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ABSTRACT

A corpus linguistic study is reported in this paper, guided by
articulatory phonology and by general phonetic principles of speech
production. A direct application of this study is the construction of
Hidden Markov Model topologies for automatic speech recognition,
taking into account integrated multilingualism with the consideration
of the common physiological organs and processes involved in the
production of speech sounds from the world’s languages. We
demonstrate in this study that incorporation of speech production
principles can provide effective constraints on pronunciation
modeling for the purpose of building language-universal speech
recognizers.

1. INTRODUCTION

Speech sounds of different languages are produced by many common
elements in the articulation process and within the same vocal tract of
the speaker. Therefore, the speech sounds necessarily share common
acoustic properties despite the differences at the higher linguistic
levels. As one example of the phonological universal, several broad
categories of speech sounds are widely shared by all languages in the
world, such as stops, fricatives, glides, nasals, vowels, etc. Further,
the articulatory features either distinguishing or shared by sets of
speech sounds, e.g., those that are concerned with the place of
articulation or constriction manners, are of physiological nature and
universal to all languages.

The purpose of this study is to establish a speech production model at
the level of articulator movements as they are related to phonological
entities, the phonemes and articulatory features, base on
autosegmental and articulatory phonology [10, 2, 3]. We aim at the
prediction of articulatory characteristics given an input phoneme
sequence of an utterance. The phoneme sequence will carry higher-
level, prosodic information, such as word and phrase boundary,
syllabic functions of a phoneme, etc. The articulatory characteristics
are described as feature spreading at several independent articulatory
tiers. Each tier stands for an active articulator that participates in
uttering speech sounds. Features of the same sound may start and end
at different times; features of neighboring sounds may exist at the
same time. Thus this model is known as the overlapping of
articulatory features [7,14].

We started by annotating a large speech production corpus that
contains both sound wave data and X-ray articulator trajectory data
of continuous speech, using a graphical annotation tool we have
developed. A substantial amount of annotation work has been carried
out, resulting in a numerical articulatory feature database, tagging the
natural, continuous utterances of the speech production database.
Based on the annotated data, an articulatory feature-based speech

production model has been constructed using regression trees [11].
Applying regression trees to any arbitrary phoneme sequence
automatically produces gestural scores or feature-overlapping
patterns.

The regression tree model serves as a mapping from phoneme
sequence input (with higher-level prosodic information) to low-level,
articulator movements in terms of duration and overlapping of
features. The sequence of such feature bundles corresponds to
acoustic realizations of speech. That is, each feature bundle
corresponds to a relatively homogeneous stretch of acoustic signal
and the transition from one feature bundle to another corresponds to a
transition in acoustic signal properties. So the speech production
model is used to construct context-dependent phone models for
HMM-based ASR systems. The difference between our approach
toward speech recognition model building and the triphone-based
models will be discussed later.

We have used this speech production model to create context-
sensitive phone model topologies and used these in training speech
recognition systems. We have experimented with the TIMIT speech
corpus data and compared this approach to triphone-based approach.
In the phone recognition experiment and comparative study we have
achieved better performance than a triphone baseline system.

2. A FEATURE SPECIFICATION SYSTEM

A five-tier model of articulatory features is used in our system. These
five tiers describe active articulators involved in the pronunciation of
speech sounds. Every articulator is located at one of the five tiers. An
articulator may take up a feature from each of a few feature
dimensions. Each feature dimension for a feature tier has a set of
possible features. The tier-to-articulator correspondence is shown in
Table 1.

TIER            ARTICULATORS DIMENSIONS

1 Upper Lip, Lower Lip 2: shape, manner

2 Tongue Tip, Tongue Blade 2: place, manner

3 Tongue dorsum, Tongue Root 2: place, manner

4 Velum 1: nasal opening

5 Glottis 1: phonation

Table 1. Articulators on five tiers.

At each tier, an articulator may take up one feature from each feature
dimension. Each dimension has a set of possible features. Which
feature is taken up depends on the phone being pronounced. If we did
not consider asynchrony of features at all the tires, the pronunciation



of a phone would be described statically by a bundle of features
simultaneously at the five tiers. A few examples of such feature
bundles are given below1:

• [dx] as in letter.   Lip = [flat, open], Tongue Tip =
[alveolar, flap], Tongue Root = [low, open], Velum =
[high], Glottis = [voicing]

• [nx] as in manner. Lip = [flat, open], Tongue Tip =
[alveolar, flap], Tongue Root = [low, open], Velum =
[low], Glottis = [voicing]

• [p] as in speak. Lip = [flat, closed], Tongue Tip =
[neutral, open], Tongue Root = [low, open], Velum =
[high], Glottis = [-voicing]

We call these static feature bundle descriptions of phones the lexical
descriptions, which are to be affected by spreading features of
neighboring sounds in continuous speech. When this happens,
features at each tier will have different temporal ranges and may
overlap with features of other phones in time. One example is the
above-mentioned word “speak”. In real speech, the phone [p] will
become unaspirated.

