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ABSTRACT cation or mis-verification functions [11, 12] of these discriminative

Speaker Verification can be treated as a statistical hypothesis testi fasures. Although such full-scale discriminative models tend to

problem. The most commonly used approach is the likelihood rati 'Fperfor.m generative models, they often need much more data to
test (LRT), which can be shown to be optimal using the Neymann-ram' This can be a problem when amount of speaker training data

Pearson lemma. However, in most practical situations the Neymantjls- limited or when g_etting impostor data is difficult (e.g. _Where each
Pearson lemma does not apply. In this paper, we present a more ferson’s password in unique). In such cases, a generative model may
bust approach that makes use of a hybrid generative-discriminati\}i)—ze preferable.

framework for text-dependent speaker verification. Our algorithnl) We adopt a third approach in this paper which strikes a balance

makes use of a generative models to learn the characteristics of E“’Veer_‘ the alternat_lve_s. We chopse t_o "‘?e_p th_e speakt_e_r models
%eneratlve while designing tests using discriminative classifiers. In

speaker and then discriminative models to discriminate between e . " . .
b xt dependent speaker verification there is an additional dimension

speaker and an impostor. One of the advantages of the proposed%ﬁ - .
gorithm is that it does not require us to retrain the generative model° this problem - wh_en the underl_ylng models are HMMS' we qlo
ot know how to design tests that incorporate temporal information

The proposed model, on an average, yields 36.41% relative improvex . .
ment in ERR over a LRT. 6, 7]. In such cases we can take from LMPTs the idea of using local

scores or temporal scores as part of the decision making criterion,
Index Terms— Speaker Verification, Discriminative Models, e.g. in text dependent speaker verification scenarios, while design-
Boosting. ing such test statistics, we can further consider likelihood informa-
tion from the sub-parts of the HMM like word models or states. In
1. INTRODUCTION this paper, we will consider a specific form of text dependent sys-
tem called fixed-vocabulary systems. We specifically consider digit
Often speaker verification (SV) is formulated as a statistical hypothbased word models. Hence our local scores will be based on the digit
esis test. The most commonly used approach is the likelihood ratibased models.
test (LRT) (shown by the Neyman-Pearson lemma to be optimal in  There have been some examples in literature that follow the ap-
certain cases [1]), where the likelihood ratio test statistic is comparegroach that we are using, e.g. in [13] SVMs are used for classifica-
to a threshold. The likelihoods of the data are computed using tw&on. The minimum verification error based approach in [12] can be
competing generative models, one describing the null hypothesis (iflought of as using logistic function on the model scores. Utterance
our case, the targeted speaker) and the other describing the alternafil frame level scores have been used for verification in [15] and
hypothesis (everything except the targeted speaker). Such a testf@s confidence measures for speech recognition in [16]. One disad-
often treated as being uniformly most powerful (UMP), assumingvantage with the above approaches is that the decision about which
that the threshold is independent of the testing data and the altefiéatures to use for classification has to be done in advance, and the
nate hypothesis. This assumption fails because, among other thingdassifiers such as SVMs can be computationally expensive to train.
we do not know the exact form of the underlying distribution and ~ What we need is a discriminative classifier that is as simple as
such distributions are estimated using limited training data. Furthegossible, and one that chooses the best set of features from a wide
the alternate hypothesis is composite, making it difficult to modelset of available features automatically. Boosting is a classification
Instead of designing UMPTSs, some methods have chosen to desiffi@mework that provides such a flexibility, and we will use this ap-
locally most powerful tests (LMPTSs) [1, 2], replacing the compositeproach in this paper. This approach provides additional flexibility in
hypothesis with a set of simple hypotheses using locally competingV - for example if small changes are made to one part of the data
models. Examples of such approach are cohort methods based ehthe model e.g. if more impostor data is available, or if the speaker
competing speakers [5, 3] or competing phone models [4] model need be updated by adding a new digit model, the hypothesis
One of the goals of this paper is to present a more robust agest can be quickly updated, possibly by only adding another stage
proach to such a testing. Since existing theory is not applicable, w boosting, without having to retrain the entire system. In contrast,
can adopt generalized tests [2], where the test statistic is a functiggystems like [17] where the GMMs themselves are boosted, require
of the computed likelihoods! = f(L(X|A®), L(X|A)), A andA ~ more extensive retraining every time small changes are needed.
are the spegkgr and alterqati\{e modgls respeqtively. These general- 2. BASELINE SYSTEM
ized test statistics can be discriminative. Sometimes the model them-

selves may be trained discriminatively to optimize some misclassifill this section, we describe our baseline text-dependent SV sys-
tem. During enroliment the system parameters are adjusted to bet-

