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ABSTRACT

We introduce an elegant and novel design for a speech detector
which estimates the probability of the presence of speech in each
time-frequency bin, as well as in each frame. The proposed system
uses discriminative estimators based on logistic regression, and in-
corporates spectral and temporal correlations in the same frame-
work. The detector is flexible enough to be configured in a single
level or a “stacked” bi-level architecture depending on the needs
of the application. An important part of the proposed design is
the use of a new set of features: the normalized logarithm of the
estimated posterior signal-to-noise ratio. These can be easily and
automatically generated by tracking the noise spectrum online. We
present results on the AURORA database to demonstrate that the
overall design is simple, flexible and effective.

1. INTRODUCTION

Detecting the presence of speech is crucial in many applications.
In some, like noise adaptation and speech enhancement, a simple
presence (or absence) decision alone does not suffice - it is critical
to estimate theprobability of the presence of speechin each time-
frequency bin as well as each frame [2]. In other applications, a
simple frame level decision is sufficient, but the requirements may
vary e.g. in source localization the probability of false detection
(classification of noise-only frames as speech frames) should be
low, whereas in speech coding a high speech detection rate is de-
sirable. Thus an ideal system is one that producescalibratedprob-
abilities i.e. measures that accurately reflect the actual frequency
of occurance of the event (presence of speech). Such a system can
(1) make decisions optimally based on utility theory, and (2) com-
bine decisions from independent sources using very simple rules.
Further, an ideal system should also be simple and be light on the
use of resources.

In this paper, we introduce an elegant and effective design for
a detector which can accurately estimate calibrated probabilities
of the presence of speech based on logistic regression based clas-
sifiers. The design of our system is flexible enough to allow the
arrangement of detectors in a cascaded or a uni-level architecture
depending on the need of the application, without sacrificing per-
formance. The cascaded version first detects the probability of
presence of speech in each time-frequency atom, and uses these
values to make a frame level probability estimate. The uncascaded
version estimates these probabilities directly from the feature data.
One important aspect of the design is the use of features based on
posterior signal-to-noise ratio. These features are designed to fit
well with the detector, and can be easily generated on-line. The
features and the classifier put together, make a simple yet effective
speech detector.

The paper is organized as follows: We describe the classi-
fier/detector architecture in Section 2. We describe the proposed
feature in Section 3. Finally, in Section 4, we present results on
the AURORA database that demonstrate the effectiveness of the
proposed technique.

2. LOGISTIC REGRESSORS FOR SPEECH DETECTION

2.1. Previous Work

Many approaches have been proposed to detect speech presence
or estimate its probability at the frame level. One very popular
method is to use likelihood ratio (LR) tests based on Gaussian
models. A voice activity detector using such a test was proposed
in [5]. In essence, it uses a smoothed signal to noise (SNR) ra-
tio estimate of each frame to implement this test, and seems to
be effective for speech detection. Unfortunately, it (like other LR
based tests) suffers from the problem of threshold selection, and
the LR scores do not translate easily into true class probabilities.
To convert from the former to the latter, additional information in
the form of prior probabilities of the hypotheses need to be known.
Further, this method assumes that both noise and speech have nor-
mal distributions with zero mean, which seem to be overly restric-
tive assumptions. In the rest of this paper we refer to this method
as the “Gaussian” approach, and compare our technique with it.
LR tests can be improved with larger mixture models, but these
are computationally expensive.

Other techniques make speech / non-speech decisions at the
frame level (i.e. they estimate a 0/1 indicator function), and smooth
this over time to estimate the probabilities [2]. Some others use
hard or soft voting mechanisms on top of such indicator functions
estimated at the time-frequency atom level [3]. One technique that
is frequently used to estimate probabilities is a linear estimation
model: p = A + BX , wherep is the probability,X is the input
(this could be LR scores or observed features like energies), andA
andB are the parameters to be estimated. One of the probability
estimators in [2], even though not explicitly formulated this way,
effectively adopts the linear model and uses the log of smoothed
energy as the input. The two most important problems with the lin-
ear model are that the predicted probabilities can be greater than 1
or less than 0 (high and low thresholds must be set right to avoid
this problem), and the variance of the error in estimation depends
on the input variable.

