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ABSTRACT calibrated probabilities of the presence of speech in each segment.
Finally, it is possible to use the same framework to train differ-

In this paper, we introduce a new framework for speech detection gt getectors that operate on segments of different lengths. In this
using convolutional networks. We propose a network architecture aper, we will only show results on frame level decisions. As an

that can incorporate long and short-term temporal and spectral cor-n 5 ¢ tg the system, we use signal-to-noise ratio based short-term
relations of speech in the detection process. The proposed des'53%pectr<':1l features. These features can be easily generated on-line.
is able to address many shortcomings of existing speech detectorgyg il show that our new speech detector built on convolutional

in a unified new framework: First, itimproves the robustness of the ,atworks works well in an environment that is unseen and widely
system to environmental variability while still being fast to evalu-  gifferent from the conditions it was trained in.

ate. Second, it allows for a framework that is extendable to work The paper is organized as follows: We start Section 2 by briefly

under different time-scales for different applications. Finally, it is outlining some recent approaches to speech detection and high-
discriminative and produces reliable estimates of the probability of light their shortcomings. We then describe a convolutional net-

presence of speech in each frame for a wide variety of noise con-qy and its properties, and how it can address many of the prob-
ditions. We propose that the inputs to the system be features thajg s in designing a good speech dectector. In Section 3 we de-
are measures of the true signal-to-noise ratio of a set of frequencygcyine the features used as inputs to the system. Finally, in Section
bands of the signal. These can be easily and automatically genery e present results on the AURORA database that demonstrate

ated by tracking the noise spectrum online. We present preliminary o effectiveness of the proposed technique.
results on the AURORA database to demonstrate the effectiveness

of the detector over conventional Gaussian detectors. 2. CONVOLUTIONAL NETWORKS FOR SPEECH

DETECTION
1. INTRODUCTION
) L ) 2.1. Brief Look at Earlier Work

There are several hurdles in designing good speech detection sys-
tems, first among which is the challenge of making it robust to Earlier work in speech detection has focussed on individually ad-
changes in the environment or noise charecteristics. This problemdressing many of the problems mentioned in Section 1. Recently
is usually addressed in either the classifier or the feature extractora speech detector using likelihood ratio (LR) tests based on Gaus-
The key is to design classifiers that have the ability to incorpo- sian model was proposed [1]. The main advantage of this system
rate information about the signal itself, and can generalize well to over others was that it tracked the underlying the noise through a
unseen conditions without becoming too big or complicated. The signal-to-noise ratio measure using a decision directed approach
key to feature design is to choose parameters that can be invarianfl]. Though this technique was shown to be effective for speech
to distortions, and can effectively incorporate short and long-term detection under different noise conditions, it faces three main prob-
temporal and spectral correlations. Another challenge is to designlems [2]. First, the LR scores do not translate easily into true class
systems that provide a good estimate of the probability of the pres-probabilities. Secondly, this method makes overly restrictive as-
ence of speech, rather than just a plain present/absent decisionsumptions on the distributions of noise and speech spectra. The
Finally, it is always difficult to design detector frameworks that system uses short-term spectral features that are fragile in the pres-
are flexible enough to be extendable across different time scalesence of noise. Even if features that are robust to noise are derived
for different applications i.e. those that can be modified to detect externally, they may not work well with this system if their distri-
speech either in a frame of 20ms (e.g. in a speech recognition ap-butions do not match the Gaussian assumption. Thirdly, Gaussian
plication) or a segment of 100ms in length (e.g. for beamforming models are especially poor when it comes to incorporating intra-
application). and inter-frame correlations. In [1] inter-frame correlations were

