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Retrofi�ing Linear Types

ANONYMOUS AUTHOR(S)

Linear type systems have a long and storied history, but not a clear path forward to integrate with existing
languages such as OCaml or Haskell. In this paper, we study a linear type system designed with two crucial
properties in mind: backwards-compatibility and code reuse across linear and non-linear users of a library.
Only then can the bene�ts of linear types permeate conventional functional programming. Rather than
bifurcate types into linear and non-linear counterparts, we instead a�ach linearity to function arrows. Linear
functions can receive inputs from linearly-bound values, but can also operate over unrestricted, regular values.

To demonstrate the e�cacy of our linear type system — both how easy it can be integrated in an existing
language implementation and how streamlined it makes it to write programs with linear types — we imple-
mented our type system in ghc, the leading Haskell compiler, and demonstrate two kinds of applications of
linear types: mutable data with pure interfaces; and enforcing protocols in i/o-performing functions.

1 INTRODUCTION

Despite their obvious promise, and a huge research literature, linear type systems have not made it
into mainstream programming languages, even though linearity has inspired uniqueness typing in
Clean, and ownership typing in Rust. We take up this challenge by extending Haskell with linear
types. Our design supports many applications for linear types, but we focus on two particular
use-cases. First, safe update-in-place for mutable structures, such as arrays; and second, enforcing
access protocols for external apis, such as �les, sockets, channels and other resources. Our particular
contributions are these:

• We describe a new extension to Haskell, dubbed Hask-ll, using two extended examples
(Sec. 2.1-Sec. 2.3). �e extension is non-invasive: existing programs continue to typecheck,
and existing data types can be used as-is even in linear parts of the program. �e key to
this non-invasiveness is that, in contrast to most other approaches, we focus on linearity

on the function arrow rather than linearity in the kinds (Sec. 6.1).
• Every function arrow can be declared linear, including those of constructor types. �is

results in data-types which can store both linear values, in addition to unrestricted ones
(Sec. 2.4).

• A bene�t of linearity-on-the-arrow is that it naturally supports linearity polymorphism

(Sec. 2.6). �is contributes to a smooth extension of Haskell by allowing many existing
functions (map, compose, etc) to be given more general types, so they can work uniformly
in both linear and non-linear code.

• We formalise our system in a small, statically-typed core calculus that exhibits all these
features (Sec. 3). It enjoys the usual properties of progress and preservation.

• We have implemented a prototype of the system as a modest extension to ghc (Sec. 4),
which substantiates our claim of non-invasiveness. We use this prototype to implement
case-study applications (Sec. 5). Our prototype performs linearity inference, but a systematic
treatment of type inference for linearity in our system remains open.

Retro�ts o�en involve compromise and ad-hoc choices, but in fact we have found that, as well as
��ing into Haskell, our design holds together in its own right. We hope that it may perhaps serve
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1:2 Anon.

as a template for similar work in other languages. �ere is a rich literature on linear type systems,
as we discuss in a long related work section (Sec. 6).

2 MOTIVATION AND INTUITIONS

Informally, a function is “linear” if it consumes its argument exactly once. (It is “a�ne” if it consumes
it at most once.) A linear type system gives a static guarantee that a claimed linear function really
is linear. �ere are many motivations for linear type systems, but they mostly come down to two
questions:

• Is it safe to update this value in-place (Sec. 2.2)? �at depends on whether there are aliases
to the value; update-in-place is ok if there are no other pointers to it. Linearity supports a
more e�cient implementation, by O (1) update rather than O (n) copying.

• Am I obeying the usage protocol of this external resource (Sec. 2.3)? For example, an open
�le should be closed, and should not be used a�er it it has been closed; a socket should
be opened, then bound, and only then used for reading; a malloc’d memory block should
be freed, and should not be used a�er that. Here, linearity does not a�ect e�ciency, but
rather eliminates many bugs.

We introduce our extension to Haskell, which we call Hask-ll (Haskell with Linear Logic), by
focusing on these two use-cases. In doing so, we introduce a number of ideas that we �esh out in
subsequent subsections.

2.1 Operational intuitions

We have said informally that “a linear function consumes its argument exactly once”. But what
exactly does that mean?

Meaning of the linear arrow: f :: s( t guarantees that if (f u) is consumed exactly
once, then the argument u is consumed exactly once.

To make sense of this statement we need to know what “consumed exactly once” means. Our
de�nition is based on the type of the value concerned:

De�nition 2.1 (Consume exactly once).

• To consume a value of atomic base type (like Int or Ptr) exactly once, just evaluate it.
• To consume a function exactly once, apply it to one argument, and consume its result

exactly once.
• To consume a pair exactly once, pa�ern-match on it, and consume each component exactly

once.
• In general, to consume a value of an algebraic data type exactly once, pa�ern-match on it,

and consume all its linear components exactly once (Sec. 2.5)1.

�is de�nition is enough to allow programmers to reason about the typing of their functions, and
it drives the formal typing judgements in Sec. 3.

Note that a linear arrow speci�es how the function uses its argument. It does not restrict the

arguments to which the function can be applied. In particular, a linear function cannot assume that
it is given the unique pointer to its argument. For example, if f :: s( t, then this is �ne:
g :: s→ t

g x = f x

�e type of g makes no particular guarantees about the way in which it uses x; in particular, g can
pass that argument to f.
1You may deduce that pairs have linear components, and indeed they do, as we discuss in Sec. 2.5.
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Retrofi�ing Linear Types 1:3

2.2 Safe mutable arrays

�e Haskell language provides immutable arrays, built with the function array
2:

array :: Int→ [ (Int, a) ]→ Array a

type MArray s a

type Array a

newMArray :: Int→ ST s (MArray s a)

read :: MArray s a→ Int→ ST s a

write :: MArray s a→ (Int, a) → ST s ()

unsafeFreeze :: MArray s a→ ST s (Array a)

forM :: Monad m⇒ [a]→ (a→ m ()) → m ()

runST :: (∀a. ST s a) → a

Fig. 1. Signatures for array primitives (current ghc)

But how is array implemented? A possible
answer is “it is built-in; don’t ask”. But in real-
ity ghc implements array using more primitive
pieces, so that library authors can readily im-
plement more complex variations — and they
certainly do: see for example Sec. 5.1. Here is
the de�nition of array, using library functions
whose types are given in Fig. 1.

array :: Int→ [ (Int, a) ]→ Array a

array size pairs = runST

(do {ma← newMArray size

; forM pairs (write ma)

; return (unsafeFreeze ma) })

In the �rst line we allocate a mutable array, of type MArray s a. �en we iterate over the
pairs, with forM , updating the array in place for each pair. Finally, we freeze the mutable array,
returning an immutable array as required. All this is done in the ST monad, using runST to securely
encapsulate an imperative algorithm in a purely-functional context, as described in (Launchbury
and Peyton Jones 1995).

Why is unsafeFreeze unsafe? �e result of (unsafeArray ma) is a new immutable array, but to
avoid an unnecessary copy, the two are actually the same array. �e intention is, of course, that
that unsafeFreeze should be the last use of the mutable array; but nothing stops us continuing
to mutate it further, with quite unde�ned semantics. �e “unsafe” in the function name is a ghc
convention meaning “the programmer has a proof obligation here that the compiler cannot check”.

�e other unsatisfactory thing about the monadic approach to array construction is that it is
overly sequential. Suppose you had a pair of mutable arrays, with some updates to perform to each;
these updates could be done in parallel, but the ST monad would serialise them.

Linear types allow a more secure and less sequential interface. Hask-ll introduces a new kind
of function type: the linear arrow a( b. A linear function f :: a( b must consume its argument
exactly once. �is new arrow is used in a new array api, given in Fig. 2.

type MArray a

type Array a

newMArray :: Int→ (MArray a( Unrestricted b) ( b

write :: MArray a( (Int, a) → MArray a

read :: MArray a( Int→ (MArray a,Unrestricted a)

freeze :: MArray a( Unrestricted (Array a)

Fig. 2. Type signatures for array primitives (linear version), allowing in-place update.

Using this api we can de�ne array thus:
2 Haskell actually generalises over the type of array indices, but for this paper we will assume that the arrays are indexed,
from 0, by Int indices.
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1:4 Anon.

type File
openFile :: FilePath→ IO File

readLine :: File→ IO ByteString

closeFile :: File→ IO ()

Fig. 3. Types for traditional file IO

type File
openFile :: FilePath→ IOL 1 File

readLine :: File a( IOL 1 (File,Unrestricted ByteString)

closeFile :: File( IOL ω ()

Fig. 4. Types for linear file IO

array :: Int→ [ (Int, a) ]→ Array a

array size pairs = newMArray size (λma→ freeze (foldl write ma pairs))

�ere are several things to note here:
• �e function newMArray allocates a fresh, mutable array of the speci�ed size, and passes

it to the function supplied as the second argument to newMArray, as a linear value ma.
• Even though linearity is a property of function arrows, not of types (Sec. 6.1), we still

disinguish the type of mutable arrays MArray from that of immutable arrays Array, because
in this api only immutable arrays are allowed to be non-linear (unrestricted). �e way to
say that results can be freely shared is to use Unrestricted (Sec. 2.4), as in the type of freeze.

• Because freeze consumes its input, there is no danger of the same mutable array being
subsequently wri�en to, eliminating the problem with unsafeFreeze.

• Since ma is linear, we can only use it once. �us each call to write returns a (logically) new
array, so that the array is single-threaded, by foldl, through the sequence of writes.

