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Abstract

Video cameras are pervasively deployed for security
and smart city scenarios, with millions of them in large
cities worldwide. Achieving the potential of these cam-
eras requires efficiently analyzing the live videos in real-
time. We describe VideoStorm, a video analytics system
that processes thousands of video analytics queries on
live video streams over large clusters. Given the high
costs of vision processing, resource management is cru-
cial. We consider two key characteristics of video ana-
Iytics: resource-quality tradeoff with multi-dimensional
configurations, and variety in quality and lag goals.
VideoStorm’s offline profiler generates query resource-
quality profile, while its online scheduler allocates re-
sources to queries to maximize performance on quality
and lag, in contrast to the commonly used fair sharing
of resources in clusters. Deployment on an Azure clus-
ter of 101 machines shows improvement by as much as
80% in quality of real-world queries and 7 x better lag,
processing video from operational traffic cameras.

1 Introduction

Video cameras are pervasive; major cities worldwide like
New York City, London, and Beijing have millions of
cameras deployed [8, 12]. Cameras are installed in build-
ings for surveillance and business intelligence, while
those deployed on streets are for traffic control and crime
prevention. Key to achieving the potential of these cam-
eras is effectively analyzing the live video streams.
Organizations that deploy these cameras—cities or po-
lice departments—operate large clusters to analyze the
video streams [5,9]. Sufficient bandwidth is provisioned
(fiber drops or cellular) between the cameras and the
cluster to ingest video streams. Some analytics need to
run for long periods (e.g., counting cars to control traffic
light durations) while others for short bursts of time (e.g.,
reading the license plates for AMBER Alerts, which are
raised in U.S. cities to identify child abductors [1]).
Video analytics can have very high resource demands.
Tracking objects in video is a core primitive for many
scenarios, but the best tracker [69] in the VOT Challenge
2015 [59] processes only 1 frame per second on an 8-
core machine. Some of the most accurate Deep Neural

Networks for object recognition, another core primitive,
require 30GFlops to process a single frame [75]. Due
to the high processing costs and high data-rates of video
streams, resource management of video analytics queries
is crucial. We highlight two properties of video analytics
queries relevant to resource management.

Resource-quality trade-off with multi-dimensional
configurations. Vision algorithms typically contain
various parameters, or knobs. Examples of knobs are
video resolution, frame rate, and internal algorithmic pa-
rameters, such as the size of the sliding window to search
for objects in object detectors. A combination of the
knob values is a query configuration. The configuration
space grows exponentially with the number of knobs.
Resource demand can be reduced by changing configu-
rations (e.g., changing the resolution and sliding window
size) but they typically also lower the output quality.

Variety in quality and lag goals. While many queries
require producing results in real-time, others can tolerate
lag of even many minutes. This allows for temporarily
reallocating some resources from the lag-tolerant queries
during interim shortage of resources. Such shortage hap-
pens due to a burst of new video queries or “spikes” in
resource usage of existing queries (for example, due to
an increase in number of cars to track on the road).
Indeed, video analytics queries have a wide variety of
quality and lag goals. A query counting cars to control
the traffic lights can work with moderate quality (approx-
imate car counts) but will need them with low lag. Li-
cense plate readers at toll routes [16, 17], on the other
hand, require high quality (accuracy) but can tolerate lag
of even many minutes because the billing can be delayed.
However, license plate readers when used for AMBER
Alerts require high quality results without lag.
Scheduling large number of streaming video queries
with diverse quality and lag goals, each with many con-
figurations, is computationally complex. Production
systems for stream processing like Storm [4], Stream-
Scope [62], Flink [2], Trill [36] and Spark Stream-
ing [89] allocate resources among multiple queries only
based on resource fairness [7,10,27,43,51] common to
cluster managers like Yarn [3] and Mesos [49]. While
simple, being agnostic to query quality and lag makes
fair sharing far from ideal for video stream analytics.



We present VideoStorm, a video analytics system that
scales to processing thousands of /ive video streams over
large clusters. Users submit video analytics queries con-
taining many transforms that perform vision signal pro-
cessing on the frames of the incoming video. At its core,
VideoStorm contains a scheduler that efficiently gener-
ates the query’s resource-quality profile for its different
knob configurations, and then jointly maximizes the qual-
ity and minimizes the lag of streaming video queries. In
doing so, it uses the generated profiles, and lag and qual-
ity goals. It allocates resources to each query and picks
its configuration (knob values) based on the allocation.

Challenges and Solution. The major technical chal-
lenges for designing VideoStorm can be summarized as
follows: (i) There are no analytical models for resource
demand and quality for a query configuration, and the
large number of configurations makes it expensive to
even estimate the resource-quality profile. (ii) Express-
ing quality and lag goals of individual queries and across
all queries in a cluster is non-trivial. (iii) Deciding al-
locations and configurations is a computationally hard
problem exponential in the number of queries and knobs.

To deal with the multitude of knobs in video queries,
we split our solution into offline (or profiling) and online
phases. In the offline phase, we use an efficient profiler
to get the resource-quality profile of queries without ex-
ploring the entire combinatorial space of configurations.
Using greedy search and domain-specific sampling, we
identify a handful of knob configurations on the Pareto
boundary of the profile. The scheduler in the online
phase, thus, has to consider only these configurations.

We encode quality and lag goals of a query in a util-
ity function. Ultility is a weighted combination of the
achieved quality and lag, with penalties for violating the
goals. Penalties allow for expressing priorities between
queries. Given utilities of multiple queries, we schedule
for two natural objectives — maximize the minimum util-
ity, or maximize the fotal utility. The former achieves
fairness (max-min) while the latter targets performance.

Finally, in the online phase, we model the scheduling
problem using the Model-Predictive Control [67] to pre-
dict the future query lag over a short time horizon, and
use this predicted lag in the utility function. The sched-
uler considers the resource-quality profile of queries dur-
ing allocation, and allows for lagging queries to “catch
up.” It also deals with inevitable inaccuracies in resource
usages in the resource-quality profiles.

While we focus VideoStorm on video analytics using
computer vision algorithms, approximation and lag are
aspects that are fundamental to all machine learning al-
gorithms. To that end, the techniques in our system are
broadly applicable to all stream analytics systems that
employ machine learning techniques.
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Figure 1: VideoStorm System Architecture.

Contributions. Our contributions are as follows:

1. We designed and built a system for large-scale an-
alytics of live video that allows users to submit
queries with arbitrary vision processors.

