Distributed Bayesian Learning
with Stochastic Natural-gradient EP
and the Posterior Server

Yee Whye Teh

in collaboration with:
Minjie Xu, Balaji Lakshminarayanan,
Leonard Hasenclever, Thibaut Lienart, Stefan Webb,
Sebastian Vollmer, Charles Blundell
Bayesian Learning

- Parameter vector X.
- Data items $Y = y_1, y_2, \ldots, y_N$.

Model:

$$p(X, Y) = p(X) \prod_{i=1}^{N} p(y_i|X)$$

Aim:

$$p(X|Y) = \frac{p(X)p(Y|X)}{p(Y)}$$

Inference algorithms:

- Variational inference: parametrise posterior as q_θ and optimize θ.
- Markov chain Monte Carlo: construct samples $X_1 \ldots X_n \sim p(X|Y)$.
Machine Learning on Distributed Systems

- Distributed storage
- Distributed computation
- costly network communications

![Diagram showing distributed storage and computation](image_url)
Parameter Server

- Parameter server [Ahmed et al 2012], DistBelief network [Dean et al 2012].

Parameter server:
- parameter x

Worker:
- $x_i = x$
- updates to x_i'
- returns
 $$\Delta x_i = x_i' - x_i$$
Embarassingly Parallel MCMC Sampling

“Combine” samples together.
\[\{X_i\}_{i=1\ldots n} \]

Treat as independent inference problems. Collect samples.
\[\{X_{ji}\}_{j=1\ldots m, i=1\ldots n} \]

- Only communication at the combination stage.

Embarassingly Parallel MCMC Sampling

- Unclear how to combine worker samples well.
- Particularly if local posteriors on worker machines do not overlap.

Figure from Wang & Dunson
Main Idea

- Identify regions of high (global) posterior probability mass.
- Shift each local posterior to agree with high probability region, and draw samples from these.
- How to find high probability region?
 - Defined in terms of low order moments.
 - Use information gained from local posterior samples (using small amount of communication).

Figure from Wang & Dunson
Tilting Local Posteriors

- Each worker machine j has access only to its data subset.

\[p_j(X \mid y_j) = p_j(X) \prod_{i=1}^{I} p(y_{ji} \mid X) \]

where $p_j(X)$ is a local prior and $p_j(X \mid y_j)$ is local posterior.

- Adapt local priors $p_j(X)$ so that local posterior agree on certain moments

\[\mathbb{E}_{p_j(X \mid y_j)}[s(X)] = s_0 \quad \forall j \]

Expectation Propagation

- If N is large, the worker j likelihood term $p(y_j \mid X)$ should be well approximated by Gaussian

$$p(y_j \mid X) \approx q_j(X) = \mathcal{N}(X; \mu_j, \Sigma_j)$$

- Parameters fit iteratively to minimize KL divergence:

$$p(X \mid y) \approx p_j(X \mid y) \propto p(y_j \mid X) p(X) \prod_{k \neq j} q_k(X)$$

$$q_j^{\text{new}}(\cdot) = \arg \min_{\mathcal{N}(\cdot; \mu, \Sigma)} \text{KL}(p_j(\cdot \mid y) \parallel \mathcal{N}(\cdot; \mu, \Sigma)p_j(\cdot))$$

- Optimal q_j is such that first two moments of $\mathcal{N}(\cdot; \mu, \Sigma)p_j(\cdot)$ agree with $p_j(\cdot \mid y)$

- Moments of local posterior estimated using MCMC sampling.

- At convergence, first two moments of all local posteriors agree.

[Minka 2001]
Posterior Server Architecture
Bayesian Logistic Regression

- Simulated dataset.
 - $d=20$, # data items $N=1000$.
- NUTS based sampler.
 - # workers $m = 4,10,50$.
 - # MCMC iters $T = 1000,1000,10000$.
- # EP iters k given as vertical lines.
Bayesian Logistic Regression

- MSE of posterior mean, as function of total # iterations.
Stochastic Natural-gradient EP

- EP has no guarantee of convergence.
- EP technically cannot handle stochasticity in moment estimates.
- Long MCMC run needed for good moment estimates.
- Fails for neural nets and other complex high-dimensional models.

Stochastic Natural-gradient EP:
 - Alternative variational algorithm to EP.
 - Convergent, even with Monte Carlo estimates of moments.
Demonstrative Example

EP (500 samples)

SNEP (500 samples)
Comparison to Maximum Likelihood SGD

- Maximum likelihood via SGD:
 - DistBelief [Dean et al 2012]
 - Elastic-averaging SGD [Zhang et al 2015]

- Separate likelihood approximations and states per worker.
 - Worker parameters not forced to be exactly same.
 - Each worker learns to approximate its own likelihood.
 - Can be achieved without detailed knowledge from other workers.

- Diagonal Gaussian exponential family.
 - Variance estimates are important to learning.
Experiments on Distributed Bayesian Neural Networks

- Bayesian approach to learning neural network:
 - compute parameter posterior given complex neural network likelihood.
 - Diagonal covariance Gaussian prior and exponential-family approximation.
- Two datasets and architectures: MNIST fully-connected, CIFAR10 convnet.

- Implementation in Julia.
 - Workers are cores on a server.
 - Sampler is stochastic gradient Langevin dynamics [Welling & Teh 2011].
 - Evaluated on test accuracy.
MNIST 500x300

Varying the number of workers

epochs per worker

test error in %

- 1
- 2
- 4
- 8
- Adam

Distributed Bayesian Learning with SNEP and Posterior Server

Yee Whye Teh
MNIST 500x300

Power SNEP - Varying the number of workers

test error in %

epochs per worker

- 1
- 2
- 4
- 8
MNIST 500x300

Comparison of distributed methods (8 workers)
MNIST Very Deep MLP

![Graph showing test error in % with epochs per worker for 16 workers. Graph includes lines for ASGD, EASGD, and p-SNEP.]
CIFAR10 ConvNet

Comparison of distributed methods (8 workers)

test error in %

epochs per worker

- SNEP
- p-SNEP
- A-SGD
- EASGD
- Adam
Concluding Remarks

- Novel distributed learning based on a combination of Monte Carlo and a convergent alternative to expectation propagation.

- Combination of variational and MCMC algorithms.
 - Advantageous over both pure variational and pure MCMC algorithms.

- Being Bayesian can be advantageous computationally in distributed setting.

- Thank you!