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1 INTRODUCTION

Can we safely use Haskell to implement a low-latency server that caches a large dataset in-memory? Today,
the answer is “no”[12], because pauses incurred by garbage collection (gc), observed in the order of 50ms or
more, are unacceptable. Pauses are in general proportional to the size of the heap. Even if the gc is incremental,
the pauses are unpredicable, di�cult to control by the programmer and induce furthermore for this particular
use case a tax on overall throughput. �e problem is: the gc is not resource e�cient, meaning that resources
aren’t always freed as soon as they could be. Programmers can allocate such large, long-lived data structures
in manually-managed o�-heap memory, accessing it through ffi calls. Unfortunately this common technique
poses safety risks: space leaks (by failure to deallocate at all), as well use-a�er-free or double-free errors just like
programming in plain C. �e programmer has then bought resource e�ciency but at the steep price of giving up
on resource safety. If the type system was resource-aware, a programmer wouldn’t have to choose.

It is well known that type systems can be useful for controlling resource usage, not just ensuring correctness.
A�ne types [43], linear types [23, 47], permission types [48] and capabilities [3, 10] enable resource safe as
well resource e�cient handling of scarce resources such as sockets and �le handles. All these approaches have
been extensively studied, yet these ideas have had relatively li�le e�ect on programming practice. Few full-scale
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languages are designed from the start with such features. Rust is the major exception [31], and in Rust we see
one of the a�endant complications: advanced resource-tracking features puts a burden on new users, who need
to learn how to satisfy the “borrow checker”.

We present in this paper the �rst type system that we believe has a good chance of in�uencing existing
functional programs and libraries to become more resource e�cient. Whereas in Rust new users and casual
programmers have to buy the whole enchilada, we seek to devise a language that is resource safe always and
resource e�cient sometimes, only when and where the programmer chooses to accept that the extra burden of
proof is worth the be�er performance. Whereas other languages make resource e�ciency opt-out, we seek to
make it opt-in. We do this by retro��ing a backward-compatible extension to a Haskell-like language. Existing
functions continue to work, although they may now have more re�ned types that enable resource e�ciency;
existing data structures continue to work, and can additionally track resource usage. Programmers who do
not need resource e�ciency should not be tripped up by it. �ey need not even know about our type system
extension. We make the following speci�c contributions:

• We present a design for Hask-LL, which o�ers linear typing in Haskell in a fully backward-compatible
way (Section 2). In particular, existing Haskell data types can contain linear values as well as non-
linear ones; and linear functions can be applied to non-linear values. Most previous designs force an
inconveniently sharp distinction between linear and non-linear code (Section 6). Interestingly, our design
is fully compatible with laziness, which has typically been challenging for linear systems because of the
unpredictable evaluation order of laziness [47].

• We formalise Hask-LL as λq→, a linearly-typed extension of the λ-calculus with data types (Section 3). We
provide its type system, highlighting how it is compatible with existing Haskell features, including some
popular extensions. �e type system of λq→ has a number of unusual features, which together support
backward compatibility with Haskell: linearity appears only in bindings and function arrows, rather
than pervasively in all types; we support linearity polymorphism (Section 2.3); and the typing rule for
case is novel (Section 3.3). No individual aspect is entirely new (Section 6.7), but collectively they add
up to an unintrusive system that can be used in practice and scales up to a full programming language
implementation with a large type system.

• We provide a dynamic semantics for λq→, combining laziness with explicit deallocation of linear data
(Section 4). We prove type safety, of course. But we also prove that the type system guarantees the key
memory-management properties that we seek: that every linear value is eventually deallocated by the
programmer, and is never referenced a�er it is deallocated.

• Type inference, which takes us from the implicitly-typed source language, Hask-LL, to the explicitly-typed
intermediate language λq→, is not covered this paper. However, we have implemented a proof of concept,
by modifying the leading Haskell compiler ghc to infer linear types. �e prototype is freely available1,
and provides strong evidence that it is not hard to extend ghc’s full type inference algorithm (despite its
complexity) with linear types.

Our work is directly motivated by the needs of large-scale low-latency applications in industrial practice. In
Section 5 we show how Hask-LL meets those needs. �e literature is dense with related work, which we dicuss
in Section 6.

2 A TASTE OF HASK-LL

We begin with an overview of Hask-LL, our proposed extension of Haskell with linear types. All the claims made
in this section are substantiated later on. First, along with the usual arrow type A→ B, we propose an additional

1URL suppressed for blind review, but available on request
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arrow type, standing for linear functions, wri�en A ( B. In the body of a linear function, the type system tracks
that there is exactly one copy of the parameter to consume.

f :: A ( B g :: A→ B
f x = {- x has multiplicity 1 here -} g y = {- y has multiplicity ω here -}

We say that the multiplicity of x is 1 in the body of f ; and that of y is ω in g. Similarly, we say that unrestricted
(non-linear) parameters have multiplicity ω (usable any number of times, including zero). We call a function
linear if it has type A ( B and unrestricted if it has type A→ B.

�e linear arrow type A ( B guarantees that any function with that type will consume its argument exactly
once. However, the type places no requirement on the caller of these functions. �e la�er is free to pass either a
linear or non-linear value to the function. For example, consider these de�nitions of a function g:

g1, g2, g3 :: (a ( a→ r ) → a ( a→ r

g1 k x y = k x y -- Valid
g2 k x y = k y x -- Invalid: fails x’s multiplicity guarantee
g3 k x y = k x (k y y) -- Valid: y can be passed to linear k

As in g2, a linear variable x cannot be passed to the non-linear function (k y). But the other way round is �ne:
g3 illustrates that the non-linear variable y can be passed to the linear function k. Linearity is a strong contract
for the implementation of a function, not its caller.

2.1 Calling contexts and promotion

A call to a linear function consumes its argument once only if the call itself is consumed once. For example,
consider these de�nitions of the same function g:

f :: a ( a
g4, g5, g6 :: (a ( a→ r ) → a ( a→ r

g4 k x y = k x (f y) -- Valid: y can be passed to linear f
g5 k x y = k (f x) y -- Valid: k consumes f x’s result once
g6 k x y = k y (f x) -- Invalid: fails x’s multiplicity guarantee

In g5, the linear x can be passed to f because the result of (f x) is consumed linearly by k. In g6, x is still passed
to the linear function f , but the call (f x) is in a non-linear context, so x too is used non-linearly and the code is
ill-typed.

In general, any sub-expression is type-checked as if it were to be consumed exactly once. However, an
expression which does not contain linear resources, that is an expression whose free variables all have multiplicity
ω, like f y in g4, can be consumed many times. Such an expression is said to be promoted. We leave the speci�cs
to Section 3.

2.2 Linear data types

Using the new linear arrow, we can (re-)de�ne Haskell’s list type as follows:

data [a] where

[ ] :: a
(:) :: a ( [a] ( [a]

�at is, we give a linear type to the (:) data constructor. Crucially, this is not a new, linear list type: this is
Hask-LL’s list type, and all existing Haskell functions will work over it perfectly well. But we can also use the
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very same list type to contain linear resources (such as �le handles) without compromising safety; the type
system ensures that resources in a list will eventually be deallocated by the programmer, and that they will not
be used a�er that.

Many list-based functions conserve the multiplicity of data, and thus can be given a more precise type. For
example we can write (++) as follows:
(++) :: [a] ( [a] ( [a]
[ ] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

�e type of (++) tells us that if we have a list xs with multiplicity 1, appending any other list to it will never
duplicate any of the elements in xs, nor drop any element in xs2.

Giving a more precise type to (++) only strengthens the contract that (++) o�ers to its callers; it does not restrict
its usage. For example:
sum :: [Int ] ( Int
f :: [Int ] ( [Int ]→ Int
f xs ys = sum (xs ++ ys) + sum ys

Here the two arguments to (++) have di�erent multiplicities, but the function f guarantees that it will consume
xs precisely once.

For an existing language, being able to strengthen (++), and similar functions, in a backwards-compatible way is
a huge boon. Of course, not all functions are linear: a function may legitimately demand unrestricted input. For
example, the function f above consumed ys twice, and so ys must have multiplicityω, and f needs an unrestricted
arrow for that argument.