In this paper, we introduce a speech detection framework basedncorporated using HMM-like state transitions, but extending this
on convolutional networks that addresses all the above problems,dea beyond a single frame is complicated.
primary among which is the robustness to changes in the environ-  In [2] we presented a new system for speech detection using
ment. A convolutional network is a special type of a feedforward logistic discriminators that addressed some of these issues. This
neural network which can incorporate prior knowledge about the method has all the advantages of the Gaussian system, and in ad-
signal and its distortions into its architecture. Thus it is a system dition provides accurate estimates of posterior class probabilities
that can do a joint feature-classifier design, and will be prepared for signals without making any assumptions on the underlying dis-
to handle certain kind of distortions to the feature. In addition, it tributions. It is a discriminative detector, and is very simple and
has the ability to use temporal and spectral correlations at differenteffective. But it has its own limitations: the system has too few
time-scales to make robust decisions, and can accurately estimatparameters to take advantage of all the information in the signal,



especially when the number of inputs become large. As a result,to translation in the direction in which the weights are shared. For
this framework is unable to scale to work at different time scales. example, if the weight sharing is done for different inputs across
Further, the feature-selection issue is not addressed by this classitime, the network is called ime-delay neural networkrDNN),

fier design. A more powerful generalized approach is to use neuraland is invariant to shifting. Thus the mechanism of weight shar-
networks for speech detection (e.g. [3]). Neural networks can ing can specifically incorporate the kind of distortion that can be
easily learn complex non-linear mappings. When trained with the expected. In fact, convolutional networks have been shown to rec-
cross-entropy error functions, they are able to estimate true pos-ognize two-dimensional shapes with a high degree of invariance to
terior class probabilities. The so-calleculti-conditioned train- various distortions like translation, scaling, skewing, etc [5, 4].

ing i.e. training NNs using diverse data collected under various Further, the receptor fields acts as a kindawfal feature ex-
conditions, makes them work under unseen conditions. It can betractor. In the visual cortex, for example, they extract features
argued that in a fully connected network with multiple hidden lay- such as local edges, end-points, etc. In the TDNN, for example,
ers, some of the hidden layers can act as feature extractors. Buthe local receptors act as feature extractors in time. In the case of
when the input dimensions are high (e.g. when multiple frames speech, depending upon the architecture, we can think of them as
of speech are used a input), the number of weights in a fully con- extracting time-frequency features. By having many such layers
nected network becomes dramatically high and can lead to over-complicated feature extractors can be formed. In this sense, a con-
fitting. What is needed is a solution that is a compromise betweenvolutional network can be thought of as a joint feature extractor-
the simple classifiers that have problems learning, and complexclassifier. We must mention that we don't think that these local
classifiers that overfit. receptor fields can completely replace the function of an external
feature extractor e.g. the network cannot synthesize information
that is not present in the data. The “noisiness” of the external fea-
In this section we discuss the extension of feedforward networks tures, and the amount of information they bear definitely affect the
to convolutional networks, and propose their application to speechPerformance of the system. But the inherent ability of the system

2.2. Convolutional Networks

detection. to create robust, learned in_ternal representations is certainly one of
the strengths of a convolutional network.
o1 02 . 0 The parameters of the network are estimated during training
T I 1 using stochastic gradient descent by minimizing the cross-entropy
error function:
(1 ) 2 [ 3 )
\“‘4\ \\‘in"i "'/;il'i E=— Z txlog(px) + (1 —tx)log(l — px), 2
/ N\, X
’ \ / wheretxs are the target labels for the training dafa Thus the
X# f < convolutional network is not only discriminative, but also provides
! il I I ) O I ° the maximum likelihood estimate of the posterior class probability
Inputs i.e. the probability that the given frame contains speech [6].

Couple of additional advantages of convolutional nets are: (1)

Fig. 1. Local receptors in one layer of a convolutional network. the weight Shafif‘g not .only achigves F‘?d“C“O” in th.e number of
parameters, but it also improves its ability to generalize by reduc-

ing its learning capacity [4]. Thus itis a good compromise between

Research in handwriting recognition in the past decade [4] has small networks that have difficulty learning and large networks that
shown that it is possible to develop a specialized design for a neu-gyer fit. (2) The weight sharing makes it possible to implement the

ral network by incorporating prior knowledge into its architecture. nework in parallel, unlike the traditional multilayer perceptrons.
This can be done in two ways: (1) restricting the network architec-

ture by only using local connections, and (2) reduce the number of 2-3. Network Architecture
weights using weight sharing. This modification was motivated by

the visual cortex of cats which had locally sensitive neurons that frequency —s-

were also orientation selective [5]. For example, in Fig 1, each
node is restricted to receiving inputs only from four nearest or “lo- time i
cal” inputs. Further, if the weights, throughw, are restricted to l . : 3 l
be the same across all the hidden nodes, the oufmfteach node
can be expressed as

