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Abstract

We consider random 3CNF formulas withn variables
andm clauses. It is well known that whenm > cn (for a
sufficiently large constantc), most formulas are not satisfi-
able. However, it is not known whether such formulas are
likely to have polynomial size witnesses that certify that they
are not satisfiable. A value ofm ' n3/2 was the forefront
of our knowledge in this respect. Whenm > cn3/2, such
witnesses are known to exist, based on spectral techniques.
Whenm < n3/2−ε, it is known that resolution (which is a
common approach for refutation) cannot produce witnesses
of size smaller than2nε

. Likewise, it is known that certain
variants of the spectral techniques do not work in this range.

In the current paper we show that whenm > cn7/5,
almost all 3CNF formulas have polynomial size witnesses
for non-satisfiability. We also show that such a witness can
be found in time2O(n0.2 log n), whenever it exists. Our ap-
proach is based on an extension of the known spectral tech-
niques, and involves analyzing a certain fractional packing
problem for random 3-uniform hypergraphs.

1. Introduction

The 3SAT problem, namely, deciding whether a 3CNF
formula is satisfiable, is one of the central NP-complete
problems. Deciding whether a formula is not satisfiable
is complete for co-NP. The question of whether there is a
nondeterministic polynomial time algorithm that recognizes
non-satisfiable 3CNF formulas (or in other words, polyno-
mial size witnesses for non-satisfiability) is equivalent to the
well known “NP=co-NP?” open question. The question of
whether there are deterministic polynomial time algorithms
for non-satisfiability is the even better known “P=co-NP?”
question (which is equivalent to the “P=NP?” question). In
this paper (similar to many other previous papers, some of
which will be mentioned shortly), we study ”average case”
versions of these questions.

The average case model involves a density parameterβ.

We consider 3CNF formulas withn variables andm = βn
clauses, in which the clauses are chosen independently at
random. Our results are not sensitive to minor variations
on the model, but for concreteness, assume the following
model: one takes a random permutation on all possible
23

(
n
3

)
3CNF clauses, and picks the firstm clauses in the

permutation. It is well known (see for example [13, 19])
that whenβ is sufficiently large (say,β > 5), almost all
such formulas are not satisfiable. For random 3CNF formu-
las of sufficiently high densityβ, we consider two tasks:

1. Deterministic refutation. Design a polynomial time al-
gorithm that never accepts a satisfiable formula, and
show that it accepts most formulas of densityβ.

2. Nondeterministic refutation. Design a nondetermin-
istic polynomial time algorithm with properties as
above. Equivalently, design polynomial sizewitnesses
for non-satisfiabilitythat can be checked (though not
necessarily found) in polynomial time, never exist for
satisfiable formulas, and exist for most formulas of
densityβ.

Clearly, deterministic refutation is at least as hard as non-
deterministic refutation. Observe also that in the context of
random formulas, the largerβ is, the easier is the refuta-
tion task, because any refutation algorithm that applies to
smaller densities may simply be run on a prefix of the larger
density formula.

Random 3CNF formulas often serve to show the limi-
tations of well known refutation algorithms. Takingreso-
lution as a prominent example, it was shown [6, 3, 5, 4]
that resolution fails to provide nondeterministic polyno-
mial time refutation for most formulas of densitiesn1/2−ε

(whereε > 0 can be taken to be arbitrarily small), though it
is known to provide nondeterministic polynomial time refu-
tation for most formulas of densitiesn/ log n. (In resolu-
tion, one attempts to refute a CNF formula by deriving the
empty clause. The clauseY ∨ Z can be derived from the
two clausesY ∨ x andZ ∨ x̄. For more details, see the
aforementioned references.)



The strongest refutation algorithms known for random
3SAT are based on a ”spectral” approach first suggested
in [17] for 4SAT. This approach involves computing eigen-
values of certain matrices derived from the formula. These
spectral algorithms were extended to apply to 3SAT [14,
18, 11], and they are known to deterministically refute most
formulas of densitycn1/2, for a sufficiently large constant
c. Attempts to extend these techniques so as to work for
densities below

√
n have failed so far. For example, in [12]

it is shown that a natural use of semidefinite programming
cannot refute 3CNF formulas at such low densities.

Further motivation for studying deterministic refutation
of random3CNF formulas is given in [9]. There it is shown
that if there is no deterministic refutation for most3CNF
formulas withcn clauses (wherec is an arbitrarily large
constant) then certain combinatorial optimization problems
(such as minimum graph bisection and densek-subgraph)
do not have polynomial time approximation schemes. It is
an open question whether it is NP-hard to approximate these
problems arbitrarily well, though further evidence that these
problems are indeed hard to approximate is given in [20].