2.2. Logistic Regression

As an alternative to models discussed above, we propose the use
of a “logit” or a logistic regression model [6] for speech detection.



The class probability is estimated as:

pX =
1

1 + exp(−A−BX )
, (1)

whereX is the input andA andB are the parameters of the system.
These parameters are estimated by minimizing the cross-entropy
error function [6]:

E = −
∑
X

tX log(pX ) + (1− tX ) log(1− pX ), (2)

wheretX s are the target labels for the training dataX , and hence
is discriminative. This also provides the maximum likelihood esti-
mate of the class probability.

The logit function provides very good estimates of the poste-
rior probability of the membership of a classp(C|X ) for a wide va-
riety of class conditional densities of the dataX [6]. If the densities
are multivariate Gaussians with equal variances, then this estimate
is the exact posterior probability. But to emphasize, normality is
not a necessary condition for logit to be effective. Further, the logit
function does not run into all the other problems associated with
the Gaussian models mentioned in the previous paragraph. The
model has many other advantages: The parameters can be easily
calculated using gradient descent based learning algorithms. If the
input vectorX contains data from adjacent time and frequency
atoms, the logit function becomes an easy way to incorporate both
temporal and spectral correlation into the decision without overly
worrying about the underlying distributions. To summarize, the
attraction of this technique is its richness and simplicity.

2.3. Stacked Architecture

One additional advantage of the logit model is the flexibility it
provides in engineering a useful architecture. Some applications
need the probability of speech to be estimated at both the time-
frequency atom level and at the frame level. In a classification
problem, it is known that the transform of a variable that has mini-
mum Bayes risk is the one that estimates the posterior class proba-
bility of its true class [8]. Looking at the frame level detection from
this perspective, we can easily see that the conditional class prob-
abilities for each time-frequency atom is the best possible input
for the frame level detector. This suggests a bi-level architecture
where the first level of detectors operate at the atom level, and the
outputs of these are used as inputs to a frame level speech detector.
Posterior class probabilities have been used as features for HMM
based speech recognition (e.g. [9]).

The first level has one detector for each atom. The input to
each of these detectors is the vectorX (k, t) = [Y(k − a : k +
a, t − i : t + i)] which is the concatenation of the featureY in
the time-frequency neighbourhood of the relevant time-frequency
bin (k, t). If a delay in processing cannot be tolerated, the feature
can be strictly causal and need not include future frames. For the
single-layer system,X in the above equation is substituted by its
mel-band derivative (see Section 3.1).

Once the first layer of detectors compute the probabilties
P(k, t), these can be concatenated in a fashion similar toX and
fed to a single detector in the second layer. This architecture has
some similarities to the “stacked generalizer” proposed by Wolpert
[7] for minimizing bias in learning. In Wolpert’s work, the first
and second layers both estimate the same function, except they
operate on different input spaces. Thus our proposed classifier can
be called “stacked” if we interpret each atom level detector to be a
“poor” predictor of the frame level speech presence.
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Fig. 1. Stacked (left) or an unstacked (right) architectures can be
used based on the needs of the application.

3. POSTERIOR SNR BASED FEATURES

An important desired characteristic of a speech detector is that the
features it uses remain sufficiently simple. Complex features de-
rived solely for the purpose of detection add to the computational
complexity. In this paper, we introduce a very simple set of fea-
tures based on the estimated signal-to-noise ratio (SNR). Since the
actual SNR of each frame can be known only by estimating the
actual speech and noise components of each given noisy frame,
it is easier to deal with theestimated posterior SNRwhich is the
ratio of the energy in the given frameY to estimatednoise en-
ergyλ̂: ξ(k, t) = |Y (k, t)|2/λ̂(k, t), wherek, t are the frequency
and time indices respectively. The terminology used here was first
proposed by McAulay and Malpass [1]. The estimate of the ac-
tual SNR (also referred to as theprior SNR[1]) can also be used
as a feature. The likelihood ratio based method proposed in [5],
in fact, uses an estimate of such a feature. Our preliminary ex-
periments show that this feature performs better than the poste-
rior SNR based feature. But estimating this is equivalent to doing
speech enhancement [2, 3], and can be complicated. Hence, for
the sake of simplicity, we will not use it in this paper. To com-
pute the spectrum we use modulated complex lapped transforms
(MCLTs) [10]. MCLT is a particular form of cosine modulated
filter-bank that allows for perfect reconstruction. FFTs can easily
be used instead of MCLTs without changing any other procedure
in this paper.