*This work was done at Microsoft Research ter model the speaker (user). A useis first asked to repeat her




passwordn times. These enrollment data are then used to adaptlasses. However, in the case of the LRT, all scores are given an
the speaker independent modelg (o yield speaker specific mod- equal weight. To illustrate the above point, we use a simple exam-
els (A°) using maximum likelihood linear regression (MLLR) [9]. ple: LetW = {w:,w2,...,w,} and thatw; generatecO”ll tes
As the amount of adaptation data is limited, we make use of globale., if we ran forced alignment witNV, thent, ; andt.; would be
adaptation, i.e. we estimate a single rotation and translation for athe start and end of th&" word w;. Thus (if we neglect language
the means in the recognizer. model probabilities) we have that,

During verification there are two inputs: (a) a claim such as s
“user X claims to be uses”, and (b) the input speech signal con- f =10gp(01:4|A7) —log p(O1:4[A) @
taining a pass-phrase as spoken by user The problem can be ~ w0, s ~ w0,
recast as accept/reject the hypothe&ls, : the given speech signal ~ Z og (O, IA7) — Z log p(O ..,
was spoken by usef and contains the users pass-phrase. = =

Let O;.r be the features vectors extracted from the speech sigAs it can be seen every word gets an equal weight. Consider the
nal. In this paper, unless otherwise stated, we assume that the usepljective function
pass-phrase consists of a sequeneewbrds, W = {w, wa, ..., wn}. n
The verification step involves the following: f =~ Z ai logp(O; 4, IA°) — Zbi log (O 4. . IA) (3)

1. We run forced alignment using speaker independent models i=1
A on O1.7. The score returned by recognizer in this step iswhere the weights\ = {a;,b;},1 < i < n are learnt to optimize
denoted by (O1.7|A, W), overall SV performance. Intuitively, it would make sense to impose
the constraint,;, b; > 0V 4. Further, the classical approach is only a
special case of the weighted formulation, i~ f', if, a; = b; =
1, V i. The question now is whether we can find a principled way
3. Finally, we use(O1.7|A, W) andp(O1.1|A®, W) to either  to learn the weights.. For this consider a small modification of the
accept or reject the hypothesis, above,

A)

2. We repeat the step above, but replachgith A°. Let the
score here bp(O1.7|A%, W),

In drawing a parallel with text-independent SV, the speaker inde- .
pendent modelX) plays the same role as the universal background f~' ~ Zal [bgp(ot;i;te,i\f\ ) —logp(Oy) 4, %\A)] (4)

model (UBM) [5]. A classical approach to hypothesis testing is to i=1
compute, This has a special significance in the light a popular learning ap-
proach. We can think of each of the terﬂngp(owil JA°) —

F =

IL(/X ’:VWOOLT) = p(OOhT'[X "X‘]]) (1) logp(O7 ., .|A) as being a ‘weak’ classifier, and then the final
(A, W|O1.7) p(Orr|A, W) cIaSS|f|cat|on is based on a weighted sum of these weak classifiers.
where L(A®, W|O1.7) represents the likelihood of the modgf In spirit, this is very similar to the approach of boosting wherein a

given the observations and the word sequeWee A more familiar number of weak classifiers are combined to produce a strong clas-
formis f = log F' = log p(O1.7|A°, W) — log p(O1.7|A, W) = sifier. Note that, while in above discussion, we use a weighted sum
I(A*, W|O11) — I(A W\O1-f). The hypothesis is then accepted & the word level, in theory the sum can be formed at other sub-
or rejected based on a simple threshoidingfotor f). This is the  Uttérance levels, such as state, phone, triphone, etc.

so-called likelihood ratio test (LRT). Neyman-Pearson lemma sug-

gests that, if both the training and test sets are drawn from the same 4. BOOSTING
underlying distribution, then for a given significance level, there is
no test more powerful than the LRT. Boosting is a technique for sequentially training and combining a