The main result of this paper is nondeterministic refuta-
tion of random 3CNF formulas of densities below

√
n. Our

method (which is based on the spectral approach) works al-
ready for densitiesβ = cn2/5 (for sufficiently largec > 0),
a range where resolution is known not to be polynomial. We
do not know whether the witnesses implied by our nonde-
terministic refutation can be found in polynomial time, but
we show that they can be found in time roughly exponential
in n/β2. The authors are not aware of any previous refuta-
tion algorithm (whether deterministic or nondeterministic)
that was proved to run in time better than exponential in
n/β (for random 3CNF formulas of densityβ < n1/2).

In an intuitive sense (which we do not wish to make
exact), our state of knowledge following the current work
is that with respect to the ”average” complexity of 3SAT,
co-NP⊂ NP for densities aboven2/5, and co-NP⊂ P for
densities aboven1/2. Pushing either of these densities down
is an interesting question.

1.1. The main idea

Given previous work on refutation, the main new idea
that we introduce is fairly simple, though apparently is was
not previously observed. Proving that this idea actually
works requires some nontrivial probabilistic analysis.

The starting point is a principle that was explicitly intro-
duced in [9], and later used in refutation algorithms, such
as in [11]. The principle relates between satisfying as-
signments of random formulas, and assignments that satisfy
most clauses as if they were 3XOR clauses, namely, set an
odd number of literals (either one or three) to true.

Proposition 1.1 There is a polynomial time algorithm that
for almost every 3CNF formula of densityβ proves that
every satisfying assignment must satisfy all but at most
c
√

βn clauses as 3XOR, wherec is some universal constant.

Proposition 1.1 is given for the sake of intuition, but the
detailed presentation of our approach will not refer to it ex-
plicitly. For this reason we shall not present the proof of
Proposition 1.1, but only note that it follows by combining
the first part of the proof of Theorem 2.6 with the proofs of
Lemmas 3.2 and 3.3.

The new aspect of our work is in the use of inconsistent
tuples of clauses.

Definition 1.2 A collection ofk clauses is anevenk-tuple
if every variable appears in it an even number of times. (Ob-
serve that the fact that we are dealing with 3CNF clauses
implies thatk must be even.) An evenk-tuple is aninconsis-
tentk-tuple if the total number of appearances of negated
literals in its clauses is odd (and hence this also holds for
positive literals).

The significance of inconsistent tuples of clauses comes
from the following proposition.

Proposition 1.3 For any assignment to the variables, at
least one of the clauses of an inconsistentk-tuple is not sat-
isfied as 3-XOR.

Proof: View every clause(`1, `2, `3) as an equation
`1 + `2 + `3 = 1 modulo 2. Assigning a literal̀i to true
(false, respectively) will be interpreted as setting`i = 1
(`i = 0, respectively). An assignment satisfies the clause as
3XOR iff it satisfies the corresponding equation. Pick an ar-
bitrary assignment and substitute the corresponding values
in the equations of thek-tuple. Summing up all equations,
the right hand side gives 0 (modulo 2), becausek is even.
The left hand side gives 1 (modulo 2). This can be seen
as follows. If all literals were positive, than for any assign-
ment, the left hand side sums up to 0 (modulo 2), because
there is an even number of occurrences of each literal. Flip-
ping a single literal flips the sum modulo 2. As there is an
odd number of negative literals in an inconsistentk-tuple,
the sum must be 1 (modulo 2). Having established that the
left hand side of the sum differs from the right hand side,
we can deduce that at least one equation is not satisfied, and
hence at least one clause is not satisfied as 3XOR.2

A random 3CNF formula is expected to contain many
inconsistentk-tuples, ifk is sufficiently large. For example,
it is not hard to prove the following lemma.

Lemma 1.4 If kβ2 À n, then the expected number of in-
consistentk-tuples in a random 3CNF formula (expectation
taken over choice of formula) is ”large” (say, more thanm).



Lemma 1.4 by itself does not suffice for our refutation
algorithm, and is given merely for intuition. Its proof is
omitted.

In its simplest form, our witness of non-satisfiability will
be composed oft > c

√
βn disjoint inconsistentk-tuples.

On the one hand, Proposition 1.3 implies that in any assign-
ment, at leastt different clauses are not satisfied as 3XOR.
On the other hand, Proposition 1.1 implies that in any sat-
isfying assignment, there are at mostc

√
βn of clauses not

satisfied as 3XOR. The conditiont > c
√

βn implies that no
satisfying assignment can exist.

