
Programming by Examples: Applications,
Algorithms, and Ambiguity Resolution

Sumit Gulwani

Microsoft Corporation, Redmond, WA, USA
sumitg@microsoft.com

Abstract. 99% of computer end users do not know programming, and
struggle with repetitive tasks. Programming by Examples (PBE) can rev-
olutionize this landscape by enabling users to synthesize intended pro-
grams from example based specifications. A key technical challenge in
PBE is to search for programs that are consistent with the examples
provided by the user. Our efficient search methodology is based on two
key ideas: (i) Restriction of the search space to an appropriate domain-
specific language that offers balanced expressivity and readability (ii) A
divide-and-conquer based deductive search paradigm that inductively re-
duces the problem of synthesizing a program of a certain kind that satis-
fies a given specification into sub-problems that refer to sub-programs or
sub-specifications.Another challenge in PBE is to resolve the ambiguity
in the example based specification. We will discuss two complementary
approaches: (a) machine learning based ranking techniques that can pick
an intended program from among those that satisfy the specification, and
(b) active-learning based user interaction models. The above concepts
will be illustrated using FlashFill, FlashExtract, and FlashRelate—PBE
technologies for data manipulation domains. These technologies, which
have been released inside various Microsoft products, are useful for data
scientists who spend 80% of their time wrangling with data. The Mi-
crosoft PROSE SDK allows easy construction of such technologies.

1 Introduction

Program Synthesis [4] is the task of synthesizing a program that satisfies a given
specification. The traditional view of program synthesis has been to synthesize
programs from logical specifications that relate the inputs and outputs of the
program. Programming by Examples (PBE) [6] is a sub-field of program syn-
thesis, where the specification consists of input-output examples, or more gener-
ally, output properties over given input states. PBE has emerged as a favorable
paradigm for two reasons: (i) the example-based specification in PBE makes it
more tractable than general program synthesis. (ii) Example-based specifications
are much easier for the users to provide in many scenarios.



II

2 Applications

PBE has been applied to various domains [3, 15], and some recent applications
include parsing [14], refactoring [17], and query construction [20]. However, the
killer application of PBE today is in the broad space of data wrangling, which
refers to the tedious process of converting data from one form to another. The
data wrangling pipelines includes tasks related to extraction, transformation,
and formatting.

Extraction: A first step in a data wrangling pipeline is often that of ingesting
or extracting tabular data from semi-structured formats such as text/log files,
web pages, and XML/JSON documents. These documents offer their creators
great flexibility in storing and organizing hierarchical data by combining presen-
tation/formatting with the underlying data. However, this makes it extremely
hard to extract the relevant data. The FlashExtract technology allows extract-
ing structured (tabular or hierarchical) data out of semi-structured documents
from examples [12]. For each field in the output data schema, the user provides
positive/negative instances of that field and FlashExtract generates a program
to extract all instances of that field. The FlashExtract technology ships as the
ConvertFrom-String cmdlet in Powershell in Windows 10, wherein the user pro-
vides examples of the strings to be extracted by inserting tags around them in
test. The FlashExtract technology also ships in Azure OMS (Operations Man-
agement Suite), where it enables extracting custom fields from log files.

Transformation: The Flash Fill feature, released in Excel 2013 and beyond, is a
PBE technology for automating syntactic string transformations of the kind such
as converting “FirstName LastName” into “LastName, FirstName” [5]. PBE can
also facilitate more sophisticated string transformations that require lookup into
other tables [21]. PBE is also a very natural fit for automating transformations
of other data types such as numbers [22] and dates [24].

Formatting: Another useful application of PBE is in the space of formatting data
tables. This can be useful in converting semi-structured tables found commonly
in spreadsheets into proper relational tables [2], or for re-pivoting the underlying
hierarchical data that has been locked into a two-dimensional tabular format [10].
PBE can also be useful in automating repetitive formatting in a powerpoint slide
deck such as converting all red colored text into green, or switching the direction
of all horizontal arrows [19].

3 Algorithms

Our methodology for designing and developing PBE algorithms involves three
key insights: domain-specific languages, deductive search, and a framework that
provides rich reusable machinery.