In practice though, the Neyman-Pearson lemma cannot alwaygPllection of classifiers in such a way that the later classifiers make
be applied. This is because (a) as the amount of training data is onip for the deficiencies of the earlier ones [10]. In boosting literature
finite, it is not possible to estimate the true underlying distribution€ach classifier is referred to as a weak learner, i.e., each classifier on
that generated the data (training and test), and (b) it is also knowits own is only capable of producing an output that is slightly better
that HMM based speech models are approximations of the actugﬂan chance, but when combined form a powerful classifier. The
speech process. As a result, we can no longer claim that the LRT loosting algorithm that we used in this work is outlined in table 1.

the most powerful hypothesis test. In section 5.2 we discuss what feature3 ywere used and how
they were obtained from the recognizer. We make use of decision
3. WEIGHTED LIKELIHOOD RATIO TESTS trees as weak learners in this work. Each node in the tree is essen-

While the discussion above is applicable to LRTs in general, in thidially a decision stump operating on a single dimensiox ¢fefer
section we focus on some inherent shortcomings of LRT for SV. Théo step1 of the boosting algorithm). In other words, at each iter-
final score that is used in the LRT, which is the score at the utteranc@tion, the algorithm selects one element (dimension) fsoamd a
(sentence) level is a function of the scores at a more sub-utteran€@rresponding threshold such that it minimizes the weighted training
level, for example, the state level, or phone level, or syllable levelerror. Note that the pair (dimension and threshold) are jointly chosen
or even the word level. The recognizer in essence maps these Sljg-minimize the Weighted error. Intuitively, this is a discriminative
unit scores into a score at the utterance level. Since the recognizerfRature selection strategy. Thus in our cdsgx) = I(z? > K,,),

not necessarily trained to optimize the SV performance, we cannatherez? is some element af that was chosen during thé" iter-
expect it to learn the optimal mapping (from the SV perspective) ofation, K, is its corresponding threshold aiids the indicator func-

the scores from the sub-unit level to the utterance level. Further, ifion, that returnd if the condition is true an@ otherwise. Thus the

it is the case that certain classes of words provide more speaker disal decision function is given byl (x) = Zle apI(2? > Kp).
criminability than others, then these set of words should in essencehus, we make use of boosting to learn thgsee equation 4) and
get a larger weight in the verification process in comparison to othean associated threshold in a discriminative fashion.



Given a training sefx;, y; }.».,, wherex; are the feature vec} Length of pass-phrase LRT | Boosting
tors derived from the recognizer (i.e. the generative model),jand 2 digits 3.35 2.12
yi € {0,1} are the labels, initializ§ D} }}L, = L. HereD; 4 digits 1.89 1.62
represents the weight on thi& sample in the training set. 6 digits 0.63 0.263

For iterationgp =1, ..., P, do

in 9
1. Train a weak learner based on the weighted training er- Table 2. Equal Error Rate (in %)

ror, let this classifier bé,,.
2. Computer, = 3N | D? |y — hy(xi) |-

3. Seta, = Lin(3:2).

14ep

amples of various two digit sequences spoken by the users. It is
straightforward to construct multiples of two digits (i.e. four, six,
ot B (x etc.) sequences by simply concatenating these two digits sequences.

4. UpdateDI'*! = DFe ot (vonn 7'))’ where f(m, n) In the above process, care was taken to ensure that original dynam-

returns+1 whenm = n and,—1 otherwise. ics of the speaker was preserved, i.e., an utterance labeled “start” was
5. Renormalize, D**' = J;f“ . where Zy41 = not concatenated at the end and so on. For the purposes of training

N 1 p+1 the boosting algorlthm,_ we split _the corpus into a training, develop-

> DY ment and test set. While choosing these sets, we ensured that each
speaker had a fairly equal representation in each set to overcome un-
due bias towards any speaker. The utterances in the training set were
also used to produck® using MLLR.