If k-tuples are to be disjoint, then necessarilyt ≤ m/k,
and thusm/k ≥ n

√
β, implying k <

√
β. Together with

the conditionkβ2 > n of Lemma 1.4, this implies that our
approach can potentially work whenβ > n2/5.

The description above is an oversimplification of our
refutation approach. It turns out to be advantageous to
allow some limited overlap between inconsistentk-tuples,
and compensate for this by taking a larger number of incon-
sistentk-tuples. On a conceptual level, having more flex-
ibility allows our approach to be applied to a wider range
of formulas. But more important for the current context,
there are concrete technical reasons why allowing overlap
is desirable. One reason is that it is not clear to us whether
known techniques suffice in order to prove that there are
Ω(n1.2) disjoint inconsistentk-tuples (fork ' n0.2) in a
random 3CNF formula withm ' n1.4 clauses. Intuitively,
the source of the difficulty is as follows. Once one packs
Ω(n) k-tuples, this uses upΩ(n1.2) clauses, and a new
”random” k-tuple is likely to hit one of these clauses, and
hence not to be disjoint from the existingk-tuples. By al-
lowing overlap betweenk-tuples, this source of difficulty
is avoided. Thereafter, the probabilistic analysis needed in
order to prove that our approach works becomes manage-
able (though it still remains complicated and requires ex-
pertise in the probabilistic method). Another reason for al-
lowing overlap concerns the design of algorithms for find-
ing the witness for non-satisfiability. Having a witness that
depends on a disjoint collection ofk-tuples spells bad news,
because (disjoint) set packing problems are notoriously dif-
ficult to solve (and are also NP-hard to approximate within
a factor ofO(k1−ε)). In contrast, once we allow overlap
between sets, the underlying computational problem resem-
bles a fractional packing problem, and these problems can
be handled more efficiently. This will be used in the proof
of Theorem 4.1.

2. The witness for non-satisfiability

In this section we present the components of the witness
for non-satifiability, and prove that no satisfiable 3CNF for-
mula can possibly contain such a witness (and hence the
witness proves non-satifiability). The input formula will be

denoted byφ.
The first two components of our witness were used also

in previous work on refuting random 3CNF formulas [9,
11].

Definition 2.1 Let φ be a 3CNF formula withn variables
andm clauses. Theimbalanceof a variablei (denoted by
Ii) is the difference in absolute value between the number
of times it appears with positive polarity and the number of
times it appears with negative polarity. Thetotal imbalance
of φ is Iφ =

∑n
i=1 Ii.

The first component of our witness isIφ, the imbalance
of φ. The smallerIφ is, the better.

Definition 2.2 Let φ be a3-CNF formula withn variables
(denoted byx1, . . . , xn) andm clauses. Thematrix induced
by φ is a symmetric matrix of ordern that will be denoted
by Mφ. Its entries are derived fromφ as follows. Initially,
all entries are 0. Thereafter, every clause ofφ changes six
of the entries, two entries for each pair of variables in the
clause. The change is+1/2 if the polarities of the vari-
ables do not match, and−1/2 if they do match. For ex-
ample, the clause(xi, xj , x̄k) changesMjk (and Mkj , to
preserve symmetry) andMik (andMki) by+1/2, andMij

(andMji) by−1/2.

The second component of our witness is the largest
eigenvalue ofMφ, which we shall denote byλ. The smaller
the absolute value ofλ is, the better. The use of eigenval-
ues as part of refutation algorithms for CNF formulas was
introduced in [17] and used in several works thereafter.

Remark. We assume for simplicity of the presentation
thatλ (which might not be rational) can be represented ef-
ficiently with infinite precision. A more formal treatment
may replaceλ everywhere in this manuscript either byλ+1
rounded to the nearest integer (whenλ is very close to being
an integer), or bydλe otherwise. Details are omitted.

Recall the notion of an inconsistent tuple from Defini-
tion 1.2.

Definition 2.3 A (k, t, d)-collection is a collection oft in-
consistentk-tuples, in which every inconsistentk-tuple con-
tains only clauses fromφ, and every clause fromφ is con-
tained in at mostd of the inconsistentk-tuples.

The third component of our witness is a(k, t, d)-
collection. This component will be most effective when the
ratiot/d is large. Note that necessarilytk ≤ md, and hence
to havet/d large, we needk to be small.

We now present a complete description of our witness
for non-satisfiability.