• Above, foldl has the type (a( b( a) → a( [b] ( a, which expresses that it consumes
its second argument linearly (the mutable array), while the function it is given as its �rst
argument (write) must be linear. As we shall see in Sec. 2.6 this is not a new foldl, but
an instance of a more general, multiplicity-polymorphic version of a single foldl (where
“multiplicity” refers to how many times a function consumes its input).

�ree factors ensure that a unique MArray is needed in any given application x = newMArray k,
and in turn that update-in-place is safe. First, newMArray introduces only a linear ma :: MArray.
Second, no function that consumes an MArray a returns more than a single pointer to it; so k can
never obtain two pointers to ma. �ird, k must wrap its result in Unrestricted. �is third point
means that even if x is used in an unrestricted way, it su�ces to call k a single time to obtain the
result, and in turn no mutable pointer to ma can escape when newArray returns (i.e. when the b

result of newArray is evaluated).
With this mutable array api, the ST monad has disappeared altogether; it is the array itself

that must be single threaded, not the operations of a monad. �at removes the unnecessary
sequentialisation we mentioned earlier and opens the possibility of exploiting more parallelism at
runtime.

Compared to the status quo (using ST and unsafeFreeze), the other major bene�t is in shrinking
the trusted code base, because more library code (and it can be particularly gnarly code) is statically
typechecked. Clients who use only immutable arrays do not see the inner workings of the library,
and will be una�ected. Our second use-case has a much more direct impact on library clients.

2.3 I/O protocols

Consider the api for �les in Fig. 3, where a File is a cursor in a physical �le. Each call to readLine

returns a ByteString (the line) and moves the cursor one line forward. But nothing stops us reading
a �le a�er we have closed it, or forge�ing to close it. An alternative api using linear types is given
in Fig. 4. Using it we can write a simple �le handling program, firstLine, shown here.
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Retrofi�ing Linear Types 1:5

firstLine :: FilePath→ IOL ω Bytestring

firstLine fp =

do { f← open fp

; (f,Unrestricted bs) ← readLine f

; close f
; return bs }

Notice several things:
• Operations on �les remain monadic, unlike the case with mutable arrays. I/O operations

a�ect the world, and hence must be sequenced. It is not enough to sequence operations on
�les individually, as it was for arrays.

• We generalise the IO monad so that it expresses whether or not the returned value is
linear. We add an extra multiplicity type parameter p to the monad IOL, where p can
be 1 or ω, indicating a linear or unrestricted result, respectively. Now openFile returns
IOL 1 (File ByteString), the “1” indicating that the returned File must be used linearly. We
will return to how IOL is de�ned in Sec. 2.7.
• As before, operations on linear values must consume their input and return a new one;

here readLine consumes the File and produces a new one.
• Unlike the File, theByteString returned by readLine is unrestricted, and the type of readLine

indicates this.
It may seem tiresome to have to thread the File as well as sequence operations with the IO monad.
But in fact it is o�en useful do to do so, because we can use types to witness the state of the resource,
e.g., with separate types for an open or closed File. We show applications in Sec. 5.1 and Sec. 5.2.

2.4 Linear data types

With the above intutions in mind, what type should we assign to a data constructor such as the
pairing constructor (, )? Here are two possibilities:

(, ) :: a( b( (a, b) (, ) :: a→ b→ (a, b)

Using the de�nition in Sec. 2.1, the former is clearly the correct choice: if the result of (, ) e1 e2 is
consumed exactly once, then (by Def. 2.1), e1 and e2 are each consumed exactly once; and hence
(, ) is linear it its arguments.

f1 :: (Int, Int) → (Int, Int)

f1 x = case x of (a, b) → (a + a, 0)
f2 :: (Int, Int) ( (Int, Int)

f2 x = case x of (a, b) → (b, a)

So much for construction; what about pa�ern matching?
Consider f1 and f2 de�ned here; f1 is an ordinary Haskell
function. Even though the data constructor (, ) has a linear
type, that does not imply that the pa�ern-bound variables a
and b must be consumed exactly once; and indeed they are
not. �erefore, f1 does not have the linear type (Int, Int)( (Int, Int). Why not? If the result of (f1 t)
is consumed once, is t guaranteed to be consumed once? No: t is guaranteed to be evaluated once,
but its �rst component is then consumed twice and its second component not at all, contradicting
Def. 2.1. In contrast, f2 does have a linear type: if (f2 t) is consumed exactly once, then indeed t is
consumed exactly once. �e key point here is that the same pair constructor works in both functions;

we do not need a special non-linear pair.
�e same idea applies to all existing Haskell data types: in Hask-ll we treat all data types

de�ned using legacy Haskell-98 (non-GADT) syntax as de�ning constructors with linear arrows.
For example here is a declaration of Hask-ll’s list type, whose constructor (:) uses linear arrows:

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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1:6 Anon.

data [a] = [ ] | a : [a]

(++) :: [a] ( [a] ( [a]
[ ] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys)

Just as with pairs, this is not a new, linear list type: this is

Hask-ll’s list type, and all existing Haskell functions will work
over it perfectly well. Even be�er, many list-based functions are
in fact linear, and can be given a more precise type. For example
we can write (++) as follows:

�is type says that if (xs++ ys) is consumed exactly once, then
xs is consumed exactly once, and so is ys, and indeed our type
system will accept this de�nition.

As before, giving a more precise type to (++) only strengthens the contract that (++) o�ers to its
callers; it does not restrict its usage. For example:

sum :: [Int] ( Int

f :: [Int] ( [Int]→ Int

f xs ys = sum (xs ++ ys) + sum ys

Here the two arguments to (++) have di�erent multiplicities, but the function f guarantees that it
will consume xs exactly once if (f xs ys) is consumed exactly once.

For an existing language, being able to strengthen (++), and similar functions, in a backwards-

compatible way is a huge boon. Of course, not all functions are linear: a function may legitimately
demand unrestricted input. For example, the function f above consumes ys twice, and so f needs an
unrestricted arrow for that argument.

Finally, we can use the very same pairs and lists types to contain linear values (such as mutable
arrays) without compromising safety. For example:

upd :: (MArray Char,MArray Char) ( Int→ (MArray Char,MArray Char)

upd (a1, a2) n | n > 10 = (write a1 n ’x’, a2)

| otherwise = (write a2 n ’o’, a1)

2.5 Unrestricted data constructors

Suppose I want to pass a linear MArray and an unrestricted Int to a function f. We could give f the
signature f :: MArray Int( Int→ MArray Int. But suppose we wanted to uncurry the function;
we could then give it the type

f :: (MArray Int, Int) (MArray Int

But this is no good: now f is only allowed to use the Int linearly, but it might actually use it many
times. For this reason it is extremely useful to be able to declare data constructors with non-linear
types, like this:

data PLU a b where {PLU :: a( b→ PLU a b }

f :: PLU (MArray Int) Int(MArray Int

Here we use gadt-style syntax to give an explicit type signature to the data constructor PLU, with
mixed linearity. Now, when constructing a PLU pair the type of the constructor means that we
must always supply an unrestricted second argument; and dually when pa�ern-matchinng on PLU

we are therefore free use the second argument in an unrestricted way, even if the PLU value itself
is linear.

Instead of de�ning a pair with mixed linearity, we can also write
data Unrestricted a where {Unrestricted :: a→ Unrestricted a }

f :: (MArray Int,Unrestricted Int) (MArray Int

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Retrofi�ing Linear Types 1:7

�e type (Unrestricted t) is very much like “!t” in linear logic, but in our se�ing it is just an ordinary
user-de�ned data type. We saw it used in Fig. 2, where the result of read was a pair of a linear
MArray and an unrestricted array element:

read :: MArray a( Int→ (MArray a,Unrestricted a)

Note that, according to the de�nition in Sec. 2.1, if a value of type (Unrestricted t) is consumed
exactly once, that tells us nothing about how the argument of the data constructor is consumed: it
may be consumed many times or not at all.

2.6 Multiplicity polymorphism

A linear function provides more guarantees to its caller than a non-linear one — it is more general.
But the higher-order case thickens the plot. Consider the standard map function over (linear) lists:

map f [ ] = [ ]
map f (x : xs) = f x : map f xs

It can be given the two following incomparable types: (a(b) → [a]( [b] and (a→ b) → [a]→
[b]. �us, Hask-ll features quanti�cation over multiplicities and parameterised arrows (A→q B).
Using these, map can be given the following more general type: ∀p. (a →p b) → [a] →p [b].
Likewise, function composition and foldl (cf. Section 2.2) can be given the following general types:

foldl :: ∀p q. (a→p b→q a) → a→p [b]→q a

(◦) :: ∀p q. (b→p c) ( (a→q b)→p a→p·q c

(f ◦ g) x = f (g x)

�e type of (◦) says that two functions that accept arguments of arbitrary multiplicities (p and q

respectively) can be composed to form a function accepting arguments of multiplicity p · q (i.e. the
product of p and q — see Def. 3.4). Finally, from a backwards-compatibility perspective, all of these
subscripts and binders for multiplicity polymorphism can be ignored. Indeed, in a context where
client code does not use linearity, all inputs will have unlimited multiplicity, ω, and transitively all
expressions can be promoted to ω. �us in such a context the compiler, or indeed documentation
tools, can even altogether hide linearity annotations from the programmer when this language
extension is not turned on.