4 20 25 25 speech
. = N TR signal-to-noise ratio learned learned presence
0j f(z Wi * Tigj—1 )’ (1) features short-term features long-term features  probabilities
=1
wherew;s are the weightsz; ;_ is thei” input of nodej, and Fig. 2. Architecture of the convolutional network used in this pa-

f(-) is a non-linear squashing function like a sigmoid or tanh. The Per-

nameconvolutional networlcomes from the fact that the above

equation is in the form of a convolution sum [5]. The weight vec- We would like to design a convolutional network that can inco-
tor can be thought of as as “kernel” which moves over the input porate both spectral correlations in the short-term and long term-
performing local processing. One outcome of such a mechanismtemporal correlations. One way to do this is to have two layers
is that the outputs of the convolutional network become invariant of feature extraction, each performing a specific function. Further



discussions in this section will be done with reference to Figure filter-bank that allows for perfect reconstruction. FFTs can easily
2. At each time index, the input to the first layer is a set of 20 be used instead of MCLTs without changing any other procedure
features. These are measures of the SNR in each mel-frequencyn this paper.
band in a 16ms interval (more about the features in the next sec-  Some preprocessing of the features is needed to improve gen-
tion). The first layer has a “kernel” of 20 weights that operates on eralization and learning accuracy. First, we convert the speech and
each time index independently to produce an output. Instead ofnoise spectrum into mel-band energies. This reduces the number
having a single kernel, it is possible to have many kernels, eachof input parameters per frame and does not make any difference
producing an independent non-linear representation of the input.to the speech/non-speech detection accuracy [2]. Since short term
These representations are called “feature maps”. We generate 25pectra of speech are modeled well by log-normal distributions,
of these. Thus the first layer acts only on the data from one frame,we use the logarithm of the SNR estimate, rather than the SNR
and hence can be thought of as deriving a number of short-termestimate itself. Then we normalize the input so that its variance
features (the number of these features is equal to the number ofis 1. In this paper, we precompute the variance for each coeffi-
feature maps). cient over the training set and use it as the normalizing factor. The
We designed the second layer in the network to have a 1x3 noise power\ is tracked automatically online using the method
kernel which acts on the outputs of all the feature maps from three described in [2].
time instants. This layer also has 25 feature maps. These can be in-
terpreted as extracting longer-term temporal features from the data. 4. EXPERIMENTS AND RESULTS
The net effect is equivalent to using a window of three consecutive 4.1. Database
frames of prior SNR features to create one 20x3 input feature to .
the entire network. This window shifts forward in time by one We use the well known AURORA database [8] for our experi-
frame at each time step. The size of the window is usually chosenMents. The database has spoken digits from male and female
based on the application and processing restrictions. For exampleSPeakers with different types of noises added to clean signals at

additive noise at one time instant does not affect too many future 20, 15, 10 and 5dB SNR levels. We are interested only in two
frames, so the window length can be fairly short. In a room with Subsets of the database named TESTA and TESTB. The type of

reverberation time of about 120ms, for example, a window length NCis€ in TESTA and TESTB are different, though the speakers are

of 7 may be chosen. If a slight delay is allowed, frames from the the same. We chose 100 male and 100 female speaker data from

near future may be included before a decision is made. If a delay TESTA for training the convolutional network; 10 male and 10 fe-

in processing cannot be tolerated, only the current and past shouldn@le speaker data from TESTA for validation during training, and

be used. 100 male and 100 female speaker data from TESTB for testing.
Finally, the outputs layer has 2 nodes that are fully connected We ensure that the speakers selected for testing from TESTB are

to the all the feature maps from the second layer with no weight entirely dh_‘ferent from those_ i.n the training set. Also the data at
sharing. The output of each node is the probability that the given 2dB SNR is not used for training. In total, about 55000 frames are
input belongs to a certain class. If the other layers can be thought2vailable for training and over 68000 frames for testing.