2. We efficiently identify the resource-quality profile
of video queries without exhaustively exploring the
combinatorial space of knob configurations.

3. We designed an efficient scheduler for video queries
that considers their resource-quality profile and lag
tolerance, and trades off between them.

We considered streaming databases with approxima-
tion [19,37,68] as a starting point for our solution. How-
ever, they only consider the sampling rate of data streams
and used established analytical models [38] to calculate
the quality and resource demand. In contrast, vision
queries are more complex black-boxes with many more
knobs, and do not have known analytical models. More-
over, they optimize only one query at a time, while our
focus is on scheduling multiple concurrent queries.

Deployment on 101 machines in Azure show that
VideoStorm’s scheduler allocates resources in hundreds
of milliseconds even with thousands of queries. We
evaluated using real video analytics queries over video
datasets from live traffic cameras from several large
cities. Our offline profiling consumes 3.5x less CPU
resources compared to a basic greedy search. The on-
line VideoStorm scheduler outperforms fair scheduling
of resources [3,31,49] by as much as 80% in quality of
queries and 7 x in terms of lag.

2 System Description

We describe the high-level architecture of VideoStorm
and the specifications for video queries.

2.1 VideoStorm Architecture

The VideoStorm cluster consists of a centralized man-
ager and a set of worker machines that execute queries,



1 "name": "LicensePlate",

2 "transforms": [

3 {"id": "0",

4 "class_name": "Decoder",

5 "parameters":

6 "CameralIP": "134.53.8.8",
7 "CameraPort": 8100,

8 "@OutputResolution": "720P",
9 "@SamplingRate": 0.75 }
10 },

1 {"iq": 1",

12 "input_transform_id": "O",
13 "class_name": "OpenALPR",

14 "parameters": {

15 "@MinSize": 100,

16 "@MaxSize": 1000,

17 "@Step": 10 }

18 ol

Figure 2: VideoStorm Query for license plate reader.

see Figure 1. Every query is a DAG of transforms on live
video that is continuously streamed to the cluster; each
transform processes a time-ordered stream of messages
(e.g., video frames) and passes its outputs downstream.
Figure 1 shows two example queries. One query runs
across two machines; after decoding the video and sub-
tracting the background, it sends the detected objects
to another machine for tracking and classification. The
other query for detecting license plates runs on a single
machine. We assume there is sufficient bandwidth provi-
sioned for cameras to stream their videos into the cluster.
Every worker machine runs a machine manager which
start worker processes to host transforms. The machine
manager periodically reports resource utilizations as well
as status of the running transforms to the VideoStorm
manager. The scheduler in the manager uses this infor-
mation to allocate resources to queries. The VideoStorm
manager and the machine managers are not on the query
data path; videos are streamed directly to the decoding
transforms and thereon between the transforms.

2.2 Video Queries Specification

Queries submitted to the VideoStorm manager are strung
together as pipelines of transforms. Figure 2 shows a
sample VideoStorm pipeline with two transforms. The
first transform decodes the live video to produce frames
that are pushed to the second transform to find license
plate numbers using the OpenALPR library [13].

Each transform contains an id and class_-name which
is the class implementing the transform (§7). The in-
put_transform_id field specifies the transform whose output
feeds into this transform, thus allowing us to describe
a pipeline. VideoStorm allows arbitrary DAGs including
multiple inputs and outputs for a transform. Source trans-
forms, such as the “Decoder”, do not specify input trans-
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Al 1 0.6 Bl 1 0.1
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(¢) Fair allocation

Query A Query B
Time R C D A Q L C D A Q L
0O 4 A1 1 1 06 - B3 3 3 09 -
10 2 Al 1 1 06 - B3 3 1 09 -
22 4 Al 1 1 06 - B2 2 3 03 8
33 4 A1 1 1 06 - B3 3 3 09 -

(d) Performance-based allocation

Table 1: Tables (a) and (b) show queries A and B with three
configurations each, resource demand D and quality Q. Ta-
bles (c) and (d) show the time and capacity R, and for each
query the chosen configuration C, demand D, allocation A,
achieved quality O, and lag L for the fair and performance-
based schedulers. Notice in (d) that query B achieves higher
quality between times 10 and 22 than with the fair sched-
uler in (c), and never lags beyond its permissible 8s.

form, but instead directly connect to the camera source
(specified using IP and port number).

Each transform contains optional knobs (parameters);
e.g., the minimum and maximum window sizes (in pix-
els) of license plates to look for and the step increments
to search between these sizes for the OpenALPR trans-
form (more in §5). Knobs whose values can updated dy-
namically start with the ‘@’ symbol. The VideoStorm
manager updates them as part of its scheduling decisions.

3 Making the Case for Resource Allocation

We make the case for resource management in video an-
alytics clusters using a simple example (§3.1) and real-
world video queries (§3.2).

3.1 Motivating Example

Cluster managers such as Yarn [3], Apollo [31] and
Mesos [49] commonly divide resources among multiple
queries based on resource fairness. Being agnostic to
query quality and lag preferences, fair allocation is the
best they can do. Instead, scheduling for performance



leads to queries achieving better quality and lag.

The desirable properties of a scheduler for video ana-
Iytics are: (1) allocate more resources to queries whose
qualities will improve more, (2) allow queries with built-
up lag in their processing to “catch up,” and (3) adjust
query configuration based on the resource allocated.

Tables la and 1b shows two example queries A and
B with three knob configurations each (Ax and Bux, re-
spectively). Query A’s improvement in quality Q is less
pronounced than B’s for the same increase in resource
demand D. Note that D is the resource to keep up with the
incoming data rate. Query A cannot tolerate any lag, but
B can tolerate up to 8 seconds of lag. Lag is defined as
the difference between the time of the last-arrived frame
and the time of the last-processed frame, i.e., how much
time’s worth of frames are queued-up unprocessed.

Let a single machine with resource capacity R of 4

run these two queries. Its capacity R drops to 2 after 10
seconds and then returns back to 4 after 12 more seconds
(at 22 seconds). This drop could be caused by another
high-priority job running on this machine.
Fair Scheduling. Table 1c shows the assigned configu-
ration C, query demand D, resource allocation A, quality
Q and lag L with a fair resource allocation. Each query
selects the best configuration to keep up with the live
stream (i.e., keeps its demand below its allocation). Us-
ing the fair scheduler, both queries get an allocation of 2
initially, picking configurations A2 and B2 respectively.
Between times 10 to 22, when the capacity drops to 2,
the queries get an allocation of 1 each, and pick configu-
rations Al and B1. At no point do they incur any lag.