Generalising from lists to arbitrary algebraic data types, we designed Hask-LL so that when in a traditional
Haskell (non-linear) calling context, linear constructors degrade to regular Haskell data types. �us our radical
position is that data types in Hask-LL should have linear �elds by default, including all standard de�nitions, such
as pairs, tuples, Maybe, lists, and so on. More precisely, when de�ned in old-style Haskell-98 syntax, all �elds are
linear; when de�ned using GADT syntax, the programmer can explicitly choose. For example, in our system,
pairs de�ned as
data (, ) a b = (, ) a b

would use linear arrows. �is becomes explicit when de�ned in GADT syntax:
data (a, b) where (, ) :: a ( b ( (a, b)

We will see in Section 2.5 when it is also useful to have contstructors with unrestricted arrows.

2.3 Linearity polymorphism

As we have seen, implicit conversions between multiplicities make �rst-order linear functions more general. But
the higher-order case thickens the plot. Consider that the standard map function over (linear) lists:
map f [ ] = [ ]
map f (x : xs) = f x : map f xs

It can be given the two following incomparable types: (a ( b) → [a] ( [b] and (a→ b) → [a]→ [b]. �us,
Hask-LL features quanti�cation over multiplicities and parameterised arrows (A→q B). Using these, map can be
2�is follows from parametricity. In order to free linear list elements, we must pa�ern match on them to consume them, and thus must know
their type (or have a type class instance). Likewise to copy them.
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given the following most general type: ∀ρ. (a→ρ b) → [a]→ρ [b]. Likewise, function composition can be
given the following general type:

(◦) :: ∀π ρ. (b→π c) ( (a→ρ b)→π a→ρ π c
(f ◦ g) x = f (g x)

�at is: two functions that accept arguments of arbitrary multiplicities (ρ and π respectively) can be composed to
form a function accepting arguments of multiplicity ρπ (i.e. the product of ρ and π — see De�nition 3.1). Finally,
from a backwards-compatibility perspective, all of these subscripts and binders for multiplicity polymorphism can
be ignored. Indeed, in a context where client code does not use linearity, all inputs will have multiplicity ω, and
transitively all expressions can be promoted to ω. �us in such a context the compiler, or indeed documentation
tools, can even altogether hide linearity annotations from the programmer when this language extension is not
turned on.

2.4 Operational intuitions

Suppose that a linear function takes as its argument a resource, such as a �le handle, channel, or memory block.
�en the function guarantees:

• that the resource will be consumed by the time it returns;
• that the resource can only be consumed once; so it will never be used a�er being destroyed.

In this way, the linear type system of Hask-LL ensures both that prompt resource deallocation happens, and that
no use-a�er-free error occurs.

But wait! We said earlier that a non-linear value can be passed to a linear function, so it would absolutely not
be safe for the function to always deallocate its argument when it is consumed! To understand this we need to
explain our operational model. In our model there there are two heaps: the familiar dynamic heap managed by
the garbage collector, and a linear heap managed by the programmer supported by statically-checked guarantees.
Assume for a moment two primitives to allocate and free objects on the linear heap:

allocT :: (T ( IO a) ( IO a
f reeT :: T ( ()

Here allocT k allocates a value of type T on the linear heap, and passes it to k. �e continuation k must eventually
free T by calling f reeT . If there are any other ways of making a value of type T on the dynamic heap (e.g.
mkT :: Int → T ), then f reeT might be given either a value on the linear heap or the dynamic heap. It can only
free the former, so it must make a dynamic test to tell which is the case.

A consequence of the above design is that unrestricted values never contain (point to) linear values (but the
converse is possible). �is makes sense: a�er all, if the gc deallocates a value in the dynamic heap that points
o�-heap, then the o�-heap data will be le� dangling (being o�-heap, the gc cannot touch it) with no means to free
it manually. Conversely, a pointer from a resource to the heap can simply act as a new programmer-controlled
gc root. We prove this invariant in Section 4.

We have said repeatedly that “a linear function guarantees to consume its argument exactly once if the call is
consumed exactly once”. But what does “consuming a value exactly once” mean? We can now give a more precise
operational intuition:

• To consume exactly once a value of an atomic base type, like Int or Ptr , just evaluate it.
• To consume a function exactly once, call it, and consume its result exactly once.
• To consume a pair exactly once, evaluate it and consume each of its components excatly once.
• More generally, to consume exactly once a value of an algebraic data type, evaluate it and consume all its

linear components exactly once.
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A salient point of this de�nition is that “linear” emphatically does not imply “strict”. Our linear function space
behaves as Haskell programmers expect.

2.5 Linearity of constructors: the usefulness of unrestricted constructors

We saw in Section 2.2 that data types in Hask-LL have linear arguments by default. Do we ever need data
constructors unrestricted arguments? Yes, we do.

Using the type T of Section 2.4, suppose we wanted a primitive to copy a T from the linear heap to the dynamic
heap. We could de�ne it in CPS style but a direct style is more convenient:
copyT :: (T → r ) ( T ( r vs. copyT :: T ( Unrestricted a

where Unrestricted is a data type with a non-linear constructor3:
data Unrestricted a where Unrestricted :: a→ Unrestricted a

�e Unrestricted data type is used to indicate that when a value (Unrestricted x) is consumed once (see Section 2.4)
we have no guarantee about how o�en x is consumed. With our primitive in hand, we can now use ordinary
code to copy a linear list of T values into the dynamic heap (we mark pa�erns in let and where with !, Haskell’s
syntax for strict pa�ern bindings: Hask-LL does not support lazy pa�ern bindings of linear values, case on the
other hand, is always strict):
copy :: (a ( Unrestricted a) → [a] ( Unrestricted [a]
copy copyElt (x : xs) = Unrestricted (x ′ : xs′) where ! (Unrestricted xs′) = copy xs

! (Unrestricted x ′) = copyElt x

2.6 Running example: zero-copy packets

Imagine a server application which receives data and then stores it for a while before sending it out to receivers,
perhaps in a di�erent order. �is general pa�ern characterizes a large class of low-latency servers of in-memory
data, such as Memcached [13] or burst bu�ers [28].

As an example, consider a network router with so�ware de�ned forwarding policies. First, we need to read
packets from, and send them to network interfaces. Linearity can help with copy-free hand-o� of packets between
network interfaces and in-memory data structures. Assume that the user can acquire a linear handle on a mailbox
of packets:
data MB
withMailbox :: (MB ( IO a) ( IO a
close :: MB ( ()

�e mailbox handle must be eventually passed to close in order to release it. For each mailbox, get yields the next
available packet, whereas send forwards packet on the network.
get :: MB ( (Packet,MB)
send :: Packet ( ()

In the simplest case, we can read a message and send it immediately — without any �ltering or bu�ering. When
calling get and send, Packets never need to be copied: they can be passed along from the network interface card
to the mailbox and then to the linear calling context of send, all by reference.

�e above api assumes that mailboxes are independent: the order of packets is ensured within a mailbox
queue, but not accross mailboxes (and not even between the input and output queue of a given mailbox). �is
3�e type constructor Unrestricted is in fact an encoding of the so-called exponential modality wri�en ! in linear logic.
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assumption enables us to illustrate the ability of our type system to �nely track dependencies between various
kinds of e�ects: in this case e�ects (get and send) related to separate mailboxes commute.

Bu�ering data in memory. So what can our server do with the packets once they are retrieved from the network?
To support so�ware-de�ned routing policies that dictate what packet to forward when, we introduce a priority
queue.

data PQ a
empty :: PQ a
insert :: Int → a ( PQ a ( PQ a
next :: PQ a ( Maybe (a, PQ a)

�e interface is familiar, except that since the priority queue must store packets it must have linear arrows. In
this way, the type system guarantees that despite being stored in a data structure, every packet is eventually sent.

In a router, priorities could represent deadlines associated to each packet4. So we give ourselves a function to
infer a priority for a packet:

priority :: Packet ( (Unrestricted Int, Packet)

�e take-home message is that the priority queue can be implemented as a Hask-LL data type. Here is a naive
implementation as a sorted list:

data PQ a where

Empty :: PQ a
Cons :: Int → a ( PQ a ( PQ a

empty = Empty

insert p x q Empty = Cons p x q
insert p x (Cons p′ x ′ q′) | p < p′ = Cons p x (Cons p′ x ′ q′)

| otherwise = Cons p′ x ′ (insert p x q′)

next Empty = Nothing
next (Cons x q) = Just (x, q)

In Section 5.1, we return to the implementation of the priority queue and discuss the implications for garbage
collection overheads.