The witness.Given a 3CNF formulaφ with n variables
andm clauses, the witness is composed of the following
three components:



1. The valueIφ of the imbalance, as defined in Defini-
tion 2.1.

2. The largest eigenvalueλ of the matrixMφ that was
defined in Definition 2.2.

3. A (k, t, d)-collection as defined in Definition 2.3, with
t < n2.

The components need to satisfy the followingrefutation
inequality:

t >
d(Iφ + λn)

2
. (1)

This completes the description of the witness.
The conditiont < n2 is imposed only so as to ensure that

the witness is of polynomial size, and serves no other pur-
pose. Likewise, the exact value ofk is not important, though
clearlyk ≤ m. Moreover, it does not matter whether all in-
consistent tuples in the collection have the same cardinality
k, but we assume they do, so as to simplify the presentation
in this paper.

Proposition 2.4 The witness can be checked in polynomial
time.

Proof: The imbalanceIφ can be computed in polyno-
mial time, and hence can be checked in polynomial time.
The same applies to the eigenvalueλ (see also the remark
following Definition 2.2). In fact, neitherIφ nor λ need to
be given explicitly as part of the witness, as both can be
computed efficiently fromφ.

For every evenk-tuple in the(k, t, d) collection, one
needs to check that every variable appears in the respective
clauses an even number of times, that every clause indeed
belongs toφ, and that the number of negative literals is in-
deed odd. Moreover, one needs to check that every clause
appears in at mostd of the evenk-tuples, and that the total
number of evenk-tuples ist. Clearly, all these checks can
be made in polynomial time (inn,m), becauset < n2.

The refutation inequality can also be checked in poly-
nomial time. (Again, see also remark following Defini-
tion 2.2.) 2

We now show that a satisfiable formula cannot have a
witness as described above. We first present a known con-
nection between the eigenvalueλ of Mφ and assignments
that satisfy clauses ofφ in a ”not all equal” (NAE) fashion,
namely, satisfy either one or two literals in a clause.

Lemma 2.5 If there is an assignment that satisfiesm1

clauses inφ as NAE, then the largest eigenvalueλ of Mφ is
at least(4m1 − 3m)/n.

Proof: Let A be an assignment that satisfiesm1 clauses
of φ as NAE. Consider then-dimensional vectorvA that
has value1 on coordinates corresponding to variables thatA

sets to true, and value−1 on coordinates corresponding to
variables thatA sets to false. The fact thatvA has norm

√
n

implies thatnλ ≥ vt
AMφvA. Using the definition ofMφ,

it is not hard to see that every clause that is satisfied either
once or twice byA contributes+1 to vt

AMφvA, whereas
every other clause contributes−3. Hencenλ ≥ m1−3(m−
m1) = 4m1 − 3m. 2

Observe that a random assignment satisfies3m/4
clauses as NAE in expectation, and hence the lower bound
onλ implied by Lemma 2.5 is nonnegative.

Theorem 2.6 Let φ be a 3CNF formula withn variables
andm clauses. Ifφ has a witness as described above that
satisfies the refutation inequality (1), then there is no as-
signment satisfyingφ.

Proof: Assume for the sake of contradiction thatφ is
satisfiable, and letA be a satisfying assignment. By de-
finition of the notion of imbalance,A can satisfy at most
(3m + Iφ)/2 literals. Every clause contains at least one
of these satisfied literals. Lemma 2.5 implies thatA satis-
fies at mostm1 = (3m + λn)/4 clauses as NAE. The rest
of the m − m1 clause must be satisfied three times byA.
Hence each of them contains two more satisfied literals (be-
yond the one already counted). It follows that the number
of clauses containing two literals satisfied byA is at most:

3m + Iφ

2
−m−2(m−m1) = −3m

2
+

Iφ

2
+2m1 ≤ Iφ + λn

2

HenceA satisfies at leastm − (Iφ + λn)/2 as 3XOR (this
relates to the 3XOR principle of Proposition 1.1).

We now turn to the(k, t, d) collection. By Proposi-
tion 1.3, each of thet inconsistentk-tuples must contain
at least one clause not satisfied as 3XOR byA. As there are
at most(Iφ + λn)/2 such clauses, and each of them par-
ticipates in at mostd inconsistentk-tuples, there can be a
satisfying assignmentA only if t ≤ d(Iφ + λn)/2. 2

3. Dense random 3CNF formulas have wit-
nesses

In section 2 we presented a witness certifying that a
3CNF formula is not satisfiable. In this section, we show
that most 3CNF formulas withm À n1.4 clauses have such
a witness.

Theorem 3.1 Let φ be a random 3CNF formula withn
variables andm = βn clauses, whereβ = cn0.4 for a
sufficiently large constantc. Then almost surely:

1. The imbalance satisfiesIφ = O(n
√

β) = O(n1.2).