Performance-based Scheduling. As Table 1d shows,
a performance-based scheduler allocates resources of 1
and 3 to queries A and B at time 0; B can thus run at con-
figuration B3, achieving higher quality compared to the
fair allocation (while A’s quality drops only by 0.1). This
is because the scheduler realizes the value in providing
more resources to B given its resource-quality profile.

At time 10 when capacity drops to 2, the scheduler
allocates 1 unit of resource to each to the queries, but re-
tains configuration B3 for B. Since resource demand of
B3 is 3, but B has been allocated only 1, B starts to lag.
Specifically, every second, the lag in processing will in-
crease by 2/3 of a second. However, query B will still
produce results at quality 0.9, albeit delayed. At time 22,
the capacity recovers and query B has built up a lag of
8 seconds. The scheduler allocates 3 resource units to
B but switches it to configuration B2 (whose demand is
only 2). This means that query B can now catch up — ev-
ery second it can process 1.5 seconds of video. Finally, at
time 38, all the lag has been eliminated and the scheduler
switches B to configuration B3 (quality 0.9).

The performance-based scheduler exhibited the three
properties listed above. It allocated resources to optimize
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Figure 3: Resource-quality profiles for real-world video
queries. For simplicity, we plot one knob at a time.

for quality and allowed queries to catch up to built-up
lag, while accordingly adjusting their configurations.

3.2 Real-world Video Queries

Video analytics queries have many knob configurations
that affect output quality and resource demand. We
highlight the resource-quality profiles of four real-world
queries—license plate reader, car counter, DNN classi-
fier, object tracker—of interest to the cities we are part-
nering with and obtained videos from their operational
traffic cameras (§8.1). For clarity, we plot one knob at a
time and keep other knobs fixed. Quality is defined as the
F1 score € [0, 1] (the harmonic mean between precision
and recall [83]) with reference to a labeled ground truth.
License Plate Reader. The OpenALPR [13] library
scans the video frame to detect potential plates and
then recognizes the text on plates using optical charac-
ter recognition. In general, using higher video resolution
and processing each frame will detect the most license
plates accurately. Reducing the resolution and process-
ing only a subset of frames (e.g., sampling rate of 0.25)
dramatically reduces resource demand, but can also re-
duce the quality of the output (i.e., miss or incorrectly
read plates). Figures 3a and 3b plots the impact of reso-
lution and sampling rate on quality and CPU demand.!

Car Counter. Resolution and sampling rate are knobs
that apply to almost all video queries. A car counter
monitors an “area of interest” and counts cars passing
the area. In general, its results are of good quality even
with low resolution and sampling rates (plots omitted).

ISampling rate of 0.75 drops every fourth frame from the video.



Deep Neural Network (DNN) Classifier. Vision pro-
cessing is employing DNNs for key tasks including ob-
ject detection and classification. Figure 3c profiles a
Caffe DNN [54] model trained with the widely-used Im-
ageNet dataset [41] to classify objects into 1,000 cate-
gories. We see a uniform increase in the quality of the
classification as well as resource consumption with the
sampling rate. As DNN models get compressed [45,46],
reducing their resource demand at the cost of quality, the
compression factor presents another knob.

Object Tracker. Finally, we have also profiled an ob-
ject tracker. This query continuously models the “back-
ground” in the video, identifies foreground objects by
subtracting the background, and tracks objects across
frames using a mapping metric. The mapping metric
is a key knob (Figure 3d). Objects across frames can
be mapped to each other using metrics such as distance
moved (DIST), color histogram similarity (HIST), or
matched over SIFT [14] and SURF [15] features.

Resource-quality profiles based on knob configura-
tions is intrinsic to video analytics queries. These queries
typically identify “events” (like license plates or car acci-
dents), and using datasets where these events are labeled,
we can empirically measure precision and recall in iden-
tifying the events for different query configurations.

In contrast to approximate SQL query processing,
there are no analytical models to estimate the relationship
between resource demand and quality of video queries
and it depends on the specific video feeds. For example,
reducing video resolution may not reduce OpenALPR
quality if the camera is zoomed in enough. Hence queries
need to be profiled using representative video samples.

3.3 Summary and Challenges

Designing a scheduler with the desirable properties in
§3.1 for real-world video queries (§3.2) is challenging.
First, the configuration space of a query can be large
and there are no analytical models to estimate the re-
source demand and result quality of each configuration.
Second, trading off between the lag and quality goals
of queries is tricky, making it challenging to define
scheduling objectives across all queries in the cluster.
Third, resource allocation across all queries in the
cluster each with many configurations is computationally
intractable, presenting scalability challenges.

4 Solution Overview

The VideoStorm scheduler is split into offline profiling
and online phases (Figure 4). In the offline phase, for
every query, we efficiently generate its resource-quality
profile — a small number of configurations on the Pareto
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Figure 4: VideoStorm Scheduler Components.

curve of the profile, §5. This dramatically reduces the
configurations to be considered by the scheduler.

In the online phase, the scheduler periodically (e.g.,
every second) considers all running queries and adjusts
their resource allocation, machine placement, and con-
figurations based on their profiles, changes in demand
and/or capacity (see Figure 4). We encode the quality
and lag requirements of each individual query into its
utility function, §6.1. The performance goal across all
queries in a cluster is specified either as maximizing the
minimum utility or the sum of utilities, §6.2 and §6.3.

5 Resource-Quality Profile Estimation

When a user submits a new query, we start running it im-
mediately with a default profile (say, from its previous
runs on other cameras), while at the same time we run
the query through the offline profiling phase. The query
profiler has two goals. 1) Select a small subset of con-
figurations (Pareto boundary) from the resource-quality
space, and 2) Compute the query profile, Py, i.e., the re-
source demand and result quality of the selected config-
urations. The profile is computed either against a labeled
dataset or using the initial parts of the video relative to a
“golden” query configuration which might be expensive
but is known to produce high-quality results.

5.1 Profile estimation is expensive

We revisit the license plate reader query from §3.2 in de-
tail. As explained earlier, frame resolution and sampling
rate are two important knobs. The query, built using
the OpenALPR library [13], scans the image for license
plates of size MinSize, then multiplicatively increases the
size by Step, and keeps repeating this process until the
size reaches MaxSize. The set of potential license plates
is then sent to an optical character recognizer.