Final classifier is given by (x) = 211;1 aphp(x)

Table 1. Boosting Algorithm
5.2. Feature Sets

In this section we discuss the features that were used for the boosting

5. EXPERIMENTAL SETUP stage. As explained in section 2, given an utterance from spéaker
o we make two passes using the recognizer yielding séoAss W |O1.1)
5.1. Corpus Description andi(A, W|O1.7). In addition, we also obtain the word level scores,
. . . . S wi|OS L), ,wil0Y ., ), 1 <4< n.
In this section we describe the corpus that was created for this worl.(A WilOr ]t ) UA Wil Of [y, ), 1 < 2 < . For each level

We started with the YOHO corpus [8] which was designed for digit I.e. word and utterance) we use the following features,

based text-independent SV task. It consists of 144 speakers, each 1. the raw likelihoods resulting from each recognizer pass,
having an enroliment and verification section. Users are prompted 2. the difference between the raw likelihoods (LR), and
to utter a randomly generated strings of six digits. For example, “26-
81-56", in which case, the user says “twenty six sil eighty one sil fifty
six sil” (sil refers to a short period of silence). As the prompts areWe do not use utterance level durations, so the last point in the above
randomly generated, the utterances in the enrollment and verificatiosnly applies to the word level. Further, we also append the normal-
sets do not match, the corpus cannot be used for the test-dependértd likelihoods (normalized by number of frames) in all the above
task. This required modifying the YOHO corpus to suit the problemcases. Furthermore, the negative of all the likelihoods in the above
at hand. cases are also added to the feature vector. This is because of the
For all experiments in this paper we make use of the Microsoffiature of our weak learner, i.e. the thresholding is always in one
telephony engine as the generative model. The recognizer is a stafirection (see section 4). Thus, if the user’s pass code consists of
dard HMM system, trained on about 2000 hours of data (digits an#vords, we extract3n + 12 features from the recognizer outputs. In-
short commands) with 94k Gaussians. The frontend used MFCQuitively, while some of the features used above might seem to lack
like features reduced to 36 coefficients with HLDA. During decod-the speaker discrimination capabilities, the basic characteristics of
ing, all possible words were allowed in a uniform loop grammar. Weboosting allow us to choose as many features as possible, and then
first ran the recognizer on the entire YOHO corpus. The word erlet the algorithm pick the best features discriminatively.
ror rate was found to b&.6%. We then removed the utterances that
were mis-recognized, yeilding a corpus whose error rate Was 6. RESULTS
Next we ran forced alignment on these utterances using the refer-
ences (as the WER &%, the viterbi hypothesis and reference are Table 2 shows the equal error rate (EER) results of our SV sys-
the same). The resulting segmentations were used to chop the sesm. We used the CUT YOHO corpus with varying lengths of pass-
tences into three segments, each containing two digits. For examplghrases. In the 2-digit case itself there were over a 100,000 positive
an utterance “26-81-56" was chopped to form three utterances corxamples and 400,000 negative examples in the test set. It is im-
taining “26”, “81" and “56". Further each of these files was labeledportant to highlight the fact that in our test set all impostors know
‘start’, ‘middle’ or ‘end’ based on their origin. In the above exam- the users password, i.e., we are testing the system in the worst case
ple, “26” was labeled as start, “81” was labeled middle and “56”scenario. We made use of 4 utterances to adapt the speaker inde-
labeled end. We refer to the resulting database as the CUT YOH@endent modeld to speaker dependent model. The column la-
corpus. The error rate on the CUT YOHO corpus was found to béeled “LRT” in table2 shows the results obtained using a simple
1.6%. We hypothesize that these errors might be due to faulty sedikelihood ratio test as described in section 2. As expected the EER
mentation. The files that resulted in an error were removed from theecreases with increasing length of the pass-phrase. The column
corpus yeilding a CUT YOHO corpus with an effective an error ratemarked “Boosting” shows the results of boosting the scores from
of 0%. the generative model. In each case, the optimal number of boosting
In the resulting CUT YOHO corpus, we had a number of ex-iterations was determined on a held-out set. Note that we learn a

3. the durations.



Feature Relative Weight optimal performance in clean conditions do not always work for
Norm., LR Utterance 0.23 noisy conditions. Thus, we plan on testing the boosting approach
Norm., LR first word 0.06 in noisy conditions. As boosting trains the classifiers in a ‘maxi-
Norm., LR second word 0.19 mum margin’ sense, we expect them to generalize better to noisy
Norm., LR third word 0.16 conditions.
Norm., LR fourth word 0.04
Un-norm., second word\* 0.1 8. REFERENCES
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