2. The largest eigenvalue satisfiesλ = O(
√

β) =
O(n0.2).



3. There are(k, t, d) collections with parametersk =
O(n/β2) = O(n0.2), t = Ω(nβ) = Ω(n1.4) and
d = O(k) = O(n0.2).

Items 1 and 2 above are known (being part of the 3XOR
principle), and their proofs are presented in Lemmas 3.2
and 3.3. The more challenging part of our analysis is to
prove item 3, and the proof is given in Section 3.4. Sec-
tion 3.1 explains how different ingredients of the proofs fit
together.

Substituting these parameters in the refutation inequal-
ity (1), we see that the left hand side isΩ(nβ), whereas the
right hand side isO(n2/β3/2). Hence the inequality is sat-
isfied whenβ > cn2/5, for some sufficiently large constant
c.

3.1. General observations

The most complicated part of our proof is to prove the
existence of(k, t, d) collections. To simplify the presen-
tation of this part of the proof, we shall fixβ = n0.4

(which is the smallest value that interests us), and prove
that d = O(n0.2) andt = Ω(n1.4), without insisting that
the value of the leading constants is such that the refutation
inequality is satisfied. However, this suffices for our pur-
pose for the following reason. Increasingβ by some con-
stant factorc, increasesIφ andλ by O(

√
c), d can be kept

fixed, and thent is increased by a factor ofc (by treating the
random formula as a concatenation ofc random formulas).
Hence regardless of the leading constants in theO andΩ
notation, we can choosec sufficiently large so as to make
the refutation inequality hold.

As φ is chosen at random, the three parametersIφ, λ and
the maximum possiblet (for a given fixedd) are random
variables. All three random variables enjoy the bounded
difference property. Namely, adding one clause toφ can
changeIφ by at most 3, changeλ by at most1 (because
the matrix associated with a single clause has no eigenvalue
whose absolute value is larger than 1), and changet by at
mostd (once we have fixedd). As a consequence of this,
it can be shown that all these random variables are highly
concentrated around their means or medians (see for ex-
ample [1]). Hence it suffices to show that the medians or
means ofIφ, λ and the maximum possiblet are in the de-
sired range, and this will imply that the fraction ofφ that
have a witness is overwhelming (at least1 − O(2−nδ

) for
someδ > 0).

The strong concentration results also imply that we may
use interchangeably whichever is more convenient of the
common models for generating random formulas. For ex-
ample, we may use a model in which exactlym clauses
are chosen at random, and consider either the version with
or without replacement. Alternatively, we may consider a

model in which each of the possibleM = 23
(
n
3

)
clauses

is chosen to be inφ independently with probabilitym/M .
Another variation is a model in which we choose each 3-
tuple of variables to be a clause independently with prob-
ability m/

(
n
3

)
, and thereafter choose the polarities of the

variables independently at random. All these models are
sufficiently similar to each other (say, whenm < n3/2) so
that the events that we consider happen with overwhelming
probability in one of the models iff they happen with over-
whelming probability in all models. (See for example [21]
for a similar setting.)

We omit the formal proofs of the observations made
above in this section.

3.2. The imbalance

The following lemma is known and its proof is given
here for completeness.

Lemma 3.2 The expected imbalance (over the choice of
3CNF formulaφ with n variables andm = βn > n
clauses) satisfiesE(Iφ) = O(n

√
β).

Proof: All expectations and probabilities in this proof
are taken over the choice ofφ.

For any variablexi we denote bydi the number of ap-
pearances ofx in φ1. It holds that

∑n
i=1 E[di] = 3m. By

symmetry, for everyi it holds thatE[di] = 3m
n , which we

denote byd (for the purpose of this proof, not to be confused
with the parameterd used elsewhere). Given thatdi = j the
polarities of the appearances ofxi are random and indepen-
dent. HenceE[I2

i | di = j] = j. It then follows that

E[I2
i ] =

∑

k

Pr[di = j] E[I2
i | di = j]

=
∑

j

j Pr[di = j] = E[di] = d.

Using the convexity of the square function

E[Ii] ≤
√

E[I2
i ] ≤

√
d.

By linearity of expectation,E[
∑n

i=1 Ii] ≤ n
√

d. In partic-
ular, with probability at least1/2, Iφ ≤ 4n

√
β. 2

3.3. The largest eigenvalue

The following lemma is known and its proof is sketched
for completeness.