We estimate the quality of each knob configuration
(i.e., combination of the five knobs above) on a labeled
dataset using the F1 score [83], the harmonic mean be-
tween precision and recall, commonly used in machine



o
©

I —as

= 7,

§ 0.6 P

— Zz

L 0.4

= ,,

c_g 0.2

o I
0 /. ¥ T T T ,
0.01 0.1 1 10 100 1000

resource demand [CPU cores, log scale]

Figure 5: Resource-quality for license plate query on a 10
minute video (414 configurations); x-axis is resource de-
mand to keep up with live video. Generating this took 20
CPU days. The black dashed line is the Pareto boundary.

learning; 0 and 1 represent the lowest and highest qual-
ities. For example, increasing MinSize or decreasing
MaxSize reduces the resources needed but can miss some
plates and decrease quality.

Figure 5 shows a scatter plot of resource usage vs.
quality of 414 configurations generated using the five
knobs. There is four orders of magnitude of difference
in resource usage; the most expensive configuration used
all frames of a full HD resolution video and would take
over 2.5 hours to analyze a 1 minute video on 1 core. No-
tice the vast spread in quality among configurations with
similar resource usage as well as the spread in resource
usage among configurations that achieve similar quality.

5.2 Greedy exploration of configurations

We implement a greedy local search to identify con-
figuration with high quality (Q) and low demand (D);
see Table 2. Our baseline profiler implements hill-
climbing [74]; it selects a random configuration ¢, com-
putes its quality Q(c) and resource demand D(c) by run-
ning the query with ¢ on a small subset of the video
dataset, and calculates X (c) = Q(c) — BD(c) where f3
trades off between quality and demand. Next, we pick a
neighbor configuration n (by changing the value of a ran-
dom knob in ¢). If X (n) > X(c), then n is better than ¢ in
quality or resource demand (or both); we set ¢ = n and
repeat. When we cannot find a better neighbor (i.e., our
exploration indicates that we are near a local optimum),
we repeat by picking another random c.

Several enhancements significantly increase the effi-
ciency of our search. To avoid starting with an expen-
sive configuration and exploring its neighbors, (which
are also likely to be expensive, thus wasting CPU), we
pick k random configurations and start from the one with
the highest X(c). We found that using even k = 3 can
successfully avoid starting in an expensive part of the
search space. Second, we cache intermediate results in
the query’s DAG and reuse them in evaluating configura-
tions with overlapping knob values.

Term Description

Pr profile of query k

cr € C specific configuration of query k

O (c) quality under configuration ¢

Dy (c) resource demand under configuration ¢
Ly, measured lag at time ¢

Uy utility

QkM (min) quality goal

17 (max) lag goal

ay resources allocated

Table 2: Notations used, for query k.

While our simple profiler is sufficiently efficient
for our purpose, sophisticated hyperparameter searches
(e.g., [76]) can potentially further improve its efficiency.
Pareto boundary. We are only interested in a small
subset of configurations that are on the Pareto boundary
P of the resource-quality space. Let Q(c) be the quality
and D(c) the resource demand under configuration c. If
c1 and ¢; are two configurations such that Q(c;) > Q(c2)
and D(c;) < D(c3), then ¢, is not useful in practice; ¢;
is better than ¢ in both quality and resource demand.
The dashed line in Figure 5 shows the Pareto boundary
of such configurations for the license plate query. We ex-
tract the Pareto boundary of the explored configurations
and call it the resource-quality profile P of the query.

We can generate the same profile as the baseline pro-
filer on the license plate query with 3.5x less CPU re-
sources (i.e., 5.4 CPU hours instead of 19 CPU hours).

6 Resource Management

In the online phase, the VideoStorm cluster sched-
uler considers the utilities of individual queries and the
cluster-wide performance objectives (defined in §6.1)
and periodically performs two steps: resource allocation
and query placement. In the resource allocation step,
§6.2, the scheduler assumes the cluster is an aggregate
bin of resources and uses an efficient heuristic to maxi-
mize the cluster-wide performance by adjusting query al-
location and configuration. In the query placement step,
§6.3, the scheduler places new queries to machines in the
cluster and considers migrating existing queries.

6.1 Utility: Combining Quality and Lag

Each query has preferences on the desired quality and
lag. What is the minimum quality goal (QM)? How
much does the query benefit from higher quality than
the goal? What is the maximum lag (LM) it can toler-
ate and how sensitive are violations to this goal? (See
Table 2 for notations.) We encode these preferences in
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Figure 6: Examples for the second (U2) and third terms
(UL) in equation 1. (Left) Query 1’s quality goal is relatively
lenient, Q’l‘/f = (0.2, but its utility grows slowly with increase
in quality beyond le"’ . Query 2 is more stringent, Qg” =0.6,
but its utility grows sharply thereon. (Right) Query 1 has
lag target of le"f =5 beyond which it incurs a penalty. Query
2 has a stricter lag goal of LY = 1 and also its utility drops
much faster with increased lag.

utility functions, an abstraction used extensively in eco-
nomics [65,73] and computer systems [22,55].

Our utility function for a query has the following form,
where (x) is the positive part of x. We omit the query
index k for clarity.

U(Q.L)=U"+U%Q)+U"(L)

1
=UP+al-(0-0") —d" W

(L—LM)4

UB is the “baseline” utility for meeting the quality and
lag goals (when Q = OM and L = IM). The second term
U2 describes how the utility responds to achieved quality
Q above QM the soft quality goal; the multiplier &€ and
OM are query-specific and set based on the application
analyzing the video. Results with quality below Q™ are
typically not useful to the users.

The third term, UL, represents the penalty for results
arriving later than the maximum lag goal of LY. 2 Recall
that lag is the difference between the current time and
the arrival time of the last processed frame, e.g., if at
time 10:30 we process a frame that arrived at 10:15, the
lag is 15 minutes. Similar to latency SLOs in clusters,
there is no bonus for lag being below L™. See Figure 6
for examples of U2 and U” in queries.

Scheduling objectives. Given utilities of individual
queries, how do we define utility or performance of the
whole cluster? Previous work has typically aimed to
maximize the minimum utility [61, 64] or sum of util-
ities [61, 63], which we adopt. When deployed as a
“service” in the public cloud, utility will represent the
revenue the cluster operator generates by executing the
query; penalties and bonuses in utility translate to loss
and increase in revenue. Therefore, maximizing the sum
of utilities maximizes revenue. In a private cluster that is
shared by many cooperating entities, achieving fairness
is more desirable. Maximally improving the utility of the
worst query provides max-min fairness over utilities.