Finally, here is a tiny router that forwards all packets on the network once three packets are available.

sendAll :: PQ Packet ( ()

sendAll q | Just (p, q′) ← next q = case send p of () → sendAll q′

sendAll q | Nothing ← next q = ()

enqueue :: MB ( PQ a ( (PQ a,MB)
enqueue mb q = let ! (p,mb′) = get mb

! (!(Unrestricted prio), p′) = priority p
in (mb′, insert prio p′ q)

main :: IO ()

main = withMailbox $ λmb0 → let ! (mb1, q1) = enqueue mb0 empty
! (mb2, q2) = enqueue mb1 q1

4whereas in a caching application, the server may be trying to evict the bigger packets �rst in order to leave more room for incoming packets
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! (mb3, q3) = enqueue mb2 q2
! () = close mb3

in return $ sendAll q3

Note that lifetimes of two packets can intersect arbitrarily, ruling out region-based approaches. �e ability to deal
with deallocation in a di�erent order to allocation, which can be very important in practice, is a crucial feature of
approaches based on linear types.

3 λ
Q
→ STATICS

In this section we turn to the calculus at the core of Hask-LL, which we refer to as λq→, and for which we provide
a step-by-step account of its syntax and typing rules.

As we discussed in Section 2.4, our operational model for λq→ is that of two heaps: the dynamic heap and the
linear heap. Values in the linear heap are managed by the programmer, hence must be consumed exactly once,
while values in the dynamic heap are managed by the garbage collector hence may freely be consumed any
number of times (including just once or none at all). �e role of the type system of λq→ is to enforce this very
property.

Let us point out that closures (partial applications or lazy thunks) may reside in the linear heap. Indeed, as
we explained in Section 2.4, values from the dynamic heap do not point to values in the linear heap, so if any
member of a closure resides in the linear heap, so must the closure itself.

3.1 Syntax

�e term syntax (Figure 1) is that of a type-annotated (à la Church) simply typed λ-calculus with let-de�nitions.
Binders in λ-abstractions and type de�nitions are annotated both with their type and their multiplicity. Multiplicity
abstraction and application are explicit.

In our static semantics for λq→ the familiar judgement Γ ` t : A has a non-standard reading: it asserts that
consuming the term t : A exactly once will consume Γ exactly once (see Section 2.4).

�e types of λq→ (see Figure 1) are simple types with arrows (albeit multiplicity-annotated ones), data types,
and multiplicity polymorphism. �e annotated function type is a generalisation of the intuitionistic arrow and
the linear arrow. We use the following notations: A→ B

def
= A→ω B and A ( B

def
= A→1 B.

�e intuition behind the multiplicity-annotated arrow A →q B is that consuming f u : B exactly once will
consume q times the value u:A. �erefore, a function of type A→ B must be applied to an argument residing
in the dynamic heap, while a function of type A ( B may be applied to an argument residing on either heap.
One might, thus, expect the type A ( B to be a subtype of A→ B. �is is however, not so, because there is no
notion of subtyping in λq→. �is is a salient choice in our design. Our objective is to integrate with existing typed
functional languages such as Haskell and the ml family, which are based on Hindley-Milner-style polymorphism.
Hindley-Milner-style polymorphism, however, does not mesh well with subtyping as the extensive exposition by
Po�ier [37] witnesses. �erefore λq→ uses multiplicity polymorphism for the purpose of reuse of higher-order
function as we described in Section 2.3.

Data type declarations (see Figure 1) are of the following form:

data D where

(
ck : A1 →q1 · · · Ank →qnk

D
)m
k=1

�e above declaration means thatD hasm constructors ck (wherek ∈ 1 . . .m), each withnk arguments. Arguments
of constructors have a multiplicity, just like arguments of functions: an argument of multiplicity ω means that
the data type can store, at that position, data which must reside in the dynamic heap; while a multiplicity of 1
means that data at that position can reside in either heap. A further requirement is that the multiplicities qi must
be concrete (i.e. either 1 or ω).
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Retrofi�ing Linear Types • 1:9

Multiplicities

p,q ::= 1 | ω | π | p + q | p · q

Contexts

Γ,∆ ::=
| x :q A, Γ multiplicity-annotated binder
| empty context

Type declarations

data D where

(
ck : A1 →q1 · · · Ank →qnk

D
)m
k=1

Types

A,B ::=
| A→q B function type
| ∀ρ.A multiplicity-dependent type
| D data type

Terms

e, s, t ,u ::=
| x variable
| λ(x :q A).t abstraction
| t s application
| λπ .t multiplicity abstraction
| t p multiplicity application
| c t1 . . . tn data construction
| casep t of {ck x1 . . . xnk → uk }

m
k=1 case

| let x1 :q1 A1 = t1 . . . xn :qn An = tn in u let

Fig. 1. Syntax of the linear calculus

For most purposes, ck behaves like a constant with the type A1 →q1 · · ·Ank →qnk
D. As the typing rules of

Figure 2 make clear, this means in particular that from a value d of type D with multiplicity ω, pa�ern matching
extracts the elements of d with multiplicity ω. Conversely, if all the arguments of ck have multiplicity ω, ck
constructs D with multiplicity ω.

Note that, as discussed in Section 2.2, constructors with arguments of multiplicity 1 are not more general
than constructors with arguments of multiplicity ω, because if, when constructing c u with the argument of c
of multiplicity 1, u may be either of multiplicity 1 or of multiplicity ω; dually when pa�ern-matching on c x , x
must be of multiplicity 1 (if the argument of c had been of multiplicity ω, on the other hand, then x could be used
either as having multiplicity ω or 1).
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ωΓ + x :1 A ` x : A
var

Γ,x :q A ` t : B
Γ ` λ(x :q A).t : A→q B

abs
Γ ` t : A→q B ∆ ` u : A

Γ + q∆ ` t u : B
app

∆i ` ti : Ai ck : A1 →q1 . . . →qn−1 An →qn D constructor

ωΓ +
∑
i

qi∆i ` ck t1 . . . tn : D
con

Γ ` t : D ∆,x1 :pqi Ai , . . . ,xnk :pqnk Ank ` uk : C for each ck : A1 →q1 . . . →qn−1 Ank →qnk
D

pΓ + ∆ ` casep t of {ck x1 . . . xnk → uk }
m
k=1 : C

case

Γi ` ti : Ai ∆,x1 :q1 A1 . . . xn :qn An ` u : C

∆ +
∑
i

qiΓi ` let x1 :q1 A1 = t1 . . . xn :qn An = tn in u : C
let

Γ ` t : A π fresh for Γ
Γ ` λπ .t : ∀π .A

m.abs

Γ ` t : ∀π .A
Γ ` t p : A[p/π ]

m.app

Fig. 2. Typing rules

3.2 Contexts

Many of the typing rules scale contexts by a multiplicity, or add contexts together. We will explain the why very
soon in Section 3.3, but �rst, let us focus on the how.

In λq→, each variable binding, in a typing context, is annotated with a multiplicity. �ese multiplicity annotations
are the natural counterpart of the multiplicity annotation on abstractions and arrows.

For multiplicities we need the concrete multiplicities 1 and ω as well as multiplicity variables (ranged over by
the metasyntactic variables π and ρ) for the sake of polymorphism. However, we are going to need to multiply
and add multiplicities together, therefore we also need formal sums and products of multiplicities. Multiplicity
expressions are quotiented by the following equivalence relation:

De�nition 3.1 (equivalence of multiplicities). �e equivalence of multiplicities is the smallest transitive and
re�exive relation, which obeys the following laws:

• + and · are associative and commutative
• 1 is the unit of ·
• · distributes over +
• ω · ω = ω
• 1 + 1 = 1 + ω = ω + ω = ω

�us, multiplicities form a semi-ring (without a zero), which extends to a module structure on typing contexts
as follows.

De�nition 3.2 (Context addition).

(x :p A, Γ) + (x :q A,∆) = x :p+q A, (Γ + ∆)

(x :p A, Γ) + ∆ = x :p A, Γ + ∆ (x < ∆)

() + ∆ = ∆
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Context addition is total: if a variable occurs in both operands the �rst rule applies (with possible re-ordering
of bindings in ∆), if not the second or third rule applies.