Lemma 3.3 The valueλ of the largest eigenvalue ofMφ

satisfiesλ = O(
√

β) with high probability (over the choice
of 3CNF formulaφ with n variables andm = βn clauses,
and using for simplicity the choiceβ ≥ n2/5).



Proof: (sketch) Consider the model in which each of
the 23

(
n
3

)
possible clauses is chosen to be inφ indepen-

dently at random with probabilitym/8
(
n
3

)
. Each clause

contains three pairs of variables. View the matrixMφ as
the sum of three matrices,M1 + M2 + M3, where each of
these matrices involves the contributions of just one type of
pair (e.g.,M1 contains the contributions of the pairs com-
posed of the first and second variables in every clause ofφ).
For every matrix separately, its entries are identically dis-
tributed and statistically independent (except for the con-
straints imposed by symmetry). Each entry is distributed
symmetrically around 0, and has varianceO(β/n). The
results of [16] then imply that with high probability, the
largest eigenvalue of each of the three matrices is at most
O(
√

β). Clearly,λ cannot be larger than the sum of these
three eigenvalues. 2

Remark. Lemma 3.3 is incorrect whenβ ¿
log n/ log log n. However, variations of it can be extended
all the way down to constant values ofβ. See [10] for de-
tails.

3.4. Collections of inconsistent tuples

In this section we show that a random 3CNF formula
with n1.4 clauses is likely to have a(k, t, d) collection with
k = O(n0.2), t = Ω(n1.4) andd = O(n0.2).

It is more convenient to first find a collection of even
k-tuples with the above parameters, and only later extract
from it those evenk-tuples that are also inconsistent. When
considering evenk-tuples, the polarity of variables does not
matter. Hence a clause can be viewed as a 3-tuple of vari-
ables. In this case, a 3CNF formula can be viewed as a
3-uniform hypergraph overn vertices, where every clause
corresponds to a hyperedge. A natural model for random
3-uniform hypergraphs is one in which each of the hyper-
edges is inserted independently with probabilityp. This hy-
pergraph can model a 3CNF formula in which each 3-tuple
of variables forms a clause with probabilityp, and thereafter
the polarities of variables are set independently at random.
In our context, the appropriate value for the parameterp is
n−1.6, as this corresponds to a formula withΘ(n1.4) clauses
(in expectation). A 2-regular subhypergraph induced byk
hyperedges (namely, a collection ofk hyperedges in which
every vertex appears either twice or not at all) corresponds
to an evenk-tuple of clauses. (Evenk-tuples are somewhat
more general in the sense that variables can appear any even
number of times, but we shall not need this generality here.)
The most complicated technical part of this manuscript is
the proof of the following theorem.

Theorem 3.4 A 3-uniform hypergraph withn vertices in
which every possible hyperedge is included independently
with probabilityp = n−1.6 is likely to contain a collection

of t = Ω(n1.4) 2-regular subhypergraphs such that every
vertex participates in at mostd = O(n0.2) of these subhy-
pergraphs.

The proof of this theorem is deferred to section 3.5,
though the proof of some of the related lemmas will be
omitted due to space limitations. (A note concerning no-
tation: in Section 3.5,k will denote the number of vertices
in the 2-regular subhypergraph, rather than the number of
hyperedges.) Here we sketch the overall structure of the
proof.

It is relatively easy to prove thatk can be chosen to have
some value close ton0.2, in a way that causes the expected
number of (not necessarily induced) 2-regular subhyper-
graphs withk vertices to be roughlyn1.4. However, large
expectation does not automatically mean a high probability
event. For example, in the context of random 3CNF formu-
las, it is known that at densityβ = 5, the expected number
of satisfying assignments of a random 3CNF formula is ex-
ponentially large, but still almost all such formulas are not
satisfiable [19]. To turn expectation results into high proba-
bility results, one may try to bound the variance.

To allow us to bound the variance, we exclude some of
the 2-regular subhypergraphs from consideration. The ex-
cluded 2-regular subypergraphs are those that include sub-
collections of hyperedges that are ”dense”, namely involve
relatively few vertices compared to the number of hyper-
edges. As a simple example, we do not wish to allow a 2-
regular subhypergraph to contain two hyperedges that share
two vertices (and hence contain only four vertices in total).
More generally, for every value of̀, we require a certain
lower bound on the number of vertices that every subcollec-
tion of ` hyperedges needs to contain. 2-regular subhyper-
graphs that meet these requirements for all values of` will
be calledexpanding. The reason to concentrate on 2-regular
expanding subhypergraphs with no dense subcollections is
that dense subcollections are correlated with the existence
of 2-regular subhypergraphs (which themselves are dense
– they have a ratio of 3:2 between variables and clauses),
and hence dense subcollections have large effect on the vari-
ance.