2.7 Linear input/output

In Sec. 2.3 we introduced the IOL monad.3 But how does it work? IOL is just a generalisation of the
IO monad, thus:
type IOL p a

returnIOL
:: a→p IOL p a

bindIOL
:: IO p a( (a→p IOL q b) ( IOL q b

�e idea is that if m :: IOL 1 t, then m is an input/output computation that returns a linear value
of type t. But what does it mean to “return a linear value” in a world where linearity applies
only to function arrows? Fortunately, in the world of monads each computation has an explicit
continuation, so we just need to control the linearity of the continuation arrow. More precisely, in an
application m ‘bindIOL

‘ k where m :: IOL 1 t, we need the continuation k to be linear, k :: t( IOL q t’.
And that is captured by the multiplicity-polymorphic type of bindIOL

.
3
IOL p is not a monad in the strict sense, p and q can be di�erent in bindIO

L
, it is however a relative monad (Altenkirch et al.

2010). �e details, involving the functor data Mult p a = Mult :: a→p Mult p a and linear arrows, are le� as an exercise to
the reader

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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1:8 Anon.

Even though they have a di�erent type than usual, the bind and return combinators of IOL can
be used in the familiar way. �e di�erence with the usual monad is that multiplicities may be
mixed, but this poses no problem in practice. Consider

do { f← openFile s -- openFile :: FilePath→ IOL 1 (File ByteString)

; d← getDate -- getDate :: IOL ω Date

; e [f, d] }

Here openFile returns a linear File that should be closed, but getDate returns an ordinary non-linear
Date. So this sequence of operations has mixed linearity. Nevertheless, we can combine them with
bindIOL

in the usual way:

openFile s ‘bindIOL
‘ λf→

getData ‘bindIOL
‘ λd→

e [f, d]

Such an interpretation of the do-notation requires Haskell’s -XRebindableSyntax extension, but
if linear I/O becomes commonplace it would be worth considering a more robust solution.

Internally, hidden from clients, ghc actually implements IO as a function, and that implementa-
tion too is illuminated by linearity, like so:

data World

newtype IOL p a = IOL (unIOL :: World( IORes p a)

data IORes p a where
IOR :: World( a→p IOR p a

bindIOL
:: IOL p a( (a→p IOL q b) ( IOL q b

bindIOL
(IOL m) k = IOL (λw→ case m w of

IOR w’ r→ unIOL (k r) w’)

A value of type World represents the state of the world, and is threaded linearly through I/O
computations. �e linearity of the result of the computation is captured by the p parameter of
IOL, which is inherited by the specialised form of pair, IORes that an IOL computation returns. All
linearity checks are veri�ed by the compiler, further reducing the size of the trusted code base.

2.8 Linearity and strictness

It is tempting to assume that, since a linear function consumes its argument exactly once, then it
must also be strict. But not so! For example

f :: a( (a,Bool)

f x = (x, True)

Here f is certainly linear according to Sec. 2.1, and given the type of (, ) in Sec. 2.4. �at is, if (f x)
is consumed exactly once, then each component of its result pair is consumed exactly once, and
hence x is consumed exactly once. But f is certainly not strict: f ⊥ is not ⊥.

3 λ
Q
→: A CORE CALCULUS FOR HASK-LL

It would be impractical to formalise all of Hask-ll. So instead we formalise a core calculus, λq→,
which exhibits all the key features of Hask-ll, including data types and multiplicity polymorphism.
In this way we make precise much of the informal discussion above.
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Retrofi�ing Linear Types 1:9

Multiplicities

π , µ ::= 1 | ω | p | π + µ | π · µ
Contexts

Γ,∆ ::= (x :µ A), Γ | –

Datatype declaration

data D p1 . . . pn where

(
ck : A1 →π1 · · · Ank →πnk

D
)m
k=1

Types

A,B ::= A→π B | ∀p.A | D p1 . . . pn

Terms

e, s, t ,u ::= x variable
| λπ (x :A).t abstraction
| t s application
| λp.t multiplicity abstraction
| t π multiplicity application
| c t1 . . . tn data construction
| caseπ t of {ck x1 . . . xnk → uk }

m
k=1 case

| letπ x1 : A1 = t1 . . . xn : An = tn in u let

Fig. 5. Syntax of λ
q
→

3.1 Syntax

�e term syntax of λq→ is that of a type-annotated (à la Church) simply-typed λ-calculus with
let-de�nitions (Fig. 5). It includes multiplicity polymorphism, but to avoid clu�er we omit ordinary
type polymorphism.
λ
q
→ is an explicitly-typed language: each binder is annotated with its type and multiplicity; and

multiplicity abstraction and application are explicit. Hask-ll will use type inference to �ll in much
of this information, but we do not address the challenges of type inference here.

�e types of λq→ (see Fig. 5) are simple types with arrows (albeit multiplicity-annotated ones),
data types, and multiplicity polymorphism. We use the following abbreviations: A→ B

def
= A→ω B

and A ( B
def
= A→1 B.

Data type declarations (see Fig. 5) are of the following form:

data D p1 . . . pn where

(
ck : A1 →π1 · · · Ank →πnk

D
)m
k=1

�e above declaration means that D is parameterized over n multiplicities pi and hasm constructors
ck , each with nk arguments. Arguments of constructors have a multiplicity, just like arguments of
functions: an argument of multiplicity ω means that consuming the data constructor once makes
no claim on how o�en that argument is consumed (Def. 2.1). All the variables in the multiplicities
πi must be among p1 . . .pn ; we write π [π1 . . . πn] for the substitution of pi by πi in π .

3.2 Static semantics

�e static semantics of λq→ is given in Fig. 6. Each binding in Γ, of form x :π A, includes a multiplicity
π (Fig. 5). �e familiar judgement Γ ` t : A should be read as follows
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1:10 Anon.

ωΓ + x :1 A ` x : A
var

Γ,x :π A ` t : B
Γ ` λπ (x :A).t : A→q B

abs
Γ ` t : A→π B ∆ ` u : A

Γ + π∆ ` t u : B
app

∆i ` ti : Ai ck : A1 →µ1 . . . →µn−1 An →µn D p1 . . . pn constructor

ωΓ +
∑
i

µi [π1 . . . πn]∆i ` ck t1 . . . tn : D π1 . . . πn
con

Γ ` t : D π1 . . . πn ∆,x1 :π µi [π1 ...πn ] Ai , . . . ,xnk :π µnk [π1 ...πn ] Ank ` uk : C
for each ck : A1 →µ1 . . . →µnk −1 Ank →µnk

D p1 . . . pn

πΓ + ∆ ` caseπ t of {ck x1 . . . xnk → uk }
m
k=1 : C

case

Γi ` ti : Ai ∆,x1 :π A1 . . . xn :π An ` u : C

∆ + q
∑
i

Γi ` letπ x1 : A1 = t1 . . . xn : An = tn in u : C
let

Γ ` t : A p fresh for Γ
Γ ` λp.t : ∀p.A

m.abs

Γ ` t : ∀p.A
Γ ` t π : A[π/p]

m.app

Fig. 6. Typing rules

Γ ` t : A asserts that consuming the term t : A exactly once will consume each
binding (x :π A) in Γ with its multiplicity π .

One may want to think of the types in Γ as inputs of the judgement, and the multiplicities as outputs.
�e rule (abs) for lambda abstraction adds (x :π A) to the environment Γ before checking the

body t of the abstraction. Notice that in λq→, the lambda abstraction λπ (x :A).t is explicitly annotated
with multiplicity π . Remember, this is an explicitly-typed intermediate language; in Hask-ll this
multiplicity is inferred.

�e dual application rule (app) is more interesting:

Γ ` t : A→π B ∆ ` u : A
Γ + π∆ ` t u : B

app

To consume (t u) once, we consume t once, yielding the multiplicities in Γ, and u once, yielding the
multiplicies in ∆. But if the multiplicity π on u’s function arrow is ω, then the function consumes
its argument not once but ω times, so all u’s free variables must also be used with multiplicity ω.
We express this by taking the product of the multiplicities in ∆ and π , thus π∆. Finally we need to
add together all the multiplicities in Γ and π∆; hence the context Γ + π∆ in the conclusion of the
rule.

In writing this rule we needed to “scale” a context by a multiplicity, and “add” two contexts. We
pause to de�ne these operations.

De�nition 3.1 (Context addition).

(x :π A, Γ) + (x :µ A,∆) = x :π+µ A, (Γ + ∆)
(x :π A, Γ) + ∆ = x :π A, Γ + ∆ (x < ∆)

() + ∆ = ∆

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Retrofi�ing Linear Types 1:11

Context addition is total: if a variable occurs in both operands the �rst rule applies (with possible
re-ordering of bindings in ∆), if not the second or third rule applies.

De�nition 3.2 (Context scaling).

π (x :µ A, Γ) = x :π µ A,πΓ

Lemma 3.3 (Contexts form a module). �e following laws hold:

Γ + ∆ = ∆ + Γ π (Γ + ∆) = πΓ + π∆

(π + µ )Γ = πΓ + µΓ

(πµ )Γ = π (µΓ) 1Γ = Γ

�ese operations depend, in turn, on addition and multiplication of multiplicities. �e syntax
of multiplicities is given in Fig. 5. We need the concrete multiplicities 1 and ω and, to support
polymorphism, multiplicity variables (ranged over by the metasyntactic variables p and q) as well as
formal sums and products of multiplicities. Multiplicity expressions are quotiented by the following
equivalence relation:

De�nition 3.4 (equivalence of multiplicities). �e equivalence of multiplicities is the smallest
transitive and re�exive relation, which obeys the following laws:

• + and · are associative and commutative
• 1 is the unit of ·
• · distributes over +
• ω · ω = ω
• 1 + 1 = 1 + ω = ω + ω = ω

�us, multiplicities form a semi-ring (without a zero), which extends to a module structure on
typing contexts.