De�nition 3.3 (Context scaling).
p (x :q A, Γ) = x :pq A,pΓ

Lemma 3.4 (Contexts form a module). �e following laws hold:

Γ + ∆ = ∆ + Γ p (Γ + ∆) = pΓ + p∆

(p + q)Γ = pΓ + qΓ

(pq)Γ = p (qΓ) 1Γ = Γ

3.3 Typing rules

We are now ready to understand the typing rules of Figure 2. Remember that the typing judgement Γ ` t : A
reads as: consuming the term t : A once consumes Γ once. But what if we want to consume t more than once?
�is is where context scaling comes into play, like in the application rule:

Γ ` t : A→q B ∆ ` u : A
Γ + q∆ ` t u : B

app

�e idea is that consuming u an arbitrary number of times also consumes ∆ an arbitrary number of times, or
equivalently, consumes ω∆ exactly once. We call this the promotion principle5: to know how to consume a value
any number of times it is su�cient (and, in fact, necessary) to know how to consume said value exactly once.

To get a be�er grasp of the application rule and the promotion principle, you may want to consider how it
indeed validates following judgement. In this judgement, π is a multiplicity variable; that is, the judgement is
multiplicity-polymorphic:

f :ω A→π B,x :π A ` f x

�is implicit use of the promotion principle in rules such as the application rule is the technical device which
makes the intuitionistic λ-calculus a subset of λq→. Speci�cally the subset where all variables are annotated with
the multiplicity ω:

x :ω A ` x : A
var

x :ω A ` x : A
var

x :ω A ` Tensor x x : Tensor A A
con

` λ(x :ω A).Tensor x x : A→ω Tensor A A
abs

...

` idω 42 : A
() + ω () ` (λ(x :ω A).Tensor x x )ω (idω 42)

app

�is la�er fact is, in turn, why Hask-LL is an extension of Haskell (provided unannotated bindings are understood
as having multiplicity ω). �e variable rule, as used above, may require some clari�cation:

ωΓ + x :1 A ` x : A
var

�e variable rule implements weakening of unrestricted variables: that is, it lets us ignore variables with
multiplicity ω6. Note that the judgement x :ω A ` x : A is an instance of the variable rule, because (x :ω A) + (x :1
A) = x :ω A. �e constructor rule has a similar ωΓ context: it is necessary to support weakening at the level of
constant constructors.
5�e name promotion principle is a reference to the promotion rule of linear logic. In λq→, however, promotion is implicit.
6Pushing weakening to the variable rule is classic in many λ-calculi, and in the case of linear logic, dates back at least to Andreoli’s work on
focusing [2].
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Most of the other typing rules are straightforward, but let us linger for a moment on the unusual, yet central
to our design, case rule, and speci�cally on its multiplicity annotation:

Γ ` t : D ∆,x1 :pqi Ai , . . . ,xnk :pqnk Ank ` uk : C for each ck : A1 →q1 . . . →qn−1 Ank →qnk
D

pΓ + ∆ ` casep t of {ck x1 . . . xnk → uk }
m
k=1 : C

case

�e interesting case is when p = ω, which reads as: if we can consume t an arbitrary number of time, then so can
we of its constituents. Or, in terms of heaps: if t is on the dynamic heap, so are its constituents (see 2.4). As a
consequence, the following program, which asserts the existence of projections, is well-typed (note that, both in
�rst and snd, the arrow is — and must be — unrestricted).
�rst :: (a, b)→ a snd :: (a, b)→ b
�rst (a, b) = a snd (a, b) = b

�is particular formulation of the case rule is not implied by the rest of the system: only the case p = 1
is actually necessary. Yet, providing the case p = ω is the design choice which makes it possible to consider
data-type constructors as linear by default, while preserving the semantics of the intuitionistic λ-calculus (as we
already stated in Section 2.2). For Hask-LL, it means that types de�ned in libraries which are not aware of linear
type (i.e. libraries in pure Haskell) can nevertheless be immediately useful in a linear context. Inheritance of
multiplicity is thus crucial for backwards compatibility, which is a design goal of Hask-LL.

4 λ
Q
→ DYNAMICS

We wish to give a dynamic semantics for λq→ which accounts for the packet forwarding example of Section 2.6
where packets are kept out of the garbage collected heap, and freed immediately upon send. To that e�ect we
follow Launchbury [24] who de�nes a semantics for lazy computation. We will need also need to account for the
IO monad, which occurs in the api for packets.

4.1 The IO monad

Linear typing allows to safely and easily express world-passing semantics. Launchbury and Peyton Jones [25]
de�nes IO a as World → (World, a), for an abstract type World representing the state of the entire world. �e
idea is that every time some IO action is undertaken, the world has possibly changed so we consume the current
view of the world and return the new version.

�e above technique gives a pure interface to i/o. However, it leaves the possibility for the programmer to
access and old version of the world, as well as the current one, which is expensive to implement. In practice, one
does not want to perform such a duplication, and thus Haskell solves the issue by forcing the programmer to use
IO via its monadic interface.

Linear typing gives a much more direct solution to the problem: if the World is kept linear, then there is no
way to observe two di�erent Worlds. Namely, it is enough to de�ne IO as

data IO0 a where IO0 : World ( a → IO0 a

IO a = World ( IO0 a

Notice that the a of IO a is always unrestricted, so that IO has the same semantics as in Haskell (it is also the
semantics which we need to ensure that withMailbox is safe).

�e last missing piece is to inject a World to start the computation. Haskell relies on a main :: IO () function,
of which there must be a single one at link time. In λq→ the simplest way to achieve the same result is to start
computation with a world :1 World in the context.

In general, a top-level de�nition of multiplicity 1 corresponds to something which must be consumed exactly
once at link time, which generalises the concept of the main function (if only slightly).
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4.2 Modelling network tra�ic

We are not going to give an accurate, non-deterministic, model of i/o for the purpose of this section. Instead, we
are going to consider the semantics as a Laplace demon: the entirety of the events past and future are pre-ordained,
and the semantics has access to this knowledge.

Because the only interaction with the world which we need to model in order to give a semantics to the
packet example of Section 2.6 is to obtain a packet, it is su�cient for this section to consider all the packets.
Because there are several mailboxes and each can get their own streams of packets, we suppose implicitly a given
collection of packets (p ji )j,i ∈N. Where the packet p ji represents the i-th package which will be received by the j-th
mailbox.

Instead of using the world token as a proxy for an abstract world, we are using it to keep track of how many
mailboxes have been opened. So the (unique) world token in the stack holds this number. Similarly, the mailbox
tokens are pairs 〈j, i〉 of integers where j is the mailbox number and i the number of packets the mailbox has
received. In e�ect, the world and mailbox tokens are pointers into the in�nite matrix of potential packets. We
de�ne these constants as having the same typing rules as zero-ary constructors (but without the pa�ern-matching
rule): e.g.:

ωΓ ` j : World
world

In addition to the abstract types World, Packet and MB, and the concrete types IO0, IO , (, ), and (), λq→ is
extended with three primitives (see also Section 2.6):

• withMailbox : (MB ( IOa) ( IOa
• close : MB ( ()
• дet : MB ( (Packet,MB)
• send : Packet ( ()

Packets p ji are considered as constants. We do not model packet priorities in the semantics, for concision.

4.3 Operational semantics

Launchbury’s semantics is a big-step semantics where variables play the role of pointers to the heap (hence
represent sharing, which is the cornerstone of a lazy semantics).

To account for a foreign heap, we have a single logical heap with bindings of the form x :p A = e where
p ∈ {1,ω} a multiplicity: bindings with multiplicity ω represent objects on the regular, garbage-collected, heap,
while bindings with multiplicity 1 represent objects on a foreign heap, which we call the linear heap. �e linear
heap will hold the World and MB tokens as well as packets. Launchbury [24]’s semantics relies on a constrained
λ-calculus syntax which we remind in Figure 3. We assume, in addition, that the primitives are η-expanded by
the translation.

�e dynamic semantics is given in Figure 4. Let us review the new rules:
Linear variable In the linear variable rule, the binding in the linear heap is removed. In conjunction with

the rule for send , it represents deallocation of packets.
WithMailbox A new MB is created with a fresh name j. Because it has not received any message yet, the

mailbox token is 〈j, 0〉, and the world token is incremented. �e body k is an IO action, so it takes the
incremented world as an argument and returns a new one, which is then returned as the �nal world a�er
the entire withMailbox action.

Get �e дet primitive receives the next packet as is determined by the (p ji )j,i ∈N matrix, and the number of
packets received by the MB is incremented.