of as feature extractors, this layer can be thought of as a classifier. 1€ knowledge that this is a “stereo” database i.e. the data
The net effect is to have a network that generates a set of probabil-contains “clean” signals and their corresponding noisy counter-
ities at every time step, but needs three consecutive frames of inpuP@'ts, iS usednly to generate the true labels. This information

to generate this output. The network has a total of 2425 parame-"as not used for online noise estimation or in testing. The true
ters. During training, the targets« in Equation 2) for the output labels were generated by thresholding the energy in each frame
nodes are{1,0} for all input data from speech segments, and is of the clean data_. The thr_esholds were selected S0 tha_lt all spee_ch
{0,1} for all data from non-speech segments. The nodes in Iayerse"e“ts were retained. This was verified through listening experi-

1 and 2 use a tanh squashing funtion, while the output nodes usdnents on a small fraction of the training data. The threshold was
the softmax function. tuned so that the low energy speech events and the transitions just

barely made the cut.

3. PRIOR SIGNAL-TO-NOISE RATIO (SNR) BASED :
FEATURES 4.2. Feature Comparison
The first set of experiments demonstrate the effectiveness of the
In [2] we used estimategosterior signal-to-noise ratiqSNR) prior SNR based features in comparison to the ones based on pos-
based features¢(k,t) = |Y (k,t)|?/A(k,t), whereY (k,t) is terior SNR. Figure 3 shows the ROC curves for speech detection
the spectrum of the input signaﬂ(k, t) is the estimated noise en-  for two systems that are identical except for the features. The
ergy andk, ¢ are the frequency and time indices respectively. It graphs show successful detection of speech frames vs. false alarms
is possible to derive an estimate of the actual signal-to-noise ratio(non-speech frames classified as speech) for different SNRs. It is
(also calledprior SNR) i.e.v(k,t) = |X(k,t)|>/A(k, t), where clear that the system using prior SNRs (solid line) in Figure 3 is
X (k, 1) is the estimated spectrum of speeci(k, ¢) can be de-  Petteratall SNRs and in all parts of the curve.
rived_ in many ways. We follow the ap_proach f_rom [_1]. First, the 4 3 Comparing Classifiers
maximum likelihood estimate of the prior SNR is derived from the
posterior SNR value using(k, t) vz = £(k,t) — 1. Then this is In this section, we compare the performance of three different
smoothed from frame to frame using a decision directed approachclassifiers. We used a convolutional network with the architec-
[1]. v(k,t) seems to be slightly better than the posterior SNR for ture described in Figure 1, with 3 consecutive frames of input, 25
speech detection. To compute the spectrum we use a 128-pt modfeature maps and 25 hidden nodes in layer 3. We experimented
ulated complex lapped transform (MCLTSs) [7] every 16ms using with different number of feature maps and hidden nodes, and the
a 32ms window. MCLT is a particular form of cosine modulated performances were similar. Figure 4 shows the ROC curves for
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Fig. 3. ROC curves comparing features at various SNRs: (1) prior Fig. 4. ROC curves comparing the convolutional network to other
SNR based feature (solid line), (2) posterior SNR based featuresdectectors at various SNRs. Results using convolutional network

(dotted line). Minimum error numbers are inscribed. (solid line), logistic detector (dotted line) and the Gaussian based
approach [1] (dashed line) are shown. Minimum error numbers are
inscribed.

three systems: the convolutional network described in Section 2
(solid line), the logistic detector described in [2] (dotted line) and ) ) ) )
the Gaussian based approach [1] (dashed line). Minimum errorlems of scaling. We can train the network to provide good esti-
numbers are inscribed in each graphs. The convolutional networkmates of the probability that a given frame contains speech. We
outperforms the Gaussian method significantly. It improves the presented results on the AURORA database to demonstrate the ef-
minimum error by approximately 25%, 32%, 32% and 23% under fectiveness of the new approach.
20dB, 1_5dB, 1QdB and 5dB conditions respectively. We should 6. REFERENCES
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5. SUMMARY