2Multiplier ot is in (1/second), making U dimensionless like U2.

To simplify the selection of utility functions in practi-
cal settings, we can provide only a few options to choose
from. For example, the users could separately pick the
minimum quality (40%, 60%, or 80%) and the maximum
lag (1, 10, or 60 minutes) for a total of nine utility func-
tion templates. Users of cloud services already make
similar decisions; for example, in Azure Storage [32],
they separately select data redundancy (local, zone, or
geo-distributed) and data access pattern (hot vs. cool).

6.2 Resource Allocation

Given a profile P, and a utility function Uy for each query
k, the scheduler allocates resources ay to the queries and
picks their query configuration (cx € Py). The scheduler
runs periodically (e.g., every few seconds) and reacts to
arrival of new queries, changes in query demand and lag,
and changes in resource capacity (e.g., due to other high-
priority non-VideoStorm jobs).

6.2.1 Scheduling Using Model-Predictive Control

The scheduler aims to maximize the minimum or sum
of query utilities, which in turn depend on their quality
and lag. A key point to understand is that while we can
near-instantaneously control query quality by adjusting
its configuration, query lag accumulates over time if we
allocate less resources than query demand.

Because of this accumulation property, the scheduler
cannot optimize the current performance, but only aims
to improve performance in the near future. We formulate
the scheduling problem using the Model-Predictive Con-
trol (MPC [67]) framework; where we model the cluster
performance over a short time horizon T as a function of
query configuration and allocation. In each step, we se-
lect the configuration and allocation to maximize perfor-
mance over the near future (described in detail in §6.2.2).

To predict future performance, we need to predict
query lag; we use the following formula:

Lissr(ak,cr) = Dy (Ck)

We plug in the predicted lag Ly, 7 into the utility
function (Equation 1) to obtain the predicted utility.

6.2.2 Scheduling Heuristics

We describe resource allocation assuming each query to
contain only one transform, which we relax in §6.4.

Maximizing sum of utilities. The optimization prob-
lem for maximizing sum of utilities over time horizon T
is as follows. Sum of allocated resources a; cannot ex-



ceed cluster resource capacity R.

max Y Up(Qk(ck), Lic+1) ()
ak,CkETk
s.t. Zk aj S R

Maximizing the sum of utilities is a variant of the knap-
sack problem where we are trying to include the queries
at different allocation and configuration to maximize the
total utility. The maximization results in the best distri-
bution of resources (as was illustrated in §3.1).

When including query k at allocation gy and configu-
ration cg, we are paying cost of a; and receiving value of
ur = Up(Qx(ck),Lis+7). We employ a greedy approxi-
mation based on [40] where we prefer queries with high-
est value of ug /ay; i.e., we receive the largest increase in
utility normalized by resource spent.

Our heuristic starts with a; = 0 and in each step we

consider increasing a; (for all queries i) by a small A (say,
1% of a core) and consider all configurations of ¢; € P;.
Among these options, we select query i (and correspond-
ing ¢;) with largest increase in utility.> We repeat this
step until we run out of resources or we have selected the
best configuration for each query. (Since we start with
a, = 0 and stop when we run out of resources, we will
not end up with infeasible solutions.)
Maximizing minimum utility. Below is the optimiza-
tion problem to maximize the minimum utility predicted
over a short time horizon 7. We require that all utilities
be > u and we maximize u.

max u “)
ak7ck€ﬂ>k
s.t. Vk: Uk(Qk(Ck)aLk,H»T) >u
Yiak <R

We can improve u only by improving the utility of the
worst query. Our heuristic is thus as follows. We start
with g, = 0 for all queries. In each step, we select query
i = argming Uy (Ok(cx), Ly s+7) with the lowest utility and
increase its allocation by a small A, say 1% of a core.
With this allocation, we compute its best configuration c;
as argmax.cp, Ui(Q;(c),Lis+ 7). We repeat this process
until we run out of resources or we have picked the best
configuration for each query.

6.3 Query Placement

After determining resource allocation and configuration
of each query, we next describe the placement of new
queries and migration of existing queries. We quantify

3We use a concave version of the utility functions obtained using
linear interpolation to ensure that each query has a positive increase in
utility, even for small A.

the suitability of placing a query ¢ on machine m by com-
puting a score for each of the following goals: high uti-
lization, load balancing, and spreading low-lag queries.

(i) Utilization. High utilization in the cluster can be
achieved by packing queries in to machines, thereby min-
imizing fragmentation and wastage of resources. Pack-
ing has several well-studied heuristics [44,71]. We de-
fine alignment of a query relative to a machine using a
weighted dot product, p, between the vector of machine’s
available resources and the query’s demands; p € [0, 1].

(ii) Load Balancing. Spreading load across the cluster
ensures that each machine has spare capacity to handle
changes in demand. We therefore prefer to place g on
a machine m with the smallest utilization. We capture
thisin score b =1— % € [0,1], where M is the current
utilization of machine m and D is demand of query q.

(iii) Lag Spreading. Not concentrating many low-lag
queries on a machine provides slack to accumulate lag
for some queries when resources are scarce, without hav-
ing to resort to migration of queries or violation of their
lag goal LM. We achieve this by maintaining high av-
erage LM on each machine. We thus compute score
1 € [0,1] as the average LM after placing g on m.

The final score s, ,, is the average of the three scores.
For each new query ¢, we place it on a machine with
the largest s, ,,. For each existing query g, we migrate
from machine m to a new machine m; only if its score
improves substantially; i.e., s(g,m;) — s(q,mp) > 7.

6.4 Enhancements

Incorrect resource profile. The profiled resource de-
mand of a query, Dy (cy), might not exactly correspond
to the actual query demand, e.g., when demand depends
on video content. Using incorrect demand can negatively
impact scheduling; for example, if Dy (c) = 10, but actual
usage is R; = 100, the scheduler would estimate that al-
locating a; = 20 would reduce query lag at the rate of
2x, while the lag would actually grow at a rate of 5x.
To address this, we keep track of a running average of
mis-estimation U = Ry /Dy/(c), which represents the mul-
tiplicative error between the predicted demand and actual
usage. We then incorporate u in the lag predictor from
Equation 2, Ly s 7 (ax,cx) = Ly + T — TDk”(’Zk) (ﬁ)

Machine-level scheduling. As most queries fit on a
single machine, we can respond to changes in demand or
lag at the machine-level, without waiting for the cluster-
wide decisions. We therefore execute the allocation step
from §6.2 on each machine, which makes the scheduling
logic much more scalable. The cluster-wide scheduler
still runs the allocation step, but only for the purposes of
determining query placement and migration.