We show that a random 2-regular subhypergraph has
constant (though a small constant) probability of being ex-
panding. Hence the expected number of expanding 2-
regular subhypergraphs is stillΘ(n1.4). Now detailed cal-
culations show that the variance is small, and so with high
probability the actual number is alsoΩ(n1.4).

It remains to show thatd, the number of 2-regular hy-
pergraphs in which a hyperedge may participate, is small,
O(n0.2). Again, it is not hard to show that in expectation
this is the case, but as explained before, expectation by itself
does not suffice. To avoid tedious variance calculations, we
now restrict the structure of the collection of 2-regular sub-
hypergraphs: we allow every two subhypergraphs to share



at most one hyperedge. A relatively easy computation based
on expectations shows that this does not decrease the size
of the collection by much. But now, for every hyperedge,
all 2-regular subhypergraphs in the collection that contain it
share no other hyperedge with each other. This eliminates
positive correlations that they might have had, and allows
us to prove that with high probability their number is as ex-
pected.

Corollary 3.5 Let φ be a random 3CNF formula withn
variables andn1.4/8 clauses. Then with high probabilityφ
contains a(k, t, d) collection with parameterst = Ω(n1.4)
andd = O(n0.2).

Proof:(sketch) Theorem 3.4 implies that with high prob-
ability φ contains an even collection with the above para-
meters. As the polarities are random, a symmetry argument
implies that with probability1/2, at least half of the evenk-
tuples are inconsistent. This shows that the corollary holds
with constant probability. As hinted in section 3.1, Tala-
grand’s inequality can be used to boost this probability up
(essentially to1− e−n0.8

, details omitted). 2

3.5. Random 3-uniform hypergraphs

A hypergraph is3-uniform if every hyperedge contains
exactly three vertices, and2-regular if every vertex is con-
tained in exactly two hyperedges. LetH(n, p) be a random
3-uniform hypergraph on the setV of n vertices in which
each 3-tuple{x, y, z} of distinct vertices becomes an (hy-
per)edge with probabilityp = n−1.6, independently of all
others. In this section we show that (with high probabil-
ity) H(n, p) containsΘ(n1.4) 2-regular subhypergraphs on
k = Θ(n0.2) vertices such that each edge inH(n, p) is in
O(n0.2) of those subhypergraphs.

3.5.1 Properties of the random2-regular 3-uniform
hypergraph

Fork divisible by3, a perfect3-matching of2k elements is
a decomposition of the2k elements into2k/3 sets of size
3. To generate the2-regular3-uniform hypergraphH2(k ;3)
uniformly at random among all simple2-regular3-uniform
hypergraphs onk = Θ(n0.2) vertices, one may use the con-
figuration model (see [21] and references therein, for exam-
ple). For each vertexv, take two copies ofv, sayv′, v′′. The
copiesv′, v′′ are called clones ofv. The clones are used to
generateH2(k ;3). Providedk (and hence2k) is divisible
by 3, generate a uniform random perfect3-matching of all
clones. The edges of the hypergraph induced by the perfect
3-matching can be obtained by contracting both ofv′ and
v′′ into v. That is,{u, v, w} is an edge if and only if the
perfect3-matching contains a3-tuple consisting of clones
of u, v, w. In general, the induced hypergraphH∗

2 (k ; 3)

may have loops and/or multiple edges, where a loop is an
edge containing a vertex twice or more like{u, u, w}. Call-
ing a hypergraph without loops and multiple edgessimple,
it is known [7] that the random hypergraph is simple with
probability(1 + o(1))e−1. It is also easy to check that each
simple2-regular3-uniform hypergraph onk vertices arises
from exactly2k perfect3-matchings of clones. Therefore,
the induced random hypergraph conditioned on being sim-
ple yields the uniform random2-regular3-uniform hyper-
graphH2(k ; 3).

Moreover, the uniform random perfect3-matching may
be generated by selecting a uniform random permutation
of 2k clones so that each perfect3-matching may be real-
ized by precisely(3!)2k/3(2k/3)! permutations. In particu-
lar, there are

α(2k) :=
(2k)!

62k/3( 2k
3 )!

=
(1 + o(1))31/2

(4πk)1/3
2−2k/3((2k)!)2/3

(2)
perfect3-matchings.

The hypergraphH∗
2 (k ;3) induced by the configuration

enjoys nice expansion properties. We characterize some
of these properties in terms of the maximum numberβ(`)
of vertices of degree2 in a subhypergraph with̀ edges of
H2(k, 3). As k will be large (some increasing function of
n) in our intended applications, the following lemma ad-
dresses only the case thatk is sufficiently large (the lemma
is trivially incorrect whenk ≤ 40).