Send �e send primitive does not actually change the world, because all the messages that will ever be
received are preordained, by assumption. So, from the point of view of this semantics, send simply frees
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Translation of typed terms

(λ(x :q A).t )∗ = λ(x :q A).(t )∗

x∗ = x

(t x )∗ = (t )∗ x

(t u)∗ = let y :q A = (u)∗ in (t )∗ y with Γ ` t : A→q B

ck t1 . . . tn = let x1 :q1 A1 = (t1)
∗, . . . ,xn :qn An = (tn )

∗
in ck x1 . . . xn with ck : A1 →q1 . . .An →qn D

(casep t of {ck x1 . . . xnk → uk }
m
k=1)

∗ = casep (t )∗ of {ck x1 . . . xnk → (uk )
∗}mk=1

(let x1 :q1 A1 = t1 . . . xn :qn An = tn in u)∗ = let x1 :q1 A1 = (t1)
∗, . . . ,xn :qn An =qn (tn )

∗
in (u)∗

Fig. 3. Syntax for the Launchbury-style semantics

its argument: the packet is stored in a linear variable, so it is removed from the heap with the linear
variable rule; then the send rule drops it.

Close �e close primitive consumes the mailbox. Like send , for the purpose of this semantics, close simply
frees the mailbox.

4.4 Type safety

While the semantics of Figure 4 describes quite closely our plans for implementation in ghc, it is not convenient
for proving properties. �ere are two reasons to that fact: �rst the semantics follows a di�erent structure than
the type system and, also, there are pointers from the garbage-collected heap to the linear heap. Such pointers
occur, for instance, in the priority queue from Section 2.6: the queue itself is allocated on the garbage collected
heap while packets are kept in the linear heap.

�is is not a problem in and on itself: pointers to packets may be seen as opaque by the garbage collector,
which does not collect them, so that their lifetime is still managed explicitly by the programmer. However, in
order to prevent use-a�er-free bugs, we must be sure that by the time a packet is sent (hence freed), every extant
object in the garbage-collected heap which points to that packet must be dead.

In order to prove such a property, let us introduce a stronger semantics with the lifetime of objects more closely
tracked. �e strengthened semantics di�ers from Figure 4 in two aspects: the evaluation states are typed, and
values with statically tracked lifetimes (linear values) are put on the linear heap.

In order to de�ne the strengthened semantics, we introduce a few notations. First we need a notion of product
annotated with the multiplicity of its �rst component.

De�nition 4.1 (Weighted tensors). We use A ρ ⊗ B (ρ ∈ {1,ω}) to denote one of the two following types:
• data A 1⊗ B = (1, ) : A ( B ( A 1⊗ B
• data A ω ⊗ B = (ω, ) : A→ B ( A ω ⊗ B

Weighted tensors are used to internalise a notion of stack that keeps track of multiplicities for the sake of the
following de�nition, which introduces the states of the strengthened evaluation relation.

De�nition 4.2 (Annotated state). An annotated state is a tuple Ξ ` (Γ |t :ρ A), Σ where
• Ξ is a typing context
• Γ is a typed heap, i.e. a collection of bindings of the form x :ρ A = e
• t is a term
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Γ : λπ .t ⇓ Γ : λπ .t
m.abs

Γ : e ⇓ ∆ : λπ .e ′ ∆ : e ′[q/π ] ⇓ Θ : z
Γ : e q ⇓ Θ : z

m.app

Γ : λx :p A.e ⇓ Γ : λx :p A.e
abs

Γ : e ⇓ ∆ : λy :p A.e ′ ∆ : e ′[x/y] ⇓ Θ : z
Γ : e x ⇓ Θ : z

application

Γ : e ⇓ ∆ : z
(Γ,x :ω A = e ) : x ⇓ (∆;x :ω Az) : z

shared variable
Γ : e ⇓ ∆ : z

(Γ,x :1 A = e ) : x ⇓ ∆ : z
linear variable

(Γ,x1 :ω A1 = e1, . . . ,xn :ω Anen ) : e ⇓ ∆ : z
Γ : let x1 :q1 A1 = e1 . . . xn :qn An = en in e ⇓ ∆ : z

let
Γ : c x1 . . . xn ⇓ Γ : c x1 . . . xn

constructor

Γ : e ⇓ ∆ : ck x1 . . . xn ∆ : ek [xi/yi ] ⇓ Θ : z
Γ : caseq e of {ck y1 . . .yn 7→ ek }

m
k=1 ⇓ Θ : z

case

Γ,x :1 MB = 〈j, 0〉 : k x (j + 1) ⇓ ∆ : z
Γ,w :1 World = j : withMailbox k w ⇓ ∆ : z

withMailbox
Γ : x ⇓ ∆ : 〈j, i〉

Γ : close x ⇓ ∆ : ()
close

Γ : x ⇓ ∆ : 〈j, i〉
Γ : дet x ⇓ ∆,x :1 MB = 〈j, i + 1〉,y :1 Packet = p ji : (y, z)

get
Γ : x ⇓ ∆ : p ji

Γ : send x ⇓ ∆ : ()
send

Fig. 4. Dynamic semantics

• ρ ∈ {1,ω} is a multiplicity
• A is a type
• Σ is a typed stack, i.e. a list of triple e :ω A of a term, a multiplicity and an annotation.

De�nition 4.3 (Well-typed state). We say that an annotated state is well-typed if the following typing judgement
holds:

Ξ ` let Γ in (t , terms (Σ)) : (A ρ ⊗multiplicatedTypes (Σ))

Where let Γ in e stands for the gra�ing of Γ as a block of bindings, terms (e1 :ρ1 A1, . . . , en :ρn An ) for
(e1 ρ1, (. . . , (en ρn , ()))), andmultiplicatedTypes (e1 :ρ1 A1, . . . , en :ρn An ) for A1 ρ1⊗ (. . . (An ρn ⊗ ())).

De�nition 4.4 (Strengthened reduction relation). We de�ne the strengthened reduction relation, also wri�en ⇓,
as a relation on annotated states. Because Ξ, ρ, A and Σ are always the same for related states, we abbreviate

(Ξ ` Γ |t :ρ A, Σ) ⇓ (Ξ ` ∆|z :ρ A, Σ)

as
Ξ ` (Γ |t ⇓ ∆|z) :ρ A, Σ

�e strengthened reduction relation is de�ned inductively by the rules of Figure 5.

A few noteworthy remarks about the semantics in Figure 5 can be made. First, the let rule does not necessarily
allocate in the garbage collected heap anymore — this was the goal of the strengthened semantics to begin
with — but nor does it systematically allocate bindings of the form x :1 A = e in the linear heap either: the heap
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Ξ ` (Γ |λx :q A.e ⇓ Γ |λx :q A.e ) :ρ A→q B
abs

Ξ ` (Γ |e ⇓ ∆|λ(y :q A).u) :ρ A→q B,x :qρ A, Σ Ξ ` (∆|u[x/y] ⇓ Θ|z) :ρ B, Σ

Ξ ` (Γ |eq x ⇓ Θ|z) :ρ B, Σ
app

Ξ,x :ω B ` (Γ |e ⇓ ∆|z) :ρ A, Σ

Ξ ` (Γ,x :ω B = e |x ⇓ ∆,x :ω B = z |z) :ρ A, Σ
shared variable

Ξ ` (Γ |e ⇓ ∆|z) :1 A, Σ
Ξ ` (Γ,x :1 B = e |x ⇓ ∆|z) :1 A, Σ

linear variable

Ξ ` (Γ,x1 :ρq1 A1 = e1 . . . xn :pqn An = en |t ⇓ ∆|z) :ρ C, Σ
Ξ ` (Γ |let x1 :q1 A1 = e1 . . . xn :qn An = en in t ⇓ ∆|z) :ρ C, Σ

let

Ξ ` (Γ |c x1 . . . xn ⇓ Γ |c x1 . . . xn ) :ρ A, Σ
constructor

Ξ,y1 :p1qρ A1 . . . ,yn :pnqρ An ` (Γ |e ⇓ ∆|ck x1 . . . xn ) :qρ D,uk :ρ C, Σ Ξ ` (∆|uk [xi/yi ] ⇓ Θ|z) :ρ C, Σ
Ξ ` (Γ |caseq e of {ck y1 . . .yn 7→ uk }

m
k=1 ⇓ Θ|z) :ρ C, Σ

case

Ξ ` (Γ,x :1 MB = 〈j, 0〉|k x (j + 1) ⇓ ∆|z) :1 IO0 A, Σ

Ξ ` (Γ,w :1: World = j |withMailbox k w ⇓ ∆|z) :1 IO0 A, Σ
withMailbox

Ξ ` (Γ |x ⇓ ∆|〈j, i〉) :1 MB, Σ

Ξ ` (Γ |дet x ⇓ ∆,x :1 MB = 〈j, i + 1〉,y :1 Packet = p ji |(y, z)) :1 (Packet,MB), Σ
get

Ξ ` (Γ |x ⇓ ∆|〈j, i〉) :1 MB, Σ

Ξ ` (Γ |close x ⇓ ∆|()) :1 (), Σ
close

Ξ ` (Γ |x ⇓ ∆|p ji ) :1 Packet, Σ

Ξ ` (Γ |send x ⇓ ∆|()) :1 (), Σ
send

Fig. 5. Strengthened operational semantics (Omi�ing the obvious m.abs and m.app for concision)

depends on the multiplicity ρ. �e reason for this behaviour is promotion: an ostensibly linear value can be used
in an unrestricted context. In this case the ownership of x must be given to the garbage collector: there is no
static knowledge of x ’s lifetime. For the same reason, the linear variable case requires ρ to be 1 (Corollary 4.6
proves this restriction to be safe).