Returning to the typing rules in Fig. 6, the rule (let) is like a combination of (abs) and (app).
Again, each let binding is explicitly annotated with its multiplicity. �e variable rule (var) uses a
standard idiom:

ωΓ + x :1 A ` x : A
var

�is rule allows us to ignore variables with multiplicity ω (usually called weakening), so that, for
example x :1 A,y :ω B ` x : A holds 4. Note that the judgement x :ω A ` x : A is an instance of the
variable rule, because (x :ω A) + (x :1 A) = x :ω A.

Finally, abstraction and application for multiplicity polymorphism are handled straightforwardly
by (m.abs) and (m.app).

3.3 Data constructors and case expressions

�e handling of data constructors and case expressions is a distinctive aspect of our design. For
constructor applications, the rule (con), everything is straightforward: we treat the data constructor
in precisely the same way as an application of a function with that data constructor’s type. �is
includes weakening via the ωΓ context in the conclusion. �e (case) rule is more interesting:

Γ ` t : D π1 . . . πn ∆,x1 :π µi [π1 ...πn ] Ai , . . . ,xnk :π µnk [π1 ...πn ] Ank ` uk : C
for each ck : A1 →µ1 . . . →µnk −1 Ank →µnk

D p1 . . . pn

πΓ + ∆ ` caseπ t of {ck x1 . . . xnk → uk }
m
k=1 : C

case

4Pushing weakening to the variable rule is classic in many λ-calculi, and in the case of linear logic, dates back at least to
Andreoli’s work on focusing (Andreoli 1992).
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1:12 Anon.

First, notice that the case keyword is annotated with a multiplicity π ; this is analogous to the
explicit multiplicity on a let binding. It says how o�en the scrutinee (or, for a let, the right hand
side) will be consumed. Just as for let, we expect π to be inferred from an un-annotated case in
Hask-ll.

�e scrutinee t is consumed π times, which accounts for the πΓ in the conclusion. Now consider
the bindings (xi :π µi [π1 ...πn ] Ai ) in the environment for typechecking uk . �at binding will be
linear only if both π and πi are linear; that is, only if we specify that the scrutinee is consumed once,
and the i’th �eld of the data constructor ck speci�es that is it consumed once if the constructor
is (Def. 2.1). To put it another way, suppose one of the linear �elds5 of ck is used non-linearly in
uk . �en, µi = 1 (it is a linear �eld), so π must be ω, so that πµi = ω. In short, using a linear �eld
non-linearly forces the scrutinee to be used non-linearly, which is just what we want. Here are
some concrete examples:

fst :: (a, b)→ a swap :: (a, b) ( (b, a)

fst (a, b) = a swap (a, b) = (b, a)

Recall that both �elds of a pair are linear (Sec. 2.4). In fst, the second component of the pair is used
non-linearly (by being discarded) which forces the use of caseω , and hence a non-linear type for
fst. But swap uses the components linearly, so we can use case1, giving swap a linear type.

3.4 Metatheory

In order to prove that our type system meets its stated goals, we introduce an operational semantics.
�e details are deferred to Appendix A, included in the anonymous supplementary material
submi�ed with the article.

Of consuming exactly once. �e operational semantics is a big-step operational semantics for lazy
evaluation in the style of Launchbury (1993). Following Gunter and Rémy (1993), starting from a
big-step evaluation relation a ⇓ b, we de�ne partial derivations and from there a partial evaluation

relation a ⇓∗ b (see Sec. A.1). Progress is then expressed as the fact that a derivation of a ⇓∗ b can
always be extended.

�e operational semantics di�ers from Launchbury’s in two major respects:
• �e reduction states are heavily annotated with type information. �ese type annotations

are used for the proofs.
• Reduction is indexed by whether we intend to consume the term under consideration

exactly once or an arbitrary number of times
• Variables in the environments are annotated by a multiplicity (1 or ω), ω-variables are

ordinary variables. When such a variable is forced it is replaced by its value (to model lazy
sharing), but 1-variables must be consumed exactly once: when they are forced, they are
removed from the environment. So reduction would get stuck if a 1-variable was used more
than once.

Because the operational semantics gets stuck if a 1-variable is used more than once, the progress
theorem (�eorem 3.6) shows that linear functions do indeed consume their argument at most
once if their result is consumed exactly once. �e 1-variables are in fact used exactly once: it is a
consequence of type preservation that evaluation of a closed term of a basic type (say Bool) returns
an environment with no 1-variables.

Our preservation and progress theorems then look like this, writing a,b for states of the evalua-
tion:
5 Recall Sec. 2.5, which described how each constructor can have a mixture of linear and non-linear �elds.
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Retrofi�ing Linear Types 1:13

Theorem 3.5 (Type preservation). If a is well typed, and a ⇓ b, or a ⇓∗ b then b is well-typed.

Theorem 3.6 (Progress). Evaluation does not block. �at is, for any partial evaluation a ⇓∗ b,

where a is well-typed, the derivation can be extended.

�ese theorems are proved in Sec. A.3.

In-place update & typestate. Furthermore, linear types can be used to implement some operations
as in-place updates, and typestates (like whether an array is mutable or frozen) are actually enforced
by the type system.

To prove this, we introduce a second, distinct, semantics. It is also a Launchbury style semantics.
It di�ers from Launchbury (1993) in the following ways:

• Environments are enriched with mutable references (for the sake of concreteness, they are
all references to arrays but they could be anything)

• Typestates are implemented by mutating the type of such references, functions can block if
the type of the references isn’t correct: that is, we track typestates dynamically

�e idea behind the la�er is that progress will show that we are never blocked by typestates. In
other words, they are enforced statically and can be erased at runtime.

It is hard to reason on a lazy language with mutation. But what we show is that we are using
mutation carefully enough so that they behave as pure data. To formalise this, we relate this
semantics with mutation to our pure semantics above. Speci�cally, we show that they are bisimilar.
�is is similar to Amani et al. (2016), who also have a language with linear types with both a pure
and imperative semantics.

Bisimilarity allows us to li� the type-preservation and progress from the pure semantics. �at is,
writing σ ,τ for states of this evaluation with mutation:

Theorem 3.7 (Type preservation). For any well-typed σ , if σ ⇓ τ or σ ⇓∗ τ , then τ is well-typed.

Theorem 3.8 (Progress). Evaluation does not block. �at is, for any partial evaluation σ ⇓∗ τ , for

σ well-typed, the evaluation can be extended.

In particular, typestates need not be checked dynamically.

Just as importantly, we can prove that, indeed, we cannot observe mutations. More precisely, we
prove that the pure semantics and the semantics with mutation are observationally equivalent: any
observation, which we reduce to a boolean test, is identical in either semantics.

Theorem 3.9 (Observational eqivalence). �e semantics with in-place mutation is observa-

tionally equivalent to the pure semantics.

�at is, for any closed term of type Bool, if e evaluates to the value z with the pure semantics, and

to the value z ′ with the semantics with mutation, then z = z ′.

�ese three theorems are proved in Sec. A.4.

3.5 Design choices & trade-o�s

We could as well have picked di�erent points in the design space for λq→. We review some of the
choices we made in this section.

Case rule. It is possible to do without caseω , and have only case1. Consider fst again. We could
instead have

data Pair p q a b where
Pair :: a→p b→q Pair p q a b
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1:14 Anon.

fst :: Pair 1 ω a b( a

fst x = case 1 x of Pair a b→ a

But now multiplicity polymorphism infects all basic data types (such as pairs), with knock-on
consequences. Moreover, let is annotated so it seems reasonable to annotate case in the same way.

To put it another way, caseω allows us to meaningfully inhabit ∀a b. Unrestricted (a, b) (
(Unrestricted a,Unrestricted b), while linear logic does not.

Subtyping. Because the type A ( B only strengthens the contract of its elements compared
to A → B, one might expect the type A ( B to be a subtype of A → B. But while λq→ has
polymorphism, it does not have subtyping. For example, if

f :: Int( Int

g :: (Int→ Int) → Bool

then the call (g f) is ill-typed, even though f provides more guarantees than g requires. However, g
might well be multiplicity-polymorphic, with type ∀p. (Int→p Int) → Bool; in which case (g f) is,
indeed, typeable. Alternatively, η-expansion to g (λx. f x) makes the expression typeable, as the
reader may check.

�e lack of subtyping is a deliberate choice in our design: it is well known that Hindley-Milner-
style type inference does not mesh well with subtyping (see, for example, the extensive exposition
by Po�ier (1998), but also Dolan and Mycro� (2017) for a counterpoint). Hask-ll has limited support
for subtyping: calls like (g f) are well-typed. But these are elaborated to their η-expansions in λq→.

Polymorphism. Consider the de�nition: “id x = x”. Our typing rules would validate both
id :: Int→ Int and id :: Int( Int. So, since we think of multiplicities ranging over {1,ω}, surely
we should also have id :: ∀p. Int→p Int? But as it stands, our rules do not accept it. To do so we
would need x :p Int ` x : Int . Looking at the (var) rule in Fig. 6, we can prove that premise by case
analysis, trying p = 1 and p = ω. But if we had a richer domain of multiplicities, including 0 (see
Sec. 7.2), we would be able to prove x :p Int ` x : Int , and rightly so because it is not the case that
id :: Int→0 Int.