The authors have previously summarized a set of articulatory
phonological rules accounting for pronunciation alterations [14].
These rules account for phenomena such as assimilation, co-
articulation, etc. in terms of the overlapping of articulatory features.
Our present work is a data-driven approach to deriving a predictive
system.

In the following example, we show how such alteration phenomena
as lip rounding and velum lowering (nasalization) can be accounted
for by feature overlapping. Consider the word string and its
pronunciation [s t r ih ng]. The nasal consonant [ng] can overlap its
velum feature with [r] and [ih], and [r] can overlap its lip feature with
[s] and [t]. As a result, the phones [s t r ih] in this word can assimilate
features and alter their pronunciations. The gestural scores can
represent this as shown in Fig 1.

Lip:                                 r

TT:      s            t             r

TD:                                         ih            ng

Vel:                                                        ng

Glo:                                 r      ih            ng

Figure 1. gestural scores and feature bundles of the word “string”.

Fig 1 uses the gestural score format to show feature bundles of
phones in their overlapping relations. In this figure the velum feature
of [ng], i.e. the nasal lowering feature, overlaps with several phones
and so does the lip feature of [r]; i.e. the lip rounding feature.

 3.  LABELING THE SPEECH CORPUS

 In this section we describe the labeling of the Wisconsin X-ray
speech production corpus [1]. Based on the five-tier articulatory

                                                                

1 Throughout this paper, phone names are written in the TIMIT style.

feature framework described in section 2, we want to collect
information from real speech data of the duration and overlap of such
features. This corpus provides the possibility for such work.

 3.1 The X-ray Speech Production Corpus

 The University of Wisconsin's Microbeam X-ray Speech Production
database as used in this study contains natural, continuous spoken
utterances in both   isolated   sentences   and short paragraphs.  The
data come in three forms: text data, which are the orthographic
transcripts of the spoken utterances; digitized waveforms of the
recorded speech; and X-ray trajectory data of articulator movements,
simultaneously recorded from 57 speakers each performing 118
speech tasks.

 The trajectory data are recorded for individual articulators. The
articulators are arranged as Upper Lip, Lower Lip, Tongue Tip,
Tongue Blade, Tongue Dorsum, Tongue Root, Lower Front Tooth
(Mandible Incisor) and Lower Back Tooth (Mandible Molar). On
each articulator of the speaker, a pellet is attached to record its
movement in the sagittal plane.

 Based on this data set, we first carried out a number of necessary
transformations. The orthographic transcripts are converted into
phonetic transcripts. The conversion is based on the TIMIT
dictionary. The phone set is extended with allophones that are
predictable by the phonetic context. The waveform data are
transformed into wideband spectrograms that can be displayed in a
window of the graphical labeling tool. The trajectory data is set to the
form of two-dimensional curves in time and position for each of the
eight articulators. The positions are factored into X-component and
Y-component for forward-backward and up-down movements (see
Fig 2 for an example).

   Figure 2. The Microbeam X-ray Speech Data.

 3.2. The Labeling Process

 The feature labeling work is based on the theory of autosegmental
phonology that proposes non-linear segmental features and on our
previous work of feature overlapping models in speech recognition



application.

 After transforming the data into appropriate forms, we performed
segmentation and alignment. First, the spectrograms are aligned with
the trajectories. The starting and ending positions of both figures are
aligned. Next, the spectrograms are segmented and aligned with the
phonetic symbols of its corresponding utterance.

 The labeling work is focused on the identification and tagging of
articulatory features in the trajectories and aligning them with the
phonetic symbols and appropriate sections of the spectrogram. Based
on the five-tier articulatory feature model, the trajectory and
spectrogram data are used for locating features on each of the five
tiers. For example, a lip opening feature can be identified on the Y
position curve of the Upper or the Lower Lip, depending on the
phone. A lip rounding feature can be identified on the X position
curve. Fig 3 shows some labeled features for the sentence The other
one is too big, in which the articulators Upper Lip, Tongue Tip and
Tongue Root are used  for identifying tier 1, 2 and 3 features, while
other articulators are also referred to. The tier 4 and 5 features are
mainly identified from the spectrogram.

    Figure 3. The labeled sentence “The other one is too big”.

