Design
and Implementation (2012), OSDI ’12, pp. 335–348. https:
//github.com/ix-project/dune.

[7] CHATZISTERGIOU, A., CINTRA, M., AND VIGLAS, S. D.
Rewind: Recovery write-ahead system for in-memory non-
volatile data-structures. Proceedings of the VLDB Endowment
8, 5 (2015), 497–508.

[8] CHEN, S., GIBBONS, P. B., AND NATH, S. Rethinking
database algorithms for phase change memory. In Proceed-
ings of the Fifth Biennial Conference on Innovative Data Sys-
tems Research (Jan. 2011), CIDR ’11, pp. 21–31.

[9] CHI, P., LEE, W.-C., AND XIE, Y. Making B+-tree efficient
in PCM-based main memory. In Proceedings of the 2014 In-
ternational Symposium on Low Power Electronics and Design
(2014), ISLPED ’14, pp. 69–74.

[10] COBURN, J., CAULFIELD, A. M., AKEL, A., GRUPP, L. M.,
GUPTA, R. K., JHALA, R., AND SWANSON, S. NV-Heaps:
Making persistent objects fast and safe with next-generation,
non-volatile memories. In Proceedings of the Sixteenth Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (2011), ASPLOS
XVI, pp. 105–118.

[11] COLLET, Y. Lz4: Extremely fast compression algorithm.
https://github.com/lz4/lz4, 2013.

[12] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISH-
NAN, R., AND SEARS, R. Benchmarking cloud serving sys-
tems with YCSB. In Proceedings of the 1st ACM Symposium
on Cloud Computing (2010), SoCC ’10, pp. 143–154.

[13] CUNHA, C., BESTAVROS, A., AND CROVELLA, M. Charac-
teristics of WWW client-based traces. Tech. rep., BU-CS-95-
010, Computer Science Department, Boston University, 1995.

[14] DRAGOJEVIĆ, A., NARAYANAN, D., NIGHTINGALE, E. B.,
RENZELMANN, M., SHAMIS, A., BADAM, A., AND CAS-
TRO, M. No compromises: Distributed transactions with con-
sistency, availability, and performance. In Proceedings of

the 25th Symposium on Operating Systems Principles (2015),
SOSP ’15, pp. 54–70.

[15] EILERT, S., LEINWANDER, M., AND CRISENZA, G. Phase
change memory: A new memory enables new memory usage
models. In 2009 IEEE International Memory Workshop (May
2009), pp. 1–2.

[16] FELBER, P., FETZER, C., MARLIER, P., AND RIEGEL, T.
Time-based software transactional memory. IEEE Trans-
actions on Parallel and Distributed Systems 21, 12 (2010),
1793–1807.

[17] FELBER, P., FETZER, C., AND RIEGEL, T. Dynamic per-
formance tuning of word-based software transactional mem-
ory. In Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (2008),
PPoPP ’08, pp. 237–246.

[18] FREITAS, R. F., AND WILCKE, W. W. Storage-class mem-
ory: The next storage system technology. IBM Journal of Re-
search and Development 52, 4/5 (2008), 439.

[19] GILES, E. R., DOSHI, K., AND VARMAN, P. SoftWrAP:
A lightweight framework for transactional support of storage
class memory. In 2015 31st Symposium on Mass Storage
Systems and Technologies (MSST) (May 2015), pp. 1–14.

[20] HAERDER, T., AND REUTER, A. Principles of transaction-
oriented database recovery. ACM Computing Surveys (CSUR)
15, 4 (1983), 287–317.

[21] HERLIHY, M., AND MOSS, J. E. B. Transactional mem-
ory: Architectural support for lock-free data structures. In
Proceedings of the 20th Annual International Symposium on
Computer Architecture (1993), ISCA ’93, pp. 289–300.

[22] INTEL. NVM Library . https://github.com/pmem/nvml.

[23] INTEL. Architecture instruction set extensions programming
reference, Feb. 2012.

[24] INTEL, AND MICRON. Intel and Micron pro-
duce breakthrough memory technology, 2015.
https://newsroom.intel.com/news-releases/

intel-and-micron-produce-breakthrough-memory.