For now, we accept more conservative rules, in order to keep open the possiblity of extending
the multiplicity domain later. �ere is an up-front cost to this: we have less polymorphism than we
might expect.

4 IMPLEMENTING HASK-LL

We implement Hask-ll on top of the leading Haskell compiler, ghc, version 8.26. �e imple-
mentation modi�es type inference and type-checking in the compiler. Neither the intermediate
language (Sulzmann et al. 2007) nor the run-time system are a�ected. Our implementation of
multiplicity polymorphism is incomplete, but the current prototype is su�cient for the examples
and case studies presented in in this paper (see Sec. 5).

In order to implement the linear arrow, we added a multiplicity annotation to function arrows
as in λq→. �e constructor for arrow types is constructed and destructed frequently in ghc’s type
checker, and this accounts for most of the modi�cations to existing code.

As suggested in Sec. 3.2, the multiplicities are an output of the algorithm. In order to infer the
multiplicities of variables in the branches of a case expression we need a way to join the output of
the branch. We use a supremum operation on multiplicities where 1∨ 0 = ω (0 stands for a variable
absent in a branch).

6URL suppressed for anonymous review
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Retrofi�ing Linear Types 1:15

Implementing Hask-ll a�ects 1,152 lines of ghc (in subsystems of the compiler that together
amount to more than 100k lines of code), including 444 net extra lines. �ese �gures support our
claim that Hask-ll is easy to integrate into an existing implementation: despite ghc being 25 years
old, we implement a �rst version of Hask-ll with reasonable e�ort.

5 EVALUATION AND CASE STUDIES

While many linear type systems have been proposed, a retro��ed linear type system for a mature
language like Haskell o�ers the opportunity to implement non-trivial applications mixing linear
and non-linear code, I/O, etc., and observe how linear code interacts with existing libraries and the
optimiser of a sophisticated compiler.

Our �rst method for evaluating the implementation is to simply compile a large existing code
base together with the following changes: (1) all (non-gadt) data constructors are linear by default,
as implied by the new type system; and (2) we update standard list functions to have linear types
(++, concat, uncons). Under these conditions, we veri�ed that the base ghc libraries and the no�b
benchmark suites compile successfully: 195K lines of Haskell, providing preliminary evidence of
backwards compatibility.

In the remainder of section, we describe case-studies implementated with the modi�ed ghc of
Sec. 4. In Sec. 7.3, we propose further applications for Hask-ll, which we have not yet implemented,
but which motivate this work.

5.1 Computing directly with serialised data

While Sec. 2.2 covered simple mutable arrays, we now turn to a related but more complicated
application: operating directly on binary, serialised representations of algebraic data-types (as in
Vollmer et al. (2017)). �e motivation is that programs are increasingly decoupled into separate
(cloud) services that communicate via serialised data in text or binary formats, carried by remote
procedure calls. �e standard approach is to deserialise data into an in-heap, pointer-based repre-
sentation, process it, and then serialise the result for transmission. �is process is ine�cient, but
nevertheless tolerated, because the alternative — computing directly with serialised data — is far
too di�cult to program. Nevertheless, the potential performance gain of working directly with
serialised data has motivated small steps in this direction: libraries like “Cap’N Proto” 7 enable
unifying in-memory and on-the-wire formats for simple product types (protobufs).

Here is an unusual case where advanced types can yield performance by making it practical to
code in a previously infeasible style: accessing serialised data at a �ne grain without copying it.

data Tree = Leaf Int | Branch Tree Tree

pack :: Tree( Packed [Tree]
unpack :: Packed [Tree] ( Tree

caseTree :: Packed (Tree : r) →p

(Packed (Int : r) →p a) (
(Packed (Tree : Tree : r) →p a) ( a

�e interface on the right gives an exam-
ple of type-safe, read-only access to serialised
data for a particular datatype. A Packed

value is a pointer to raw bits (a bytestring),
indexed by the types of the values contained
within. We de�ne a type-safe serialisation
layer as one which reads byte-ranges only at
the type and size they were originally writ-

ten. �is is a small extension of the memory safety we already expect of Haskell’s heap — extended
to include the contents of bytestrings containing serialised data8. To preserve this type safety, the

7h�ps://capnproto.org/
8�e additional safety ensured here is lower-stakes than typical memory-safety, as, even it is violated, the serialised values
do not contain pointers and cannot segfault the program reading them.
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1:16 Anon.

Packed type must be abstract. Consequently, a client of the module de�ning Tree need not be privy
to the memory layout of its serialisation.

If we cannot muck about with the bits inside a Packed directly, then we can still retrieve data
with unpack, i.e., the traditional, copying, approach to deserialisation. Be�er still is to read the data
without copying. We can manage this feat with caseTree, which is analogous to the expression
“case e of {Leaf...;Branch... }”. Lacking built-in syntax, (caseTree p k1 k2) takes two continuations
corresponding to the two branches of the case expression. Unlike the case expression, caseTree
operates on the packed byte stream, reads a tag byte, advances the pointer past it, and returns a
type-safe pointer to the �elds (e.g. Packed [Int] in the case of a leaf).

It is precisely to access multiple, consecutive �elds that Packed is indexed by a list of types as its
phantom type parameter. Individual atomic values (Int, Double, etc) can be read one at a time with
a lower-level read primitive, which can e�ciently read out scalars and store them in registers:

read :: Storable a⇒ Packed (a : r) ( (a,Packed r)

sumLeaves :: Packed [Tree]→ Int

sumLeaves p = fst (go p)

where go p = caseTree p

read -- Leaf case
(λp2→ let (n, p3) = go p2

(m, p4) = go p3

in (n +m, p4))

Pu�ing it together, we can write a func-
tion that consumes serialised data, such as
sumLeaves, shown on the right. Indeed, we can
even use caseTree to implement unpack, turn-
ing it into safe “client code” – si�ing outside
the module that de�nes Tree and the trusted
code establishing its memory representation.

In this read-only example, linearity was not
essential, only phantom types. Next we consider an API for writing Packed [Tree] values bit by
bit, where linearity is key. In particular, can we also implement pack using a public interface?

5.1.1 Writing serialised data. To create a serialised data constructor, we must write a tag, followed
by the �elds. A linear write pointer can ensure all �elds are initialised, in order. We use a type
“Needs” for write pointers, parameterised by (1) a list of remaining things to be wri�en, and (2) the
type of the �nal value which will be initialised once those writes are performed. For example, a�er
we write the tag of a Leaf we are le� with: “Needs [Int] Tree” — an obligation to write the Int �eld,
and a promise to receive a Tree value at the end (albeit a packed one).

To write an individal number, we provide a primitive that shaves one element o� the type-level
list of obligations (a counterpart to read, above): As with mutable arrays, this write operates in-place
on the bu�er, in spite being a pure function.

write :: Storable a⇒ a( Needs (a : r) t( Needs r t

When the list of outstanding writes is empty, we can retrive a readable packed bu�er. Just as when
we froze arrays (Sec. 2.2), the immutable value is unrestricted, and can be used multiple times:

finish :: Needs [ ] t( Unrestricted (Packed [t])

Finalizing wri�en values with finish works hand in hand with allocating new bu�ers in which to
write data (similar to newMArray from Sec. 2.2):

newBu�er :: (Needs [a] a( Unrestricted b) ( b

We also need to explicitly let go of linear input bu�ers we’ve exhausted.

done :: Packed [ ] ( ()
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Retrofi�ing Linear Types 1:17

�e primitives write, read, newBu�er, done, and finish are general operations for serialised data,
whereas caseTree is datatype-speci�c. Further, the module that de�nes Tree exports a datatype-
speci�c way to write each serialised data constructor:

startLeaf :: Needs (Tree : r) t( Needs (Int : r) t
startBranch :: Needs (Tree : r) t( Needs (Tree : Tree : r) t

Operationally, start∗ functions write only the tag, hiding the exact tag-encoding from the client,
and leaving �eld-writes as future obligations. With these building blocks, we can move pack and
unpack outside of the private code that de�nes Trees, which has this minimal interface:

module TreePrivate (Tree (. .), caseTree, startLeaf, startBranch)

module Data.Packed (Packed,Needs, read,write, newBu�er, finish, done)

On top of the safe interface, we can of course de�ne higher-level construction routines, such as for
writing a complete Leaf:

writeLeaf n = write n ◦ startLeaf

Now we can allocate and initialize a complete tree — equivalent to Branch (Leaf 3) (Leaf 4), but
without ever creating the non-serialised values — as follows:

newBu�er (finish ◦ writeLeaf 4 ◦ writeLeaf 3 ◦ startBranch) :: Packed [Tree]
Finally, we have what we need to build a map function that logically operates on the leaves

of a tree, but reads serialised input and writes serialised output. Indeed, in our current Hask-ll
implementation “mapLeaves (+1) tree” touches only packed bu�ers — it performs zero Haskell
heap allocation! We will return to this map example and benchmark it in Sec. 5.1.3. With the
safe interface to serialised data, functions like sumLeaves and mapLeaves are not burdensome to
program. �e code for mapLeaves is shown below.

module TreePublic (pack, unpack,writeLeaf, sumLeaves,mapLeaves)