�e other important rule is the withMailbox rule: it requires a result of the form IO0 x w . �is constraint is
crucial, because the withMailbox rule must ensure that the allocated mailbox is deallocated (with close) before it
scope returns. �e reason why it is possible is that, by de�nition, in IO0 xw , x must be in the dynamic heap. In
other words, when an expression e : IO0 A is forced to the form IO0 x w , it will have consumed all the pointers to
the linear heap (exceptw). �e crucial safety property of the strengthened relation is that it preserves well-typing
of states.
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Lemma 4.5 (Strengthened reduction preserves typing). If Ξ ` (Γ |t ⇓ ∆|z) :ρ A, Σ, then

Ξ ` (Γ |t :ρ A), Σ implies Ξ ` (∆|z :ρ A), Σ.

Proof. By induction on the typed-reduction. �

�anks to this property we can freely consider the restriction of the strengthened relation to well-typed states.
For this reason, from now on, we only consider well-typed states.

Corollary 4.6 (Never stuck on the linear variable rule). Ξ ` (Γ,x :1 A = e |x ) :ω B, Σ is not reachable.

Proof. Remember that we consider only well-typed states because of Lemma 4.5. By unfolding the typing
rules it is easy to see that Ξ ` (Γ,x :1 A = e |x ) :ω B, Σ is not well-typed: it would require x :1 A = ω∆ for some ∆,
which cannot be. �

We are now ready to prove properties of the ordinary semantics by transfer of properties of the strengthened
semantics. Let us start by de�ning a notion of type assignment for states of the ordinary semantics.

De�nition 4.7 (Type assignment). A well-typed state is said to be a type assignment for an ordinary state,
wri�en γ (Γ : e ) (Ξ ` Γ′ |e ′ :ρ A, Σ), if e = e ′ ∧ Γ′ 6 Γ.

�at is, Γ′ is allowed to strengthen some ω bindings to be linear, and to drop unnecessary ω bindings.

Note that for a closed term, type assigment reduces to the fact that e has a type. So we can see type assignment
to state as a generalisation of type assignment to terms which is preserved during the reduction. Let us turn to
prove that fact, noticing that type assignment de�nes a relation between ordinary states and well-typed states.

Lemma 4.8 (Type safety). �e re�nement relation de�nes a simulation of the ordinary reduction by the strength-
ened reduction.

�at is for all γ (Γ : e ) (Ξ ` (Γ′ |e ) :ρ A, Σ) such that Γ : e ⇓ ∆ : z, there exists a well-typed state Ξ ` (∆′ |z) :ρ A, Σ
such that Ξ ` (Γ |t ⇓ ∆|z) :ρ A, Σ and γ (∆ : z) (Ξ ` (∆′ |z) :ρ A, Σ).

Proof. �is is proved by a straightforward induction over the ordinary reduction. �e case of let may be
worth considering for the curious reader. �

From type-safety, it follows that a completely evaluated program has necessarily deallocated all the linear
heap. �is is a form of safety from resource leaks (of course, resource leaks can always be programmed in, but
the language itself does not leak resources).

Corollary 4.9 (Eventual deallocation of linear values). Let w :1 World ` t : World be a well-typed term.
If w :1 World = 0 : t ⇓ ∆ : j, then ∆ only contains ω-bindings.

Proof. By Lemma 4.8, we have ` (∆|j :1 World), ·. �en the typing rules of let and j (see Section 4.2) conclude:
in order for j to be well typed, the environment introduced by let ∆ must be of the form ω∆′. �

For the absence of use-a�er-free errors, let us invoke a liveness property: namely that the type assignment is also
a simulation of the strengthened semantics by the ordinary semantics (making type assignment a bisimulation).
�ere is not a complete notion of progress which follows from this as big step semantics such as ours do not
distinguish blocking from looping: we favour clarity of exposition over a completely formal argument for progress.

Lemma 4.10 (Liveness). �e re�nement relation de�nes a simulation of the strengthened reduction by the ordinary
reduction.

�at is for all γ (Γ : e ) (Ξ ` (Γ′ |e ) :ρ A, Σ) such that γ (∆ : z) (Ξ ` (∆′ |z) :ρ A, Σ), there exists a state ∆ : z such
that Γ : e ⇓ ∆ : z and γ (∆ : z) (Ξ ` (∆′ |z) :ρ A, Σ).
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Proof. �is is proved by a straightforward induction over the ordinary reduction. �

In conjunction with Corollary 4.6, Lemma 4.10 shows that well-typed programs do not get blocked, in particular
that garbage-collected objects which point to the linear objects are not dereferenced a�er the linear object has
been freed: λq→ is safe from use-a�er-free errors.

5 APPLICATIONS

�ere is a wealth of literature regarding the application of linear typing to many practical problems, for in-
stance: explicit memory management [1, 17, 23], array computations [7, 26], protocol speci�cation [18], privacy
guarantees [14] and graphical interfaces [22].

�is section develops a few examples which are directly usable in Hask-LL, that is simply by changing Haskell’s
type system, and using the dynamic semantics of Section 4 to justify the memory safety of a foreign heap
implemented using a foreign function interface.

5.1 Lowering the gc pressure

In a practical implementation of the zero-copy packet example of Section 2.6, the priority queue can easily
become a bo�leneck, because it will frequently stay large [12]. We can start by having a less obnoxiously naive
implementation of queues, but this optimisation would not solve the issue which we are concerned with in this
section: garbage collection latency. Indeed, the variance in latency incurred by gc pauses can be very costly in a
distributed application. Indeed, having a large number of processes that may decide to run a long pause increases
the probability that at least one is running a pause. Consequently, waiting on a large number of processes is
slowed down (by the slowest of them) much more o�en than a sequential application. �is phenomenon is known
as Li�le’s law [27].

A radical solution to this problem, yet one that is e�ectively used in practice, is to allocate the priority queue
with malloc instead of using the garbage collector’s allocator [29, Section IV.C]. Our own benchmarks 7, consistent
with Pusher’s �ndings, indicate that peak latencies encountered with large data-structures kept in ghc’s gc heap
are two orders of magnitude higher than using foreign function binding to an identical data-structure allocated
with malloc; furthermore the latency distribution of gc latency consistently degrades with the size of the heap,
while malloc has a much less �at distribution. Of course, using malloc leaves memory safety in the hand of the
programmer.

Fortunately, it turns out that the same arguments that we use to justify proper deallocation of mailboxes in
Section 4 can be used to show that, with linear typing, we can allocate a priority queue with malloc safely (in
e�ect considering the priority queue as a resource). We just need to replace the empty queue function from
Section 2.6 by a with�eue :: (PQ a ( IO a) ( IO a primitive, in the same style as withMailbox.

We can go even further and allow malloc’d queues to build pure values: it is enough to replace the type of
with�eue as with�eue :: (PQ a ( Unrestricted a) ( Unrestricted a). Justifying the safety of this type requires
additional arguments as the result of with�eue may be promoted (IO actions are never promoted because of
their World parameter), hence one must make sure that the linear heap is properly emptied, which is in fact
implied by the typing rules for Unrestricted.