Since the features are being fed to a learning machine, some
preprocessing is needed to improve generalization and learning ac-
curacy. First, since short term spectra of speech are modeled well
by log-normal distributions, we use the logarithm of the SNR es-
timate, rather than the SNR estimate itself. Second, we normalize
the input so that its variance is 1. In this paper, we precompute
the variance for each coefficient over the training set and use it
as the normalizing factor. Thus our new feature is a normalized
logarithm of the estimated posterior SNR (nlpSNR), and is written
as:

Y(k, t) =
1

2σ(k)
{log |Y (k, t)|2 − log λ̂(k, t)},

whereσ(k) is a normalizing factor, and all other variables are as
defined earlier in this section.

3.1. Mel-transform for single layer system

For a single layer system which does not need atom level decisions,
we can use features that have poorer frequency resolution. For



example, both|Y |2 andλ̂ can be converted into Mel-band energies
before nlpSNR is computed.

3.2. Automatic noise tracking

The noise powerλ can be tracked using various algorithms [2, 4].
In this work, we use a two level online automatic noise tracker.
The initial estimate is bootstrapped using a minima tracker (e.g.
[4]) which is used to compute the probability of the presence of
speech similar to the method in [2]. Following that, a maximum
a posterioriestimate of the noise spectrum is obtained. Since the
focus of this paper is not the estimate of the noise, we will eschew
discussing it in further detail.

4. EXPERIMENTS AND RESULTS

4.1. Database

We use the well known AURORA database [11] for our exper-
iments. The database has spoken digits from male and female
speakers with different types of noises added to clean signals at
20, 15, 10 and 5dB SNR levels. We are interested only in two
subsets of the database named TESTA and TESTB. The type of
noise in TESTA and TESTB are different, though the speakers are
the same. We chose 100 male and 100 female speaker data from
TESTA for training the logistic regressors; 10 male and 10 female
speaker data from TESTA for validation during training, and 100
male and 100 female speaker data from TESTB for testing. We en-
sure that the speakers selected for testing from TESTB are entirely
different from those in the training set. Also the data at 5dB SNR
is not used for training. In total, about 55000 frames are available
for training and over 68000 frames for testing.

The knowledge that this is a “stereo” database i.e. the data
contains “clean” signals and their corresponding noisy counter-
parts, is usedonly to generate the true labels at the atom and frame
level needed for training. This information wasnotused for online
noise estimation or in testing.

The true labels were generated by thresholding the energy in
each time-frequency bin/frame of the clean data. The thresholds
were selected so that all speech events were retained. This was ver-
ified through listening experiments on a small fraction of the train-
ing data. The threshold was tuned so that the low energy speech
events and the transitions just barely made the cut.

A 128-pt MCLT was used to compute the spectrum every 16ms
using a 32ms window. For each time indext, the input vector to the
logit functions contained all the spectral components of the feature
vector att and its immediate neighbors in time (t−1 andt+1). All
the logit parameters in this paper were estimated using stochastic
gradient learning [6].

4.2. Comparing Features

The first set of experiments demonstrate the effectiveness of the
nlpSNR feature over other spectral features. The classifiers were
single layer logistic regressors for frame level speech detection.
The features are transformed into 20 mel-band energies for classi-
fication. We choose two other features for comparison, each with a
different method for spectral normalization: (1) variance normal-
ized noisy speech spectra (referred to as “Y (normalized)”, and (2)
noise normalized spectra (referred to as “Y (min-max)”, based on
maxima and minima tracking in the spirit of [4] except that fea-
ture is normalized thus:Y = (Y (t) − Ymin)/(Ymax − Ymin).