 With a Java based labeling tool developed by our group, we are able
to align spectrogram sections, phonetic symbols and features, save
and reload labeled utterances and obtain the numerical data.
Currently we only use the duration and overlap information for
deriving regression trees and gestural scores. The position data are
also saved, which can be used for estimating constriction degrees or
build speech synthesis models.

 The result of the labeling work is a feature-overlapping database that
provides numerical data of articulatory feature duration and overlap
for natural English speech. Based on this database, we are able to

derive predictive models for creating gestural scores when given an
arbitrary phone string of an utterance. Fig 4 shows the interface of the
labeling tool.

4. THE PREDICTIVE MODEL

The model for predicting overlaps of articulatory features is based on
regression trees, which are automatically learned from the data of the
labeled corpus. We expect feature overlapping to be context-
dependent. Thus, since the labeled corpus only contains limited
contexts for each phone, there is need to generalize the labeled
corpus so that an arbitrary phone sequence of a speech task can be
best estimated.

      Figure 4.  The feature labeling tool interface.

A set of regression trees is trained for predicting feature duration and
overlapping at each tier for phones in context. The training data for
regression trees have numerical values of duration and overlapping as
the dependent variable and phonological features of left and right
phones as the predictors. University of Minnesota's Firm regression
tree learning system is used [11]. The predictors include the five-tier
features of its left and right two-phone context and these phones'
higher-level prosodic information: word stress, syllabic function
(onset, coda or nucleus) and boundary information (word beginning,
word internal or word end and utterance boundaries). So a training
example for a feature (either for duration or for overlap) consists of
32 predictor values. This is a training example of the tier-1 overlap
for stop consonants:

18, wi, 0, n, 0, 0, mmopn, n0, v1, wi, 0, m, labcls, 0, 0, n1, v1, wi, 1,
n, 0, 0, lfopn, n0, v1, wi, 1, n, 0, 0, hfcrt, n0, v1

The number 18 is the dependent variable, meaning an overlapping of
18 units (one unit is 0.866 ms). This is followed by four neighboring



phones' features each consisting of boundary, stress, syllabic
information and tier-1 to tier-5 features (wi: word internal, 0:
unstressed or neutral feature, n: nucleus, mmopn: vowel tongue
dorsum middle and open, m: word internal consonant, n0: velum high,
v1: voicing, labcls: labial-closure lip feature, etc.). Altogether 60
regression trees were trained for 30 tiers of 10 phone types. The
regression trees generalize for every possible five-phone context
since only features are used as context information, and the
regression trees put features with maximal information gain at the top
of the tree. As a result, even though a context has not been seen in the
corpus, the best possible estimate based on the similarity between the
feature matrices is calculated by the regression trees.

This resulted in a five-dimensional speech production model with
outputs in the form of articulator gestural scores. One of the
applications of this model is to predict Hidden Markov Model
topologies used in constructing automatic speech recognition systems.
Our model has been used in this way and the initial results have
shown better performance in terms of recognition rate to the currently
prevailing triphone model.

5. SPEECH RECOGNITION RESULTS

Experiments have been carried out using the tool for predicting
feature overlapping as described so far in this paper. The TIMIT
phonetic recognition task is chosen for our experiments. Compared
with the triphone-based approach, the feature-based approach
predicts model states by considering larger-scope context, up to two
or three phones on each side of a central phone. This results in more
discriminative training of the models.

Using the HTK toolkit [15], we have trained all the context-
dependent phones as predicted by the overlapping models from the
training set of TIMIT corpus. This resulted in 64230 context
dependent phones based on 39-phone set. Then we used the decision
tree based state tying to overcome the data insufficiency problem.
Our questions for decision-tree based state tying are designed
according to the predictions made by the feature-overlapping model.
A five-phone context is used in the question design. The contexts that
are likely to affect the central phone by feature overlapping, as
predicted by the model, form questions for separating a state pool.
For example, the nasal release of stops in such context as [k aa t ax n],
[l ao g ih ng] will give rise to questions as *+ax2n, *+ih2ng, etc,
where '2' is used to separate first right context from second right
context. The experimental results for phonetic recognition are as
follows.

SYSTEM ACCURACY%

Triphone HMM (Baseline) 70.86

Overlapping-feature HMM 72.95

The test was carried out on the 1680 test files of the TIMIT corpus.
There are a total of 53484 phone tokens appearing in these files. The
initial application of the feature-overlapping model based on corpus
data and machine learning has shown that this is a powerful model. In
our future work, we plan to apply the overlapping model obtained
from English data to a set of languages including both French and

Mandarin Chinese.
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