DAG of transforms. Queries consisting of a DAG of
transforms could be placed across multiple machines.



We first distribute the query resource allocation, ay, to in-
dividual transforms based on per-transform resource de-
mands. We then place individual transforms to machines
as described in §6.3 while accounting for the expected
data flow across machines and network link capacities.

7 VideoStorm Implementation

We now discuss VideoStorm’s key implementation de-
tails and the interfaces implemented by transforms.

7.1 Implementation Details

In contrast to widely-deployed cluster frameworks like
Yarn [3], Mesos [49] and Cosmos [31], we highlight the
differences in VideoStorm’s design. First, VideoStorm
takes the list of knobs, resource-quality profiles and lag
goals as inputs to allocate resources. Second, machine-
level managers in the cluster frameworks pull work,
whereas the VideoStorm manager pushes new queries
and configuration changes to the machine-managers.
Finally, VideoStorm allows machine managers to au-
tonomously handle short-term fluctuations (§6.4)

Flow control. We implemented flow control across
transforms of a query to minimize the buffering inside
the query pipeline, and instead push queuing of unpro-
cessed video to the front of the query. This helps for two
reasons. First, decoded frames can be as much as 300x
larger than the encoded video (from our benchmarks on
HD videos). Buffering these frames will significantly in-
flate memory usage while spilling them to disk affects
overall performance. Second, buffering at the front of
query enables the query to respond promptly to configu-
ration changes. It prevents frames from being processed
by transforms with old inconsistent knob values.

Migration. As described in §6.3, VideoStorm migrates
queries depending on the load in the cluster. We imple-
ment a simple “start-and-stop” migration where we start
a copy of a running query/transform on the target ma-
chine, duplicate its input stream to the copy, and stop
the old query/transform after a short period. The whole
process of migration is data-lossless and takes roughly a
second (§8.3), so the overhead of duplicated processing
during the migration is very small.

Resource Enforcement. VideoStorm uses Job Ob-
jects [18] for enforcing allocations. Similar to Linux
Containers [11], Job Objects allow controlling and re-
sizing the CPU/memory limits of running processes.

7.2 Interfaces for Query Transforms

Transforms implement simple interfaces to process data
and exchange control information.

e Processing.  Transforms implement byte[] Pro-
cess(header, data) method. header contains metadata
such as frame id and timestamp. data is the input
byte array, such as decoded frame. The transform
returns another byte array with its result, such as the
detected license plate. Each transform maintains its
own state, such as the background model.

o Configuration. Transforms can also implement Up-
date(key, value) to set and update knob values to
change query configuration at runtime.

8 Evaluation

We evaluate the VideoStorm prototype (§7) using a clus-
ter of 101 machines on Microsoft Azure with real video
queries and video datasets. Our highlights:

1. VideoStorm outperforms the fair scheduler by 80%
in quality of outputs with 7x better lag. (§8.2)

2. VideoStorm is robust to errors in query profiles and
allocates nearly the same as correct profiles. (§8.3)

3. VideoStorm scales to thousands of queries with little
systemic execution overheads. (§8.4)

8.1 Setup

Video Analytics Queries. We evaluate VideoStorm us-
ing four types of queries described and profiled in §3.2 —
license plate reader, car counter, DNN classifier, object
tracker. These queries are of major interest to the cities
we are partnering with in deploying our system.

Video Datasets. The above queries run on video
datasets obtained from real and operational traffic cam-
eras in Bellevue and Seattle cities for two months (Sept.—
Oct., 2015). In our experiments, we stream the recorded
videos at their original frame-rate (14 to 30 fps) and res-
olution (240P to 1080P) thereby mimicking live video
streams. The videos span a variety of conditions (sun-
ny/rainy, heavy/light traffic) that lead to variation in their
processing workload. We present results on multiple dif-
ferent snippets from the videos.

Azure Deployment. We deploy VideoStorm on 101 D3
v2 instances on Azure’s West-US cluster [6]. D3 v2 in-
stances contain 4 cores of the 2.4GHz Intel Xeon proces-
sor and 14GB RAM. One machine ran the VideoStorm
global manager on which no queries were scheduled.
Baseline. We use the work-conservative fair scheduler
as our baseline. It’s the widely-used scheduling pol-
icy for cluster computing frameworks like Mesos [49],
Yarn [3] and Cosmos [31]. When a query, even at its
best configuration, cannot use its fair share, it distributes
the excess resources among the other queries. The fair
scheduler places the same number of queries evenly on
all available machines in a round-robin fashion.
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Figure 7: VideoStorm outperforms the fair scheduler as the duration of burst of queries in the experiment is varied. Without
its placement but only its allocation (“VideoStorm MaxMin (Allocation Only)”’), its performance drops by a third.

Metric. The three metrics of interest to us are quality,
frames (%) exceeding the lag goal in processing, and util-
ity (§6.1). We compare the improvement (%); if a metric
(say, quality) with VideoStorm and the fair scheduler is

Xy and Xy, we measure % x 100%.

8.2 Performance Improvements

Our workload consists of a mix of queries with lenient
and stringent goals. We start with a set of 300 queries
picked from the four types (§8.1) on 300 distinct video
datasets at the beginning of the experiment. 60% of these
queries have a lag goal LY of 20s while the remaining are
more lenient with a lag goal of 300s. All of them have a
quality goal QM of 0.25. We set the lag multiplier ar” = 1
for these long-lived video analyses.

Burst of N seconds: At a certain point, a burst of 200 li-
cense plate queries arrive and last for N seconds (which
we will vary). These queries have a lag goal Q" of
20s, a high quality goal (1.0), and higher ol = 2. They
mimic short-term deployment of queries like AMBER
Alerts with stringent accuracy and lag goals. We eval-
uate VideoStorm’s reaction to the burst of queries up to
several minutes; note that the improvements will carry
over when tolerant delay and bursts are much longer.