[25] INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMI-
CONDUCTORS (ITRS). Process, integration, devices
and structures. http://www.itrs.net/Links/2011ITRS/
2011Chapters/2011PIDS.pdf, 2011.

[26] JOHNSON, R., PANDIS, I., STOICA, R., ATHANASSOULIS,
M., AND AILAMAKI, A. Aether: A scalable approach to
logging. Proc. VLDB Endow. 3, 1-2 (Sept. 2010), 681–692.

[27] KIMURA, H. FOEDUS: OLTP engine for a thousand cores
and NVRAM. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (2015),
SIGMOD ’15, pp. 691–706.

[28] KOLLI, A., PELLEY, S., SAIDI, A., CHEN, P. M., AND

WENISCH, T. F. High-performance transactions for persistent
memories. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (2016), ASPLOS ’16, pp. 399–
411.

[29] KLTRSAY, E., KANDEMIR, M., SIVASUBRAMANIAM, A.,
AND MUTLU, O. Evaluating STT-RAM as an energy-efficient

13

main memory alternative. In Proceeding of the 2013 IEEE
International Symposium on Performance Analysis of Systems
and Software (Apr. 2013), ISPASS ’13, pp. 256–267.

[30] LEE, B., ZHOU, P., YANG, J., ZHANG, Y., ZHAO, B., IPEK,
E., MUTLU, O., AND BURGER, D. Phase-change technology
and the future of main memory. IEEE Micro 30 (Jan. 2010),
131–141.

[31] LIM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY,
M. SILT: A memory-efficient, high-performance key-value
store. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (2011), SOSP ’11, pp. 1–13.

[32] NARAYANAN, D., AND HODSON, O. Whole-system persis-
tence. In Proceedings of the Seventeenth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (2012), ASPLOS XVII, pp. 401–410.

[33] PELLEY, S., CHEN, P. M., AND WENISCH, T. F. Memory
persistency. In Proceeding of the 41st Annual International
Symposium on Computer Architecuture (2014), ISCA ’14,
pp. 265–276.

[34] QURESHI, M. K., SRINIVASAN, V., AND RIVERS, J. A.
Scalable high performance main memory system using phase-
change memory technology. In Proceedings of the 36th
Annual International Symposium on Computer Architecture
(2009), ISCA ’09, pp. 24–33.

[35] RAMADAN, H. E., ROSSBACH, C. J., AND WITCHEL, E.
Dependence-aware transactional memory for increased con-
currency. In Proceedings of the 41st Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (2008), MICRO-
41, pp. 246–257.

[36] RAOUX, S., BURR, G. W., BREITWISCH, M. J., RET-
TNER, C. T., CHEN, Y.-C., SHELBY, R. M., SALINGA, M.,
KREBS, D., CHEN, S.-H., LUNG, H.-L., AND LAM, C. H.
Phase-change random access memory: A scalable technology.
IBM J. Res. Dev. 52, 4 (July 2008), 465–479.

[37] REN, J., LIANG, C.-J. M., WU, Y., AND MOSCIBRODA, T.
Memory-centric data storage for mobile systems. In Proceed-
ings of the 2015 USENIX Conference on Usenix Annual Tech-
nical Conference (2015), USENIX ATC ’15, pp. 599–611.

[38] REN, J., ZHAO, J., KHAN, S., CHOI, J., WU, Y., AND

MUTLU, O. ThyNVM: Enabling software-transparent crash
consistency in persistent memory systems. In Proceedings
of the 48th International Symposium on Microarchitecture
(2015), MICRO-48, pp. 672–685. http://persper.com/

thynvm/.

[39] RIEGEL, T., FETZER, C., AND FELBER, P. Time-based trans-
actional memory with scalable time bases. In Proceedings
of the Nineteenth Annual ACM Symposium on Parallel Algo-
rithms and Architectures (2007), SPAA ’07, pp. 221–228.

[40] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file system. ACM Trans.
Comput. Syst. 10, 1 (Feb. 1992), 26–52.

[41] RUDOFF, A. Deprecating the PCOMMIT instruction.
https://software.intel.com/en-us/blogs/2016/

09/12/deprecate-pcommit-instruction, Sept. 2016.