5.2 Safe streaming

�e standard for writing streaming applications (e.g. reading from a �le) in Haskell is to use a combinator library
such as Conduits [40] or Machines [21]. Such libraries have many advantages: they are fast, they release resources
promptly, and they are safe.

7URL suppressed for blind review, but available on request
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However, they come at a signi�cant cost: they are di�cult to use. As a result the authors have observed
industrial users walking back from this type of library to use the simpler, but unsafe streaming [41] library. �e
lack of safety of the stream library stems from the uncons function (in Streaming.Prelude):

uncons :: Monad m⇒ Stream (Of a) m () → m (Maybe (a, Stream (Of a) m ()))

Note the similarity with the IO monad: a stream is consumed and a new one is returned. Just like the World of
the IO monad, the initial stream does not make sense anymore and reusing it will result in incorrect behaviour.
We have observed this very mistake in our own code in industrial projects, and it proved quite costly to hunt
down. Lippmeier et al. [26, Section 2.2] describe a very similar example of unsafety in the repa-flow.

Provided a su�ciently linear notion of monad (see Morris [34, Section 3.3 (Monads)] for a discussion on the
interaction of monads and linear typing), we can make uncons safe merely by changing the arrow to a linear one:

uncons :: Monad m⇒ Stream (Of a) m () ( m (Maybe (a, Stream (Of a) m ()))

5.3 Protocols

Honda [18] introduces the idea of using types to represent and enforce protocols. Wadler [46] showed that
Honda’s system is isomorphic to (classical) linear logic. �e high-level idea is that one end of a communication
channel is typed with the protocol P and the other end with the dual protocol P⊥; for instance: if A denotes “I
expect an A”, the dual A⊥ denotes “I shall send an A”. �en, protocols can be composed using pairs: the protocol
(A,B⊥) means “I expect an A, and I shall send a B”.

In our intuitionistic se�ing, we can represent the dual P⊥ by using continuation passing style: P⊥ = P ( ⊥,
where ⊥ represents a type of e�ects (⊥ = IO () would be a typical choice in Haskell). �is encoding is the
standard embedding of classical (linear) logic in intuitionistic (linear) logic. Using P⊥ = P → ⊥ would not be
su�cient to enforce the protocol P , because a process can skip sending a required value or expect two values
where one ought to be sent, potentially causing deadlocks.

�us there are two reasons why λq→ does not have a built-in additive product (A&B), dual to (linear) sum: 1.
uniformity commands to use the general dualisation pa�ern instead and 2. the de�nition would depend on the
choice of e�ects. �e following example (a linear if combinator) shows a glimpse of linear cps code:

data A ⊕ B = Le� :: A ( A ⊕ B | Right :: B ( A ⊕ B
type A & B = ((A( ⊥) ⊕ (B( ⊥)) ( ⊥

if ′ :: Bool ( (a & a) ( (a ( ⊥) ( ⊥

if ′ True p k = p (Le� k)
if ′ False p k = p (Right k)

6 RELATED WORK

6.1 Regions

Haskell’s ST monad [25] taught us a conceptually simple approach to lifetimes. �e ST monad has a phantom
type parameter s that is instantiated once at the beginning of the computation by a runST function of type:

runST :: (∀s. ST s a) → a

In this way, resources that are allocated during the computation, such as mutable cell references, cannot escape the
dynamic scope of the call to runST because they are themselves tagged with the same phantom type parameter.

�is apparent simplicity (one only needs rank-2 polymorphism) comes at the cost of strong limitations in
practice:
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• ST -like regions con�ne to a stack-like allocation discipline. Scopes cannot intersect arbitrarily, limiting
the applicability of this technique. In our running example, if unused mailboxes have to be kept until all
mailboxes opened in their scope have been closed, they would be hoarding precious resources (like �le
descriptors).

• Kiselyov and Shan [20] show that it is possible to promote resources in parent regions to resources in
a subregion. But this is an explicit and monadic operation, forcing an unnatural imperative style of
programming where order of evaluation is explicit. Moreover, computations cannot live directly in IO,
but instead in a wrapper monad. �e HaskellR project [8] uses monadic regions in the style of Kiselyov
and Shan to safely synchronise values shared between two di�erent garbage collectors for two di�erent
languages. Boesp�ug et al. report that custom monads make writing code at an interactive prompt
di�cult, compromises code reuse, force otherwise pure functions to be wri�en monadically and rule out
useful syntactic facilities like view pa�erns. In contrast, with linear types, values in two regions (in our
running example packets from di�erent mailboxes) have the same type hence can safely be mixed: any
data structure containing packet of a mailbox will be forced to be consumed before the mailbox is closed.

6.2 Finalisers

A garbage collector can be relied on for more than just cleaning up no longer extant memory. By registering
�nalizers (IO callbacks) with values, such as a �le handle, one can make it the job of the garbage collector to make
sure the �le handle is eventually closed. But “eventually” can mean a very long time. File descriptors and other
system resources are particularly scarce: operating systems typically only allow a small number of descriptors to
be open at any one time. Kiselyov [19] argues that such system resources are too scarce for eventual deallocation.
Prompt deallocation is key.

6.3 Uniqueness types

�e literature is awash with enforcing linearity not via linear types, but via uniqueness (or ownership) types. �e
most prominent representatives of languages with such uniqueness types are perhaps Clean [4] and Rust [31].
Hask-LL, on the other hand, is designed around linear types based on linear logic [16].

Linear types and uniqueness types are, at their core, dual: whereas a linear type is a contract that a function
uses its argument exactly once even if the call’s context can share a linear argument as many times as it pleases,
a uniqueness type ensures that the argument of a function is not used anywhere else in the expressions context
even if the function can work with the argument as it pleases.

From a compiler’s perspective, uniqueness type provide a non-aliasing analysis while linear types provides a
cardinality analysis. �e former aims at in-place updates and related optimisations, the la�er at inlining and fusion.
Rust and Clean largely explore the consequences of uniqueness on in-place update; an in-depth exploration of
linear types in relation with fusion can be found in Bernardy et al. [6], see also the discussion in Section 7.2.

Because of this weak duality, we perhaps could as well have retro��ed uniqueness types to Haskell. But
several points guided our choice of designing Hask-LL around linear logic rather than uniqueness types: (a)
functional languages have more use for fusion than in-place update (if the fact that ghc has a cardinality analysis
but no non-aliasing analysis is any indication); (b) there is a wealth of literature detailing the applications of
linear logic — see Section 5; (c) and decisively, linear type systems are conceptually simpler than uniqueness type
systems, giving a clearer path to implementation in ghc.

6.4 Linearity as a property of types vs. a property of bindings

In several presentations [32, 34, 45] programming languages incorporate linearity by dividing types into two
kinds. A type is either linear or unrestricted.
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In e�ect, this distinction imposes a clean separation between the linear world and the unrestricted world. An
advantage of this approach is that it instantiates both to linear types and to uniqueness types depending on how
they the two worlds relate, and even have characteristics of both [11].

Such approaches have been very successful for theory: see for instance the line of work on so-called mixed
linear and non-linear logic (usually abbreviated lnl) started by Benton [5]. However, for practical language design,
code duplication between the linear an unrestricted worlds quickly becomes costly. So language designers try
to create languages with some kind of kind polymorphism to overcome this limitation. �is usually involves a
subkinding relation and bounded polymorphism, and these kind polymorphic designs are complex. See Morris
[34] for a recent example. We argue that by contrast, the type system of λq→ is simpler.

�e complexity introduced by kind polymorphism and subtyping relations makes retro��ing a rich core
language such as ghc’s an arduous endeavour. ghc already supports impredicative dependent types and a wealth
of unboxed or otherwise primitive types that cannot be substituted for polymorphic type arguments. It is not
clear how to support linearity in ghc by extending its kind system. In contrast, our design inherits many features
of McBride’s, including its compatibility with dependent types, and such compatibility is pre�y much necessary
to accommodate the dependently-typed kinds of ghc.

6.5 Alms

Alms [43] is an ml-like language based on a�ne types (a variant of linear types where values can be used at most
once). It is uses the kinds to separate a�ne from unrestricted arguments.

It is a case in point for kind-based systems being more complex: for the sake polymorphism, Alms deploys
an elaborate dependent kind system. Even if such a kind system could be added to an existing language
implementation, Alms does not a�empt to be backwards compatible with an ml dialect. In fact Morris notes:

Despite the (not insigni�cant) complexity of [Alms], it is still not clear that it fully supports
the expressiveness of traditional functional programming languages. For example, [Alms] has
distinct composition operators with distinct types. �ese types are not related by the subtyping
relation, as subtyping is contravariant in function arguments.