III

Domain-specific Language: A key idea in program synthesis is to restrict the
search space to an underlying domain-specific language (DSL) [7, 1]. The DSL
should be expressive enough to represent a wide variety of tasks in the under-
lying task domain, but also restricted enough to allow efficient search. We have
designed many functional domain-specific languages for this purpose, each of
which is characterized by a set of operators and a syntactic restriction on how
those operators can be composed with each other (as opposed to allowing all
possible type-safe composition of those operators) [6].

Deductive Search: A simple search strategy is to enumerate all programs in
order of increasing size [27]. Another commonly used search strategy is to re-
duce the search problem to constraint solving via an appropriate reduction and
then leverage off-the-shelf SAT/SMT constraint solvers [25, 26, 8]. None of these
search strategies work effectively for our domains: the underlying DSLs are too
big for an enumerative strategy to scale, and involve operators that are too
sophisticated for existing constraint solvers to reason about.

Our synthesis algorithms employ a novel deductive search methodology [18]
that is based on standard algorithmic paradigm of divide-and-conquer. The key
idea is to recursively reduce the problem of synthesizing a program expression e of
a certain kind and that satisfies a certain specification ψ to simpler sub-problems
(where the search is either over sub-expressions of e or over sub-specifications
of ψ), followed by appropriately combining those results. The reduction logic
for reducing a synthesis problem to simpler synthesis problems depends on the
nature of the involved expression e and the inductive specification ψ. In contrast
to enumerative search, this search methodology is top-down—it fixes the top-part
of an expression and then searches for its sub-expressions. Enumerative search is
usually bottom-up—it enumerates smaller sub-expressions before enumerating
larger expressions.

Framework: Developing a synthesis algorithm for a specific domain is an expen-
sive process: The design of the algorithm requires domain-specific insights. A
robust implementation requires non-trivial engineering. Furthermore any exten-
sions or modifications to the underlying DSL are not easy.

The divide-and-conquer strategy underneath the various synthesis algorithms
can be refactored out inside a framework. Furthermore, since the reduction logic
depends on the logical properties of the top-level operator, these properties can
be captured modularly by the framework for re-use inside synthesizers for others
DSLs that use that operator. Our PROSE framework [18] builds over these ideas
and has facilitated development of industrial-strength PBE implementations for
various domains.

4 Ambiguity Resolution

Examples are an ambiguous form of specification; there are often many programs
that are consistent with the specification provided by a user. A challenge is to



IV

identify an intended program that has the desired behavior on the various inputs
that the user cares about. Tessa Lau presented a critical discussion of PBE
systems in 2009 noting that PBE systems are not yet widespread due to lack
of usability and confidence in such systems [11]. We present two complementary
techniques for increasing usability and confidence of a PBE system.

Ranking: Our synthesis algorithms generate the set of all/most programs in the
underlying DSL that are consistent with the specification provided by the user.
We rank these programs and pick the top-ranked program. Ranking is a function
of both program features and data features. Program features typically capture
simplicity and size of a program. Data features are over the data that is generated
by the program when executed on various inputs. Weights over these features
can be learned using machine learning techniques in an offline manner [23].

User Interaction models: In case the ranking does not pick an intended pro-
gram, or even otherwise, we need appropriate user interaction models that can
provide the equivalent of debugging experience in standard programming envi-
ronments. We can allow the user to navigate between all programs synthesized
by the underlying synthesizer (in an efficient manner) and to pick an intended
program [16]. Another complementary technique can be to ask questions to the
user as in active learning. These questions can be generated based on the dif-
ferences in the results produced by executing the multiple synthesized programs
on the available inputs [16].

5 Conclusion and Future Work

The programming languages research community has traditionally catered to
the needs of professional programmers in the continuously evolving technical
industry. The widespread access to computational devices has brought a new
opportunity, that of enabling non-programmers to create small programs for
automating their repetitive tasks. PBE becomes a very valuable paradigm in
this setting.

It is interesting to compare PBE with Machine learning (ML) since both
involve example-based training and prediction on new unseen data. PBE learns
from very few examples, while ML typically requires large amount of training
data. The models generated by PBE are human-readable and editable programs
unlike many black-box models produced by ML. On the other hand, ML is better
suited for fuzzy/noisy tasks.