...

mapLeaves :: (Int→ Int) → Packed Tree( Packed Tree

mapLeaves fn pt = newBu�er (extract ◦ go pt)

where
extract (inp, outp) = case done inp of () → finish outp

go :: Packed (Tree : r) ( Needs (Tree : r) t( (Packed r,Needs r t)

go p = caseTree p (λp o→ let (x, p’) = read p in (p’,writeLeaf (fn x) o))

(λp o→ let (p’, o’) = go p (writeBranch o) in go p’ o’)

5.1.2 A version without linear types. How would we build the same thing in Haskell without
linear types? It may appear that the ST monad is a suitable choice:

writeST :: Storable a⇒ a→ Needs’ s (a : r) t→ ST s (Needs’ s r t)

Here we use the same typestate associated with a Needs pointer, while also associating its mutable
state with the ST session indexed by s. Unfortunately, not only do we have the same trouble with
freezing in the absence of linearity (unsafeFreeze, Sec. 2.2), we also have an additional problem
not present with arrays: namely, a non-linear use of a Needs pointer can ruin our type-safe
deserialisation guarantee! For example, we can write a Leaf and a Branch to the same pointer in
an interleaved fashion. Both will place a tag at byte 0; but the leaf will place an integer in bytes
1-9, while the branch will place another tag at byte 1. We can receive a corrupted 8-byte integer,
clobbered by a tag from an interleaved “alternate future”.
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Fig. 7. Speedup of operating directly on serialised data, either using linear-types or the ST monad, as

compared to fully unpacking, processing, and repacking the data. For reference, a “pointer-based” version is

also included, which doesn’t operate on serialised data at all, but instead normal heap objects — it represents

the hypothetical performance of “unpack-repack” if (de)serialisation were instantaneous.

Fixing this problem would require switching to an indexed monad with additional type-indices
that model the typestate of all accessible pointers, which would in turn need to have static, type-
level identi�ers. �at is, it would require encoding linearity a�er all, but in a way which would
become very cumbersome as soon as several bu�ers are involved.

5.1.3 Benchmarking compiler optimisations. Finally, as shown in Fig. 7, there are some unex-
pected performance consequences from using a linear versus a monadic, ST style in ghc. Achieving
allocation-free loops in ghc is always a challenge — tuple types and numeric types are lazy and
“boxed” as heap objects by default. As we saw in the sumLeaves and mapLeaves examples, each
recursive call returned a tuple of a result and a new pointer. In a monadic formulation, an ex-
pression of type m a, for Monad m, implies that the “result” type a, of kind ∗, must be a li�ed

type. Nevertheless, in some situations, for some monads, the optimiser is able to deforest data
constructors returned by monadic actions. In the particular case of fold and map operations over
serialised trees, unfortunately, we are currently unable to eliminate all allocation from ST-based
implementations of the algorithms.

For the linearly-typed code, however, we have more options. ghc has the ability to directly
express unboxed values such as a tuple (#Int#,Double # #), which �lls two registers and inhabits
an unboxed kind distinct from ∗. In fact, the type of a combinator like caseTree is a good �t for the
recent “levity polymorphism” addition to ghc (Eisenberg and Peyton Jones 2017). �us we permit
the branches of the case to return unli�ed, unboxed types, and give caseTree a more general type:

caseTree :: ∀(rep :: RuntimeRep) (res :: TYPE rep) b.

Packed (Tree : b) → (Packed (Int : b) ( res) → (Packed (Tree : Tree : b) ( res) → res

�is works because we do not need to call a function with res as argument (and thus unknown
calling conventions) only return it. Using this approach, we were able to ensure by construction
that the “linear/packed” implementations in Fig. 7 were completely non-allocating, rather than
depending on the optimiser. �is results in be�er performance for the linear, compared to monadic
version of the serialised-data transformations.

�e basic premise of Fig. 7 is that a machine in the network receives, processes, and transmits
serialized data (trees). We consider two simple benchmarks: sumLeaves and mapTree (+1). �e
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Retrofi�ing Linear Types 1:19

baseline is the traditional approach: deserialise, transform, and reserialise, the “unpack-repack”
line in the plots. Compared to this baseline, processing the data directly in its serialised form results

in speedups of over 20× on large trees. What linear types makes safe, is also e�cient.
�e experiment was conducted on a Xeon E5-2699 CPU (2.30GHz, 64GB memory) using our

modi�ed version of ghc 8.2 (Sec. 4). Each data point was measured by performing many trials
and taking a linear regression of iteration count against time9. �is process allows for accurate
measurements of both small and large times. �e baseline unpack-repack tree-summing times
vary from 25ns to 1.9 seconds at depths 1 and 24 respectively. Likewise, the baseline mapping
times vary from 215ns to 2.93 seconds. We use a simple contiguous implementation of bu�ers for
serialisation10. At depth 20, one copy of the tree takes around 10MB, and towards the right half of
the plot we see tree size exceeding cache size.

5.2 Sockets with type-level state

�e bsd socket api is a standard, if not the standard, through which computers connect over
networks. It involves a series of actions which must be performed in order: on the server-side,
a freshly created socket must be bound to an address, then start listening incoming tra�c, then
accept connection requests; said connection is returned as a new socket, this new socket can now
receive tra�c. One reason for having that many steps is that the precise sequence of actions is
protocol-dependent. For tcp tra�c you would do as described, but for udp, which does not need
connections, you would not accept a connection but receive messages directly.

�e socket library for Haskell, exposes precisely this sequence of actions. Programming with it
is exactly as clumsy as socket libraries for other languages: a�er each action, the state of the socket
changes, as do the permissible actions, but these states are invisible in the types. Be�er is to track
the state of sockets in the type, akin to a typestate analysis (Strom 1983). In the File api of Sec. 2.3,
we made �les safer to use at the cost of having to thread a �le handle explicitely: each function
consumes a �le handle and returns a fresh one. We can make this cost into an opporunity: we have
the option of returning a handle with a di�erent type from that of the handle we consumed! So
by adjoining a phantom type to sockets to track their state, we can e�ectively encode the proper
sequencing of socket actions.

As an illustration, we implemented wrapper around the api of the socket library. For concision,
this wrapper is specialised for the case of tcp.

data State = Unbound | Bound | Listening | Connected

data Socket (s :: State)
data SocketAddress

socket :: IOL 1 (Socket Unbound)

bind :: Socket Unbound( SocketAddress→ IOL 1 (Socket Bound)

listen :: Socket Bound( IOL 1 (Socket Listening)

accept :: Socket Listening( IOL 1 (Socket Listening, Socket Connected)

connect :: Socket Unbound( SocketAddress→ IOL 1 (Socket Connected)

send :: Socket Connected( ByteString→ IOL 1 (Socket Connected,Unrestricted Int)

receive :: Socket Connected( IOL 1 (Socket Connected,Unrestricted ByteString)

close :: ∀s. Socket s→ IOL ω ()

9using the criterion library (O’Sullivan 2013)
10A full, practical implementation should include growable or doubling bu�ers.
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1:20 Anon.

�is linear socket api is very similar to that of �les: we use the IOL monad in order to enforce
linear use of sockets. �e di�erence is the argument to Socket, which represents the current state
of the socket and is used to limit the functions which apply to a socket at a given time.

Implementing the linear socket api. Our socket api has been tested by writing a small echo-server.
�e api is implemented as a wrapper around the socket library. Each function wrapped takes
half-a-dozen lines of code, of type annotation and coercions between IO and IOL

11. �ere is no
computational behaviour besides error recovery.

It would have been too restrictive to limit the typestate to enforce the usage protocol of tcp. We
do not intend for a new set of wrapper functions to be implemented for each protocol. Instead
the wrappers are implemented with a generic type-state evolving according to the rules of a
deterministic automaton. Each protocol can de�ne it’s own automaton, which is represented as a
set of instances of a type class.

5.3 Pure bindings to impure apis

In Haskell SpriteKit, Chakravarty and Keller (2017) have a di�erent kind of problem. �ey build a
pure interface for graphics, in the same style as the Elm programming language (Czaplicki 2012),
but implement it in terms of an existing imperative graphical interface engine.

Basically, the pure interface takes an update function u : Scene→ Scene which is tasked with
returning the next state that the screen will display. �e scene is �rst converted to a pure tree
where each node keeps, along with the pure data, a pointer to its imperative counterpart when it
applies, or Nothing for new nodes.

data Node = Node {payload :: Int, ref :: Maybe (IORef ImperativeNode), children :: [Node] }

On each frame, SpriteKit applies u to the current scene, and checks if a node n was updated. If it
was, it applies the update directly onto ref n or creates a new imperative node.

�ings can go wrong though: if the update function duplicates any proxy node, one gets the
situation where two nodes n and n’ can point to the same imperative source ref n = ref n’, but
have di�erent payloads. In this situation the Scene has become inconsistent and the behaviour of
SpriteKit is unpredictable.

In the api of Chakravarty and Keller (2017), the burden of checking non-duplication is on the
programmer. Using linear types, we can switch that burden to the compiler: we change the update
function to type Scene(Scene, and the ref �eld is made linear too. �anks to linearity, no reference
can be duplicated: if a node is copied, the programmer must choose which one will correspond to
the old imperative counterpart and which will be new.

We implemented such an api in our implementation of Hask-ll. �e library-side code does not
use any linear code, the Nodes are actually used unrestrictedly. Linearity is only imposed on the
user of the interface, in order to enforced the above restriction.