8.2.1 Maximize the Minimum Utility (MaxMin)

We ran a series of experiments with burst duration N
from 10 seconds to 400 seconds. Figure 7a plots the
minimum query utility achieved in each of the experi-
ments, when VideoStorm maximizes the minimum util-
ity (§6.2.2). For each point in the figure, we ob-
tain the minimum utility, quality and lag over an inter-
val that includes a minute before and after the N sec-
ond burst. VideoStorm’s utility (“VideoStorm-MaxMin”)
drops only moderately with increasing burst duration. Its
placement and resource allocations ensure it copes well
with the onset of and during the burst. Contrast with the
fair scheduler’s sharp drop with V.

The improvement in utility comes due to smartly ac-
counting for the resource-quality profile and lag goal of
the queries; see Figures 7b and 7c. Quality (F1 score
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Figure 8: (Top) CPU Allocation for burst duration N =
150s, and (bottom) quality and lag averaged across all
queries in each of the three categories.

[83]; € [0, 1]) with the fair scheduler is 0.2 lower than
VideoStorm to begin with, but reduces significantly to
nearly 0.5 for longer bursts (higher V), while quality with
VideoStorm stays at 0.9, or nearly 80% better. The rest
of VideoStorm’s improvement comes by ensuring that
despite the accumulation in lag, fewer than 5% of the
frames exceed the query’s lag goal whereas with the fair
scheduler it grows to be 7x worse.

How valuable is VideoStorm’s placement? Figure 7
also shows the “VideoStorm MaxMin (Allocation Only)”
graphs which lie in between the graphs for the fair sched-
uler and VideoStorm. As described in §6.3, VideoStorm
first decides the resource allocation and then places them
onto machines to achieve high utilization, load balancing
and spreading of lag-sensitive and lag-tolerant queries.
As the results show, not using VideoStorm’s placement
heuristic (instead using our baseline’s round-robin place-
ment) considerably lowers VideoStorm’s gains.

Figure 8(top) explains VideoStorm’s gains by plotting
the allocation of CPU cores in the cluster over time, for
burst duration N = 150s. We group the queries into
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three categories — the burst of queries with 20s lag goal
and quality goal of 1.0, those with 20s lag goal, and
300s lag goal (both with quality goal of 0.25). We see
that VideoStorm adapts to the burst and allocates nearly
60% of the CPU cores in the cluster to the burst of li-
cense plate queries which have a high quality and tight
lag goals. VideoStorm also delays processing of lag-
tolerant queries (allocating less than 10% of CPUs). Fig-
ure 8(bottom) shows the resulting quality and lag, for
queries in each category. We see that because the delay-
tolerant queries have small allocation, their lag grows but
stays below the goal. The queries with 20s lag goal re-
duce their quality to adapt to lower allocation and keep
their lag (on average) within the bound.

Impact of a’. Figure 9 plots the distinction in treat-
ment of queries with the same lag goal (L™) but differ-
ent ol and quality goals. While the figure on the left
shows that VideoStorm does not drop the quality of the
query with QY = 1.0, it also respects the difference in
al; fewer frames of the query with of = 2 lag beyond
the goal of 20s (right). This is an example of how utility
functions encode priorities.

8.2.2 Maximize the Total Utility (MaxSum)

Recall from §6.2.2 that VideoStorm can also maximize
the sum of utilities. We measure the average utility, qual-
ity, and frames (%) exceeding the lag goal; maximiz-
ing for the total utility and average utility are equivalent.
VideoStorm achieves 25% better quality and 5x better
lag compared with the fair scheduler.

Per Query Performance. While MaxMin scheduling,
as expected, results in all the queries achieving similar
quality and lag, MaxSum priorities between queries as
the burst duration increases. Our results show that the
license plate query, whose utility over its resource de-
mand is relatively lower, is de-prioritized with MaxSum
(reduced quality as well as more frames lagging). With
its high quality (1.0) and low lag (20s) goals, the sched-
uler has little leeway. The DNN classifier, despite having
comparable resource demand does not suffer from a re-
duction in quality because of its tolerance to lag (300s).
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Figure 11: Q; migrated between M| and M;. Resource for
the only lag-tolerant query Q4 (on M) is reduced for Q;.

8.2.3 Varying the Burst Size

We next vary the size of the burst, i.e., number of queries
that arrive in the burst. Note that the experiments above
had varied the duration of the burst but with a fixed
size of 200 queries. Varying the number of queries in
the burst introduces different dynamics and reactions in
VideoStorm’s scheduler. We fix the burst duration to
200s. Figure 10 plots the results. The fair allocation
causes much higher fraction of frames to exceed the lag
goal when the burst size grows. VideoStorm better han-
dles the burst and consistently performs better. Note that
beyond a burst of 200 queries, resources are insufficient
even to satisfy the lowest configuration (least resource
demand), causing the degradation in Figure 10b.

8.3 VideoStorm’s Key Features

We now highlight VideoStorm’s migration of queries and
accounting for errors in the resource demands.

8.3.1 Migration of Queries

Recall from §6.3 and §7 that VideoStorm migrates
queries when necessary. We evaluate the value of migra-
tion by making the following addition to our experiment
described at the beginning of §8.2. During the experi-
ment, we allocate half the resources in 50% of our ma-
chines to other non-VideoStorm jobs. After a few min-
utes, the non-VideoStorm jobs complete and leave. Such
jobs will be common when VideoStorm is co-situated
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with other frameworks in clusters managed by Yarn [3]
or Mesos [49]. We measure the migration time, and com-
pare the performance with and without migration.

Figure 11 plots the timeline of two machines, M; and
Mj; M| where a non-VideoStorm job was scheduled and
M, being the machine fo which a VideoStorm query Qy,
originally on My, was migrated. Q; shifts from running
on M; to M, in only 1.3s. We migrate Q; back to M;
when the non-VideoStorm job leaves at ~ 150s.

Shifting Q; to M» (and other queries whose machines
were also allocated non-VideoStorm jobs, correspond-
ingly) ensured that we did not have to degrade the qual-
ity or exceed the lag goals. Since our placement heuristic
carefully spread out the queries with lenient and stringent
lag goals (§6.3), we ensured that each of the machines
had sufficient slack. As a result, when Q; was migrated
to M, which already was running Q, and Qg, we could
delay the processing of the lag-tolerant Q4 without vi-
olating any lag goals. The allocations of these delayed
queries were ramped up for them to process their back-
log as soon as the queries were migrated back.