There are many interesting future directions. The next generation of pro-
gramming experience shall be built around multi-modal specifications that are
natural and easy for the user to provide. While this article has focused on
example-based specifications, natural language-based specifications can comple-
ment example-based specifications and might even be a better fit for various class
of tasks such as spreadsheet queries [9] and smartphone scripts [13]. Furthermore,
the specifications may be provided iteratively, implying the need for incremental



V

synthesis algorithms. Another interesting future direction is to build systems
that learn user preferences based on past user interactions across different pro-
gramming sessions. (For instance, the underlying ranking can be dynamically
updated). This can pave the way for personalization and learning across users.

References

1. R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In
FMCAD, 2013.

2. D. W. Barowy, S. Gulwani, T. Hart, and B. G. Zorn. FlashRelate: extracting
relational data from semi-structured spreadsheets using examples. In PLDI, 2015.

3. A. Cypher, editor. Watch What I Do: Programming by Demonstration. MIT Press,
1993.

4. S. Gulwani. Dimensions in program synthesis. In PPDP, 2010.
5. S. Gulwani. Automating string processing in spreadsheets using input-output ex-

amples. In POPL, 2011.
6. S. Gulwani. Programming by examples (and its applications in data wrangling).

In J. Esparza, O. Grumberg, and S. Sickert, editors, Verification and Synthesis of
Correct and Secure Systems. IOS Press, 2016.

7. S. Gulwani, W. Harris, and R. Singh. Spreadsheet data manipulation using exam-
ples. Communications of the ACM, Aug 2012.

8. S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free programs.
In PLDI, 2011.

9. S. Gulwani and M. Marron. NLyze: interactive programming by natural language
for spreadsheet data analysis and manipulation. In SIGMOD, 2014.

10. W. R. Harris and S. Gulwani. Spreadsheet table transformations from examples.
In PLDI, 2011.

11. T. Lau. Why PBD systems fail: Lessons learned for usable AI. In CHI 2008
Workshop on Usable AI, 2008.

12. V. Le and S. Gulwani. FlashExtract: a framework for data extraction by examples.
In PLDI, 2014.

13. V. Le, S. Gulwani, and Z. Su. Smartsynth: Synthesizing smartphone automation
scripts from natural language. In MobiSys, 2013.

14. A. Leung, J. Sarracino, and S. Lerner. Interactive parser synthesis by example. In
PLDI, 2015.

15. H. Lieberman. Your Wish Is My Command: Programming by Example. Morgan
Kaufmann, 2001.

16. M. Mayer, G. Soares, M. Grechkin, V. Le, M. Marron, O. Polozov, R. Singh,
B. Zorn, and S. Gulwani. User interaction models for disambiguation in program-
ming by example. In UIST, 2015.

17. N. Meng, M. Kim, and K. S. McKinley. LASE: locating and applying systematic
edits by learning from examples. In ICSE, 2013.

18. O. Polozov and S. Gulwani. FlashMeta: A framework for inductive program syn-
thesis. In OOPSLA, 2015. https://microsoft.github.io/prose/.

19. M. Raza, S. Gulwani, and N. Milic-Frayling. Programming by example using least
general generalizations. In AAAI, 2014.

20. Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik. Discovering queries
based on example tuples. In SIGMOD, 2014.



VI

21. R. Singh and S. Gulwani. Learning semantic string transformations from examples.
PVLDB, 5, 2012.

22. R. Singh and S. Gulwani. Synthesizing number transformations from input-output
examples. In CAV, 2012.

23. R. Singh and S. Gulwani. Predicting a correct program in programming by exam-
ple. In CAV, 2015.

24. R. Singh and S. Gulwani. Transforming spreadsheet data types using examples.
In POPL, 2016.

25. A. Solar-Lezama. Program Synthesis by Sketching. PhD thesis, UC Berkeley, 2008.
26. S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program

synthesis. In POPL, 2010.
27. A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. K. Martin, and

R. Alur. TRANSIT: specifying protocols with concolic snippets. In PLDI, 2013.