6 RELATEDWORK

6.1 Linearity via arrows vs. linearity via kinds

�ere are two possible choices to indicate the distinction between linear and unrestricted objects.
Our choice is to use the arrow type. �at is, we have both a linear arrow to introduce linear objects
in the environment, and an unrestricted arrow to introduce unrestricted objects. �is choice is
featured in the work of McBride (2016) and Ghica and Smith (2014) and is ultimately inspired by

11Since our implementation of Hask-ll does not yet have multiplicity-polymorphism, we had to fake it with type families
and gadts
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Retrofi�ing Linear Types 1:21

Girard’s presentation of linear logic, which features only linear arrows, and where the unrestricted
arrow A→ B is encoded as !A ( B.

Another popular choice (Mazurak et al. 2010; Morris 2016; Tov and Pucella 2011; Wadler 1990)
is to separate types into two kinds: a linear kind and an unrestricted kind. Values with a type
whose kind is linear are linear, and the others are unrestricted. (�us in particular such systems
feature “linear arrows”, but they have a completely di�erent interpretation from ours.) �is choice
is a�ractive on the surface because, intuitively, some types are inherently linear (�le handles,
updateable arrays, etc.) and some types are inherently unrestricted (Int, Bool, etc.). However, a�er
scratching the surface we have discovered that “linearity via arrows” has an edge over “linearity
via kinds”.

Be�er code reuse. When retro��ing linear types in an existing language, it is important to share
has much code as possible between linear and non-linear code. In a system with linearity on arrows,
the subsumption relation (linear arrows subsume unrestricted arrows) and the scaling of context in
the application rule mean that much linear code can be used as-is from unrestricted code, and be
properly promoted. Indeed, assuming lists as de�ned in Sec. 2.4 and:

(++) :: [a] ( [a] ( [a] -- Append two lists
cycle :: [a]→ [a] -- Repeat a list, in�nitely

�e following de�nition type-checks, even though ++ is applied to unrestricted values and used in
an unrestricted context.

f :: [a]→ [a]→ [a]
f xs ys = cycle (xs ++ ys)

In contrast, in a two-kind system, a function must declare the exact linearity of its return value.
Consequently, to make a function promotable from linear to unrestriced, its declaration must use
polymorphism over kinds. We show how this may look like below; but �rst we need to discuss
data types.

As seen in Sec. 2, in Hask-ll the reuse of linear code extends to data types: the usual parametric
data types (lists, pairs, etc.) work both with linear and unrestricted values. On the contrary, if
linearity depends on the kind, then if a linear value is contained in a type, the container type must
be linear too. (Indeed, an unrestricted container could be discarded or duplicated, and its contents
with it.) Consequently, sharing data types also requires polymorphism. For example, in a two-kinds
system, the List type may look like so, if one assumes a that Type 1 is the kind of linear types and
Type ω is the kind of unrestricted types.

data List (p :: Multiplicity) (a :: Type p) :: Type p = [ ] | a : (List p m a)

�e above declaration ensures that the linearity of the list inherits the linearity of the contents. A
linearity-polymorphic (++) function could have the de�nition, assuming the (∧) operator takes the
minimum of multiplicities.

(++) :: List p (a p) → List q (a q) → List (p ∧ q) (a (p ∧ q))

[ ] ++ xs = xs

(x : xs) ++ ys = x : (xs ++ ys)

�e above type ensures that one can mix multiplicities freely between the arguments; but the result
must be linear if any argument is linear. However, the de�nition is valid only if a q is a subtype
of a (p ∧ q) for any type family a :: (p :: Multiplicitiy) → Type p. �us, code-sharing requires not
only polymorphism, but a non-trivial subtyping and subkinding system.
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1:22 Anon.

Note that, in the above, we parameterize over multiplicities instead of parameterizing over kinds
directly, as is customary in the literature. We do so because it �ts be�er ghc, whose kinds are
already parameterized over a so-called levity (Eisenberg and Peyton Jones 2017).

Dependent types. Linearity on the arrow meshes be�er with dependent types (see Sec. 7.2). Indeed,
consider a typical predicate over �les (P : File→ ∗). It will need to mention its argument several
times to relate the �le at the start and at the start of a sequence of operations. While this is not a
problem in our system, the function P is not expressible if File is intrinsically linear. Leaving the
door open to dependent types is crucial to us, as this is currently explored as a possible extension
to ghc.

Yet, an advantage of “linearity via kinds” is the possibility to directly declare the linearity of
values returned by a function – not just that of the argument of a function. In contrast, in our
system if one wants to indicate that a returned value is linear, we have to use a double-negation
trick. �at is, given f : A → (B (!r ) ( r , then B can be used a single time in the (single)
continuation, and e�ectively f “returns” a single B. One can obviously declare a type for linear
values Linear a = (a( !r)( r and chain Linear-returning functions with appropriate combinators.
In fact, as explained in Sec. 2.7, the cost of the double negation almost entirely vanishes in the
presence of an ambient monad.

6.2 Other variants of “linearity on the arrow”

�e λq→ type system is heavily inspired from the work of Ghica and Smith (2014) and McBride
(2016). Both of them present a type system where arrows are annotated with the multiplicty of the
the argument that they require, and where the multiplicities form a semi-ring.

In contrast with λq→, McBride uses a multiplicity-annotated type judgement Γ `ρ t : A, where ρ
represents the multiplicity of t . So, in McBride’s system, when an unrestricted value is required,
instead of computingωΓ, it is enough to check that ρ = ω. �e problem is that this check is arguably
too coarse, and results in the judgement `ω λx .(x ,x ) : A ( (A,A) being derivable. �is derivation
is not desirable: it implies that there cannot be reusable de�nitions of linear functions. In terms of
linear logic (Girard 1987), McBride makes the natural function of type !(A ( B) =⇒!A (!B into
an isomorphism. In that respect, our system is closer to Ghica and Smith’s.

�e essential di�erences between our system and that of Ghica and Smith is that we support
multiplicity-polymorphism and datatypes. In particular our case rule is novel.

�e literature on so-called coe�ects (Brunel et al. 2014; Petricek et al. 2013) uses type systems
similar to Ghica and Smith, but with a linear arrow and multiplicities carried by the exponential
modality instead. Brunel et al. (2014), in particular, develops a Krivine-style realisability model for
such a calculus. We are not aware of an account of Krivine realisability for lazy languages, hence
this work is not directly applicable to λq→.

6.3 Uniqueness and ownership typing

�e literature contains many proposals for uniqueness (or ownership) types (in contrast with linear
types). Prominent representative languages with uniqueness types include Clean (Barendsen and
Smetsers 1996) and Rust (Matsakis and Klock 2014). Hask-ll, on the other hand, is designed around
linear types based on linear logic (Girard 1987).

Linear types and uniqueness types are, at their core, dual: whereas a linear type is a contract
that a function uses its argument exactly once even if the call’s context can share a linear argument
as many times as it pleases, a uniqueness type ensures that the argument of a function is not
used anywhere else in the expression’s context even if the callee can work with the argument
as it pleases. Seen as a system of constraints, uniqueness typing is a non-aliasing analysis while
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Retrofi�ing Linear Types 1:23

linear typing provides a cardinality analysis. �e former aims at in-place updates and related
optimisations, the la�er at inlining and fusion. Rust and Clean largely explore the consequences of
uniqueness on in-place update; an in-depth exploration of linear types in relation with fusion can
be found in Bernardy et al. (2015); see also the discussion in Sec. 7.1.

Because of this weak duality, we could have retro��ed uniqueness types to Haskell. But several
points guided our choice of designing Hask-ll around linear logic rather than uniqueness types:
(a) functional languages have more use for fusion than in-place update (if the fact that ghc has a
cardinality analysis but no non-aliasing analysis is any indication); (b) there is a wealth of literature
detailing the applications of linear logic — see Sec. 5; (c) and decisively, linear type systems are
conceptually simpler than uniqueness type systems, giving a clearer path to implementation in
ghc.

Rust & Borrowing. In Hask-ll we need to thread linear variables throughout the program (consider
using several functions of type T(T). Even though this burdend could be alleviated using syntactic
sugar, Rust uses instead a type-system feature for this purpose: borrowing.

Borrowed values di�er from owned values in that they can be used in an unrestricted fashion,
albeit in a delimited scope.

Borrowing does not come without a cost, however: if a function f borrows a value v of type T,
then the caller of the function must retain v alive until f has returned; the consequence is that
Rust cannot, in general, perform tail-call elimination, crucial to the operation behaviour of many
functional programs, as some resources must be released a�er f has returned.

�e reason that Rust programs depend so much on borrowing is that unique values are the default.
Hask-ll aims to hit a di�erent point in the design space where regular non-linear expressions are
the norm, yet gracefully scaling up investing extra e�ort to enforce linearity invariants is possible.
Nevertheless, we discuss in Sec. 7.2 how to extend Hask-ll with borrowing.

6.4 Linearity via monads

Launchbury and Peyton Jones (1995) taught us a conceptually simple approach to lifetimes: the ST

monad. It has a phantom type parameter s (the region) that is instantiated once at the beginning of
the computation by a runST function of type:

runST :: (∀s. ST s a) → a

�is way, resources that are allocated during the computation, such as mutable cell references,
cannot escape the dynamic scope of the call to runST because they are themselves tagged with the
same phantom type parameter.