[42] RUMBLE, S. M., KEJRIWAL, A., AND OUSTERHOUT, J.
Log-structured memory for DRAM-based storage. In Pro-

ceedings of the 12th USENIX Conference on File and Storage
Technologies (2014), FAST ’14, pp. 1–16.

[43] SIMO, N., ANTONI, W., MARKK, M., AND VILHO, R. Tele-
com application transaction processing benchmark. http:

//tatpbenchmark.sourceforge.net/.

[44] SUZUKI, K., AND SWANSON, S. A survey of trends in
non-volatile memory technologies: 2000-2014. In 2015 IEEE
International Memory Workshop (IMW) (May 2015), pp. 1–4.

[45] THE TRANSACTION PROCESSING COUNCIL. TPC-
C Benchmark V5. http://www.tpc.org/tpcc/.

[46] TU, S., ZHENG, W., KOHLER, E., LISKOV, B., AND

MADDEN, S. Speedy transactions in multicore in-memory
databases. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles (2013), SOSP ’13,
pp. 18–32.

[47] VOLOS, H., TACK, A. J., AND SWIFT, M. M. Mnemosyne:
Lightweight persistent memory. In Proceedings of the Six-
teenth International Conference on Architectural Support for
Programming Languages and Operating Systems (2011), AS-
PLOS XVI, pp. 91–104.

[48] WAN, H., LU, Y., XU, Y., AND SHU, J. Empirical study
of redo and undo logging in persistent memory. In 2016 5th
Non-Volatile Memory Systems and Applications Symposium
(NVMSA) (Aug. 2016), pp. 1–6.

[49] WANG, C., CHEN, W.-Y., WU, Y., SAHA, B., AND ADL-
TABATABAI, A.-R. Code generation and optimization for
transactional memory constructs in an unmanaged language.
In Proceedings of the International Symposium on Code Gen-
eration and Optimization (2007), CGO ’07, pp. 34–48.

[50] WANG, T., AND JOHNSON, R. Scalable logging through
emerging non-volatile memory. Proceedings of the VLDB
Endowment 7, 10 (2014), 865–876.

[51] WANG, Z., QIAN, H., LI, J., AND CHEN, H. Using restricted
transactional memory to build a scalable in-memory database.
In Proceedings of the Ninth European Conference on Com-
puter Systems (2014), EuroSys ’14, pp. 26:1–26:15.

[52] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast
in-memory transaction processing using RDMA and HTM.
In Proceedings of the 25th Symposium on Operating Systems
Principles (2015), SOSP ’15, pp. 87–104.

[53] WU, M., AND ZWAENEPOEL, W. eNVy: A Non-volatile,
Main Memory Storage System. In Proceedings of the Sixth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (1994), ASP-
LOS VI, pp. 86–97.

[54] XU, J., AND SWANSON, S. NOVA: A log-structured file sys-
tem for hybrid volatile/non-volatile main memories. In Pro-
ceedings of the 14th Usenix Conference on File and Storage
Technologies (2016), FAST ’16, pp. 323–338.

[55] YANG, J., WEI, Q., CHEN, C., WANG, C., YONG, K. L.,
AND HE, B. NV-Tree: Reducing consistency cost for
NVM-based single level systems. In Proceedings of the
13th USENIX Conference on File and Storage Technologies
(2015), FAST ’15, pp. 167–181.

[56] YOON, J. H., HUNTER, H. C., AND TRESSLER, G. A. Flash
& DRAM Si scaling challenges, emerging non-volatile mem-

14

ory technology enablement – implications to enterprise stor-
age and server compute systems. Flash Memory Summit
(2013).

[57] ZHANG, Y., AND SWANSON, S. A study of application per-
formance with non-volatile main memory. In Proceedings of
the 31st Symposium on Mass Storage Systems and Technolo-

gies (May 2015), MSST ’15, pp. 1–10.

[58] ZHAO, J., LI, S., YOON, D. H., XIE, Y., AND JOUPPI, N. P.
Kiln: Closing the performance gap between systems with and
without persistence support. In Proceedings of the 46th An-
nual IEEE/ACM International Symposium on Microarchitec-
ture (2013), MICRO-46, pp. 421–432.

15