6.6 Ownership typing à la Rust

Rust [31] features ownership (aka uniqueness) types. But like the original formulation of linear logic, in Rust A
stands for linear values, unrestricted values at type A are denoted !A, and duplication is explicit.

Rust quite beautifully addresses the problem of being mindful about memory, resources, and latency. But this
comes at a heavy price: Rust, as a programming language, is speci�cally optimised for writing programs that
are structured using the RAII pa�ern8 (where resource lifetimes are tied directly or indirectly to stack allocated
objects that are freed when the control �ow exits the current lexical scope). Ordinary functional programs
seldom �t this particular resource acquisition pa�ern so end up being second class citizens. For instance, tail-call
optimization, crucial to the operational behaviour of many functional programs, is not usually sound. �is is
because resource liberation must be triggered when the tail call returns.

Hask-LL aims to hit a di�erent point in the design space where regular non-linear expressions are the norm
yet gracefully scaling up to latency-sensitive and resource starved programs is still possible.

6.7 Related type systems

�e λq→ type system is heavily inspired from the work of Ghica and Smith [15] and McBride [33]. Both of them
present a type system where arrows are annotated with the multiplicty of the the argument that they require,
and where the multiplicities form a semi-ring.
8h�ps://en.wikipedia.org/wiki/Resource acquisition is initialization
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In contrast with λq→, McBride uses a multiplicity-annotated type judgement Γ `ρ t : A. Where ρ represents
the multiplicity of t . So, in McBride’s system, when an unrestricted value is required, instead of computing ωΓ,
it is enough to check that ρ = ω. �e problem is that this check is arguably too coarse, and results into the
judgement `ω λx .(x ,x ) : A ( (A,A) being derivable. �is derivation is not desirable: it means that there cannot
be reusable de�nitions of linear functions. In terms of linear logic [16], McBride makes the natural function of
type !(A ( B) =⇒!A (!B into an isomorphism.

In that respect, our system is closer to Ghica and Smith’s. What we keep from McBride, is the typing rule
of case (see Section 3), which can be phrased in terms of linear logic as making the natural function of type
!A⊗!B =⇒!(A ⊗ B) into an isomorphism. �is choice is unusual from a linear logic perspective, but it is the key
to be able to use types both linearly an unrestrictedly without intrusive multiplicity polymorphic annotation on
all the relevant types.

�e literature on so-called coe�ects [9, 35] uses type systems similar to Ghica and Smith, but with a linear
arrow and multiplicities carried by the exponential modality instead. Brunel et al. [9], in particular, develops a
Krivine-style realisability model for such a calculus. We are not aware of an account of Krivine realisability for
lazy languages, hence it is not directly applicable to λq→.

6.8 Operational aspects of linear languages

Recent literature is surprisingly quiet on the operational aspects of linear types, and rather concentrates on
uniqueness types [31, 38].

Looking further back, Wakeling and Runciman [47] produced a complete implementation of a language with
linear types, with the goal of improving the performance. �eir implementation features a separate linear heap, as
Section 4 where they allocate as much as possible in the linear heap, as modelled by the strengthened semantics.
However, Wakeling and Runciman did not manage to obtain consistent performance gains. On the other hand,
they still manage to reduce gc usage, which may be critical in distributed and real-time environments, where
latency that ma�ers more than throughput.

Wakeling and Runciman propose to not a�empt prompt free of thunks and only taking advantage of linearity for
managing the lifetimes of large arrays. Our approach is similar: we advocate exploiting linearity for operational
gains on large data structures (but not just arrays) stored o�-heap. we go further and leave the management of
external (linear) data to external code, only accessing it via an api. Yet, our language supports an implementation
where each individual constructor with multiplicity 1 can be allocated on a linear heap, and deallocated when it
is pa�ern matched. Implementing this behaviour is le� for future work.

7 CONCLUSION AND FUTURE WORK

�is article demonstrated how an existing lazy language, such as Haskell, can be extended with linear types,
without compromising the language, in the sense that:

• existing programs are valid in the extended language without modi�cation,
• such programs retain the same semantics, and
• the performance of existing programs is not a�ected,
• yet existing library functions can be reused to serve the objectives of resource sensitive programs with

simple changes to their types without being duplicated.
In other words: regular Haskell comes �rst. Additionally, �rst-order linearly typed functions and data structures
are usable directly from regular Haskell code. In such a se�ing their semantics is that of the same code with
linearity erased.

Hask-LL was engineered as an unintrusive design, making it tractable to integrate to an existing, mature com-
piler with a large ecosystem. We have developed a prototype implementation extending ghc with multiplicities.
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�e main di�erence between the implementation and λq→is that the implementation is adapted to bidirectionality:
typing contexts go in, inferred multiplicities come out (and are compared to their expected values). As we hoped,
this design integrates very well in ghc.

It is worth stressing that, in order to implement foreign data structures like we advocate as a means to provide
safe access to resources or reduce gc pressure and latency, we only need to modify the type system: primitives to
manipulate foreign data can be implemented in user libraries using the foreign function interface. �is helps
keeping the prototype lean, since ghc’s runtime system (rts) is una�ected.

7.1 Dealing with exceptions

Exceptions run afoul of linearity. Consider for instance the expression error "oops" + x, for some linear x.
Evaluating x may be required in order to free resources, but x will not be evaluated, hence the resources will
linger.

Haskell program can raise exceptions even during the evaluation of pure code [36], so we have to take it into
account in order to demonstrate the eventual deallocation of resources. Both �rippleton and Mycro� [42] and
Tov and Pucella [44] develop solutions, but they rely on e�ect type systems, which are intrusive changes to make
to an existing compiler. Moreover, e�ect type systems would not be compatible with Haskell’s asynchronous
exception mechanism [30].

Because we are using explicit allocators for resources such as withMailbox :: (MB ( IO a) ( IO a, these
allocators can be responsible for safe deallocation in response to exceptions, internally making use of the bracket
operation [30, Section 7.1]. A full justi�cation of this hypothesis is le� for future work.

7.2 Fusion

Inlining is a staple of program optimisation, exposing opportunities for many program transformation including
fusion. Not every function can be inlined without negative e�ects on performance: inlining a function with two
use sites of the argument may result in duplicating a computation.

In order to discover inlining opportunities ghc deploys a cardinality analysis [39] which determines how many
times functions use their arguments. �e limitation of such an analysis is that it is necessarily heuristic (the
problem is undecidable). Consequently, it can be hard for the programmer to rely on such optimisations: a small,
seemingly innocuous change can prevent a critical inlining opportunity and have rippling e�ects throughout the
program. Hunting down such a performance regression proves painful in practice.

Linear types address this issue and serve as a programmer-facing interface to inlining: because it is always safe
to inline a linear function, we can make it part of the semantics of linear functions that they are always inlined.
In fact, the system of multiplicity annotation of λq→ can be faithfully embedded the abstract domain presented
by Sergey et al. [39]. �is gives con�dence in the fact that multiplicity annotation can serve as cardinality
declarations.

Formalising and implementing the integration of multiplicity annotation in the cardinality analysis is le� as
future work.

7.3 Extending multiplicities

For the sake of this article, we use only 1 and ω as possibilities. But in fact λq→ can readily be extended to
more multiplicities: we can follow Ghica and Smith [15] and McBride [33], which work with abstract sets of
multiplicities. In particular, in order to support dependent types, we additionally need a 0 multiplicity.

Applications of multiplicities beyond linear logic seem to o�en have too narrow a focus to have their place in
a general purpose language such as Haskell. Ghica and Smith [15] propose to use multiplicities to represent real
time annotations, and Petricek et al. [35] show how to use multiplicities to track either implicit parameters (i.e.
dynamically scoped variables) or the size of the history that a data�ow program needs to remember.
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To go further still, more multiplicities may prove useful. For instance we may want to consider a multiplicity
for a�ne arguments (i.e. arguments which can be used at most once).

�e general se�ing for λq→ is an ordered-semiring of multiplicities (with a join operation for type inference).
�e rules are mostly unchanged with the caveat that caseq must exclude q = 0 (in particular we see that we
cannot substitute multiplicity variables by 0). �e variable rule is modi�ed as:

x :1 A 6 Γ

Γ ` x : A

Where the order on contexts is the point-wise extension of the order on multiplicities.
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