As a consequence, the quality of queries with migra-
tion is 12% better than without migration. Crucially, 18 x
more frames (4.55% instead of 0.25%) would have ex-
ceeded the lag goal without migration.

8.3.2 Handling Errors in Query Profile

VideoStorm deals with difference between the resource
demands in the resource-quality profile and the actual
demand by continuously monitoring the resource con-
sumption and adapting to errors in profiled demand (u
in §6.4). We now test the effectiveness of our correction.

We synthetically introduce errors in our profiles, as
if they were profiles with errors, and use the erroneous
profiles for our resource allocation. Consequently, the
actual resource demands when the query executes do not
match. In the workload above, we randomly make the
profile to be half the actual resource demand for a third
of the queries, twice the demand for another third, and
unchanged (accurate) for the rest. VideoStorm’s adaptive
correction ensures that the quality and lag of queries with

Mean Standard
Action Duration (ms) Deviation (ms)
Start Transform 60.37 3.96
Stop Transform 3.08 0.47
Config. Change 15 2.0
Resource Change 5.7 1.5

Table 3: Latency of VideoStorm’s actions.

erroneous profiles are nearly 99.6% of results obtained if
the profiles were perfectly accurate.

In Figure 12, we look at a single machine where
VideoStorm placed three license plate queries, one each
of the three different error categories. An ideal allocation
(in the absence of errors) should be a third of the CPU to
each of the queries. Figure 12a, however, shows how the
allocation is far from converging towards the ideal with-
out adaptation, because erroneous profiles undermine the
precision of utility prediction. In contrast, with the adap-
tation, despite the errors, resource allocations converge
to and stay at the ideal (Figure 12b). This is because the
U values for the queries with erroneous profiles are cor-
rectly learned as 2 and 0.5; the query without any error
introduced its profile has its u around 1 (Figure 12c).

8.4 Scalability and Efficiency

Latency of VideoStorm’s actions. Table 3 shows the
time taken for VideoStorm to start a new transform (ship-
ping binaries, process startup), stop a transform, and
change a 100-knob configuration and resource allocation
of 10 running queries. We see that VideoStorm allows
for near-instantaneous operations.

Scheduling Decisions. Figure 13a plots the time taken
by VideoStorm’s scheduler. Even with thousands of
queries, VideoStorm make its decisions in just a few sec-
onds. This is comparable to the scalability of schedulers
in big data clusters, and video analytics clusters are un-
likely to exceed them in the number of queries. Com-
bined with the low latency of actions (Table 3), we be-
lieve VideoStorm is sufficiently scalable and agile.
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Transform Overheads. Finally, we measure the over-
head of running a vision algorithm inside VideoStorm.
We compare the latency in processing a frame while run-
ning as a vanilla process, inside a single transform, as
a DAG of transforms on one machine, and as a DAG
distributed across machines. Figure 13b shows that the
overheads are limited. Running as a single transform, the
overhead is < 3%. When possible, VideoStorm places
the transforms of a query DAG locally on one machine.

9 Related Work

Cluster schedulers. Cluster schedulers [3, 31, 39, 42,
44,49, 86] do not cater to the performance objectives of
streaming video analytics. They take resource demands
from tasks (not the profiles), mostly allocate based on
fairness/priorities, and do not resize running containers,
key to dealing with resource churn in VideoStorm (§7).

Deadline-Based Scheduling. Many systems [22, 39,
42,56, 85] adaptively allocate resources to meet dead-
lines of batch jobs or reduce lag of streaming queries.
Scheduling in real-time systems [52,87] has also consid-
ered using utility functions to provide (soft) deadlines to
running tasks. Crucially, these systems do not consider
approximation together with resource allocation to meet
deadlines and do not optimize across multiple queries
and servers.

Streaming and Approximate Query Processing Sys-
tems. Load shedding has been a topic of interest in
streaming systems [25, 68] to manage memory usage of
SQL operators but they do not consider lag in processing.
Aurora, Medusa, and Borealis [19,33,37] and follow-up
works [78,79, 81, 82, 88] use QoS graphs to capture lag
and sampling rate but they consider them separately and
do not trade-off between them, a key aspect in our so-
lution. In contrast to JetStream [72], that degrades data
quality based on WAN bandwidths, VideoStorm identi-
fies the best knobs to use automatically and adjusts al-
locations jointly across queries. Stream processing sys-
tems used in production [2, 4, 62, 89] do not consider
load-shedding, and resource-quality tradeoff and lag in
their design; Google Cloud Dataflow [21] requires man-
ual trade-off specifications. Approximation is also used

[ZA Single Transform

by recent [20, 23, 84] and older [47, 53] batch querying
systems using statistical models for SQL operators [38].

Relative to the above literature, our main contributions
are three-fold: (i) considering quality and lag of video
queries fogether for multiple queries using predictive
control, (i) dealing with multitude of knobs in vision al-
gorithms, and (iii) profiling black-box vision transforms
with arbitrary user code (not standard operators).

Utility functions. Utility functions are used exten-
sively throughout economics [65, 73], compute sci-
ence [48, 55,57, 63], and other disciplines to map how
users benefit from performance [50, 58, 80]. In stream
processing systems, queries describe their requirements
for throughput, latency, and fraction of dropped tu-
ples [22,34,60,79]. With multiple entities, previous work
has typically maximized the minimum utility [61, 64] or
sum of utilities [61,63], which is what we also use. Util-
ity elicitation [28,30,35] helps obtain the exact shape of
the utility function.

Autonomic Computing. Autonomic computing [24,
26,29,66,70,77] allocate resources to VMs and web ap-
plications to maximize their quality of service. While
some of them used look-ahead controllers based on
MPC [67], they mostly ignored our main issues on the
large space of configurations and quality-lag trade-offs.

10 Conclusion

VideoStorm is a video analytics system that scales to
processing thousands of video streams in large clusters.
Video analytics queries can adapt the quality of their re-
sults based on the resources allocated. The core aspect of
VideoStorm is its scheduler that considers the resource-
quality profiles of queries, each with a variety of knobs,
and tolerance to lag in processing. Our scheduler opti-
mizes jointly for the quality and lag of queries in allocat-
ing resources. VideoStorm also efficiently estimates the
resource-quality profiles of queries. Deployment on an
Azure cluster of 101 machines show that VideoStorm can
significantly outperform a fair scheduling of resources,
the widely-used policy in current clusters.
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