Region-types. With region-types such as ST, we cannot express typestates, but this is su�cient to
o�er a safe api for freezing array or ensuring that �les are eventually closed. �is simplicity (one
only needs rank-2 polymorphism) comes at a cost: we’ve already mentionned in Sec. 2.2 that it
forces operations to be more sequentialised than need be, but more importantly, it does not support
prima facie the interaction of nested regions.

Kiselyov and Shan (2008) show that it is possible to promote resources in parent regions to
resources in a subregion. But this is an explicit and monadic operation, forcing an unnatural imper-
ative style of programming where order of evaluation is explicit. �e HaskellR project (Boesp�ug
et al. 2014) uses monadic regions in the style of Kiselyov and Shan to safely synchronise values
shared between two di�erent garbage collectors for two di�erent languages. Boesp�ug et al. report
that custom monads make writing code at an interactive prompt di�cult, compromises code reuse,
forces otherwise pure functions to be wri�en monadically and rules out useful syntactic facilities
like view pa�erns.
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In contrast, with linear types, values in two regions hence can safely be mixed: elements can be
moved from one data structure (or heap) to another, linearly, with responsibility for deallocation
transferred along.

Idris’s dependent indexed monad. To go beyond simple regions, Idris introduces a generic way
to add typestate on top of a monad, the ST indexed monad transformer12. �e basic idea is that
everything which must be single-threaded – and that we would track with linearity – become part
of the state of the monad. For instance, coming back to the sockets of Sec. 5.2, the type of bind
would be as follows:

bind :: (sock :: Var) → SocketAddress→ ST IO () [sock ::: Socket Unbound :7→ Socket Bound]

Where sock is a reference into the monads’s state, and Socket Unbound is the type of sock before
bind, and Socket Bound, the type of sock a�er bind.

Idris uses its dependent types to associate a state to the value of its �rst argument. Dependent
types are put to even greater use for error management where the state of the socket depends on
whether bind succeeded or not:

-- In Idris, bind uses a type-level function (or) to handle errors
bind :: (sock :: Var) → SocketAddress→

ST IO (Either () ()) [sock ::: Socket Unbound :7→ (Socket Bound ‘or‘ Socket Unbound) ]
-- In Hask-ll, by contrast, the typestate is part of the return type

bind :: Socket Unbound( SocketAddress→ Either (Socket Bound) (Socket Unbound)

�e support for dependent types in ghc is not as comprehensive as Idris’s. But it is conceivable to
implement such an indexed monad transformer in Haskell. However, this is not an easy task, and
we can anticipate that the error messages would be hard to stomach.

7 FUTUREWORK

7.1 Controlling program optimisations

Inlining is a cornerstone of program optimisation, exposing opportunities for many program
transformations. Yet not every function can be inlined without negative e�ects on performance:
inlining a function with more than one use sites of the argument may result in duplicating a
computation. For example one should avoid the following reduction: (λx→ x ++ x) expensive −→
expensive ++ expensive.

Many compilers can discover safe inlining opportunities by analysing source code and determine
how many times functions use their arguments. (In ghc it is called the cardinality analysis (Sergey
et al. 2014)). A limitation of such an analysis is that it is necessarily heuristic (the problem is
undecidable for Haskell). Because inlining is crucial to e�ciency, programmers �nd themselves in
the uncomfortable position of relying on a heuristic to obtain e�cient programs. Consequently, a
small, seemingly innocuous change can prevent a critical inlining opportunity and have rippling
catastrophic e�ects throughout the program. Such unpredictable behaviour justi�es the folklore
that high-level languages should be abandoned to gain precise control over program e�ciency.

A remedy is to use the multiplicity annotations of λq→ as cardinality declarations. Formalising
and implementing the integration of multiplicity annotations in the cardinality analysis is le� as
future work.

12See e.g. h�p://docs.idris-lang.org/en/latest/st/index.html. Where you will also discover that ST is actually de�ned in terms
of a more primitive STrans
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7.2 Extending multiplicities

For the sake of this article, we use only multiplicities 1 andω. But in fact λq→ can readily be extended
to more, following Ghica and Smith (2014) and McBride (2016). �e general se�ing for λq→ is an
ordered-semiring of multiplicities (with a join operation for type inference). In particular, in order
to support dependent types, we additionally need a 0 multiplicity. We may may want to add a
multiplicity for a�ne arguments (i.e. arguments which can be used at most once).

�e typing rules are mostly unchanged with the caveat that caseπ must exclude π = 0 (in
particular we see that we cannot substitute multiplicity variables by 0). �e variable rule becomes:

x :1 A 6 Γ

Γ ` x : A
Where the order on contexts is the point-wise extension of the order on multiplicities.

In Sec. 6.3, we have considered the notion of borrowing: delimiting life-time without restricting
to linear usage. �is seems to be a useful pa�ern, and we believe it can be encoded as an additional
multiplicity as follows: let β be an additional multiplicity with the following characteristics:

• 1 < β < ω
• β + β = 1 + β = 0 + β = 1 + 1 = β

�at is, β supports contraction and weakening but is smaller than ω. We can then introduce a value
with an explicit lifetime with the following pa�ern

borrow :: (T→β Unrestricted a) →β Unrestricted a

�e borrow function makes the life-time manifest in the structure of the program. In particular, it
is clear that calls within the argument of borrow are not tail: a shortcoming of borrowing that we
mentioned in Sec. 6.3.

7.3 Future industrial applications

Our own work in an industrial context triggered our e�orts to add linear types to ghc. We were
originally motivated by precisely typed protocols for complex interactions and by taming gc
latencies in distributed systems. But we have since noticed other potential applications of linearity
in a variety of other industrial projects.

Streaming I/O Program inputs and outputs are frequently much larger than the available
ram on any single node. Rather than building complex pipelines with bri�le explicit
loops copying data piecemeal to spare our precious ram, one approach is to compose
combinators that transform, split and merge data wholemeal but in a streaming fashion.
�ese combinators manipulate �rst-class streams and guarantee bounded memory usage,
as in the below in�nitely running echo service:
receive :: Socket→ IOStream Msg

send :: Socket→ IOStream Msg→ IO ()

echo isock osock = send osock (receive isock)

However, reifying sequences of IO actions (socket reads) in this way runs the risk that
e�ects might be duplicated inadvertently. In the above example, we wouldn’t want to
inadvertently hand over the receive stream to multiple consumers, or the abstraction of
wholemeal I/O programming would be broken (like in Lippmeier et al. (2016, Section 2.2)),
because neither consumer would ultimately see the same values from the stream. If say
one consumer reads in the stream �rst, the second consumer would see an empty stream —
not what the �rst consumer saw.
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We have seen this very error several times in industrial projects, where the symptoms
are bugs whose root cause are painful to track down. A linear type discipline would prevent
such bugs.

Programming foreign heaps Complex projects with large teams invariably involve a mix of
programming languages. Reusing legacy code is o�en much cheaper than reimplementing
it. A key to successful interoperation between languages is performance. If all code lives in
the same address space, then data need not be copied as it �ows from function to function
implemented in multiple programming languages. Trouble is, language A needs to tell
language B what objects in language A’s heap still have live references in the call stack of
language B to avoid too eager garbage collection.

For instance, users of inline-java call the jvm from Haskell via the jni. �e jvm
implicitly creates so-called local references any time we request a Java object from the jvm.
�e references count as gc roots that prevent eager garbage collection. For performance,
local references have a restricted scope: they are purely thread-local and never survive the
call frame in which they were created. Both restrictions to their use can be enforced with
linear types.

Remote direct memory access Section 5.1 is an example of an api requiring destination-
passing style. �is style o�en appears in performance-sensitive contexts. One notable
example from our industrial experience is rdma (Remote Direct Memory Access), which
enables machines in high-performance clusters to copy data from the address space in one
process to that of a remote process directly, bypassing the kernel and even the cpu, thereby
avoiding any unnedded copy in the process.

One could treat a remote memory location as a low-level resource, to be accessed using
an imperative api. Using linear types, one can instead treat it as a high-level value which
can be wri�en to directly (but exactly once). Using linear types the compiler can ensure
that, as soon as the writing operation is complete, the destination computer is noti�ed.

8 CONCLUSION

�is article demonstrates how an existing lazy language, such as Haskell, can be extended with
linear types, without compromising the language, in the sense that:

• existing programs are valid in the extended language without modi�cation,
• such programs retain the same operational semantics, and in particular
• the performance of existing programs is not a�ected,
• yet existing library functions can be reused to serve the objectives of resource-sensitive

programs with simple changes to their types, and no code duplication.
In other words: regular Haskell comes �rst. Additionally, �rst-order linearly typed functions and
data structures are usable directly from regular Haskell code. In such a se�ing their semantics is
that of the same code with linearity erased.

Hask-ll was engineered as an unintrusive design, making it tractable to integrate to an existing,
mature compiler with a large ecosystem. We have developed a prototype implementation extending
ghc with multiplicities. As we hoped, this design integrates well in ghc.

Even though we change only ghc’s type system, we found that the compiler and runtime already
had the features necessary for unboxed, o�-heap, and in-place data structures. �at is, ghc has the
low-level compiler primitives and ffi support to implement, for example, mutable arrays, mutable
cursors into serialised data, or o�-heap foreign data structures without garbage collection. �ese
features could be used before this work, but their correct use put some burden-of-proof on the
programmers. Linearity unlocks these capabilities for safe, compiler-checked use, within pure code.
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