Ymax andYmin are calculated over a recent time period so that
they can track the local signal and noise variations. The results
are shown in Figure 2. The plots show the ROC curve (correct de-
tection of speech frames vs. false alarm). The “minimum error”
numbers, where the weighted error (false alarm*(ratio of noise
frames)+ false rejetion*(ratio of speech frames)) is the least, are
also listed for each graph. The axes are shortened to highlight the
upper-left quadrant of the plane. We can clearly see that the new
feature outperforms the others at all SNRs.
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Fig. 2. ROC curves comparing features at various SNRs: (1)
New nlpSNR feature (solid line), (2) Signal power with elemen-
tary noise compensation (dashed line), and (3) Variance normal-
ized signal power (dotted line). Minimum error numbers are in-
scribed.

4.3. Atom level decisions

Now we demonstrate the strength of the classifier. We compare our
proposed approach to the “Gaussian” method mentioned earlier
[5]. The first set of experiments are at the atom level. We use 128
detectors - one for each bin. Here we only show results from one
frequency bin - the one centered at 1000 Hz. The results at this bin
summarize the performance in most other bins. The rationale for
this statement will be clear as we explain the results. ROC curves
for four different SNRs are shown in Figure 3. The SNR labels
in the figure do not reflect the SNR in the bin, but the SNR of the
entire file. So for frequency bins that are not covered by the noise
spectrum, the bin SNR will be much higher. We can see from
the figure that in bins with high SNR (e.g. 20dB) the Gaussian
method is slightly better. But as the SNR worsens, the proposed
method significantly outperforms it. In general, in this database,
the bin SNRs are higher at very high indices. So for frequency bins
closer to 4KHz, the Gaussian does slightly better e.g. at 3KHz, the
average minimum error over 20dB-5dB data range is 9.85% for
the new system versus 8.35% for the Gaussian. At the same time,
in frequency bins including a lot of noise, the new method is much



better e.g. in the 500Hz bin the new method has a minimum error
of 15.38% vs. 23.35% for the Gaussian.
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Fig. 3. ROC curves for detection of speech in the frequency band
around 1000Hz at various SNRs using (1) the proposed logit de-
tector (solid line), and (2) the Gaussian method [5] (dotted line).
Minimum error numbers are inscribed.

4.4. Frame level decisions, Stacked vs. Single level

In this section, we compare classifiers at the frame level. Figure
4 shows the ROC curves for three cases: the new method using
both a stacked and an un-stacked architecture, and for the Gaus-
sian method. The stacked and the unstacked methods perform very
similarly and both of them outperform the Gaussian method in all
parts of the ROC curve. Hence the new method will be better than
the Gaussian method for any application.

Since the performance of the stacked and single layer system
are so close, the choice of architecture can be made based only on
the application. If atom level decisions are also needed in addition
to frame level decisions, then the stacked classifier can be used;
otherwise the single level network will suffice.

One advantage of a logistic regression system is that it is possi-
ble to evaluate the influence of each component of the input vector
by analyzing the significance of the corresponding weight (using
for example the Wald statistic). Through such an analysis, it is
possible to use fewer input coefficents. Due to lack of space we
postpone a detailed discussion for future publications.

5. SUMMARY

We present a simple, yet effective solution for estimating the prob-
abilty of the presence of speech at the frame level using logistic
regression based detectors. We propose a new feature (nlpSNR)
which is easy to estimate online and aids detection significantly. It
is also designed to fit well with our back-end classifier. The detec-
tor is flexible, so we can choose to implement it either in a stacked
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Fig. 4. ROC curves comparing the new design at various SNRs
using (1) a stacked architecture (solid line), (2) a single layer ar-
chitecture (dotted line) and (3) the Gaussian based approach [5]
(dashed line). Minimum error numbers are inscribed.

architecture or in a uni-level architecture based on the needs of the
application. Both these methods are equally effective. We present
convincing results on the AURORA database to demonstrate the
strength and flexibility of the new approach.
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