Lemma 3.6 For some fixed constantδ > 0, for every suf-
ficiently largek, the induced random hypergraphH∗

2 (k ;3)
satisfies the following with probability at leastδ:

β(`) ≤




`− 1 for 1 ≤ ` ≤ 20
1.1` for 21 ≤ ` ≤ k

log k

1.41` for k
log k ≤ ` ≤ k

3 ,

especially,H∗
2 (k ;3) is a simple hypergraph.

For a setL of edges in a3-uniform hypergraph, letV (L)
be the set of all vertices contained in edges inL, andVj(L)
is the set of vertices contained in preciselyj edges inL, j ≥
1. If L can be extended to a2-regular3-uniform hypergraph
with the expansion properties described in Lemma 3.6, then
3|L| = |V1(L)|+2|V2(L)| and|V (L)| = |V1(L)|+ |V2(L)|
imply that

|V (L)| = 3|L| − |V2(L)| ≥ 3|L| − β(|L|). (3)

Corollary 3.7 If L can be extended to a2-regular 3-
uniform hypergraph with the expansion properties de-
scribed in Lemma 3.6, then, for` = |L|,

|V (L)| ≥




2` + 1 for 1 ≤ ` ≤ 20
1.9` for 21 ≤ ` ≤ k

log k

1.59` for k
log k ≤ ` ≤ k

3 .

In particular, L induces a simple hypergraph.



3.5.2 Many 2-regular subhypergraphs

Our task in this section is to show thatH(n, p) contains a
collection ofΘ(n1.4) 2-regular subhypergraphs. To show
this, we shall limit our attention only to2-regular subhy-
pergraphs that have expansion properties as in Lemma 3.6,
because these expansion properties will be used in certain
variance calculations.

It is not hard to see thatk can be chosen such that the ex-
pected number of expandingH2(k; 3) is as desired. Indeed,
Lemma 3.6 implies that, in expectation, there are

Θ
((

n

k

)
2−kα(2k)p2k/3

)

2-regular subgraphs ofH(n, p) with the expansion proper-
ties described in the lemma. Observing

(
n

k

)
2−kα(2k)p2k/3 = Θ

( nk((2k)!)2/3

k1/325k/3k!n3.2k/3

)

= Θ
( 1

k1/2

( k

2en0.2

)k/3)
,

we takek = 2en0.2+4.5 log n−c1 for appropriate constant
c1 so that the meanµ is betweencn1.4/2 andcn1.4 for a
constantc determined later. (It may not be possible to take
c1 so thatµ = (1 + o(1))cn1.4, sincek must be an integer.)

Having established that the expected number ofH2(k; 3)
is as desired, the following lemma uses the second moment
method to show that with high probability, the expectation
is attained.

Lemma 3.8 There isc > 0 so that, with probability1 −
o(1), the random hypergraphH(n, p) with p = n−1.6 has
a collection of2-regular subhypergraphs onk vertices sat-
isfying the followings.

(i) The collection has more than(1− o(1))µ elements.
(ii) All subhypergraphs in the collection satisfy the expan-
sion properties described in Lemma 3.6.

Proof: Let H1,H2, ..., be all the2-regular hypergraphs
on k vertices inV with the expansion properties. Then
the expected number of such hypergraphs inH(n, p) is µ.
In other words, for the indicator random variableXi =
1(Hi ∈ H(n, p)), andX :=

∑
i≥1 Xi, the mean ofX

is µ.
To compute the variance ofX and other related quanti-

ties, an estimation in a general setting is convenient. For
a set ofL edges, we will estimate the mean ofXL :=∑

i:L⊆Hi
Xi conditioned onL ∈ H(n, p). When|L| = 1

and usingq to denote the probability that a randomH∗
2 (k ;3)

has expansion properties, we have

E[XL|L ∈ H(n, p)]

=
(

n

k − 3

)
2−(k−3)α(2k − 3)p2k/3−1q

=
(1 + o(1))µ

(
n

k−3

)
2−(k−3)α(2k − 3)p2k/3−1

(
n
k

)
2−kα(2k)p2k/3

= (1 + o(1))µk3n−323(2−1(2k)2)−1p−1

= (4 + o(1))µkn−1.4.

Generally, we have the following lemma.

Lemma 3.9 Let ` := |L|. Then for̀ = 1,

E[XL|L ∈ H(n, p)] = (4 + o(1))µkn−1.4

and for connectedL with 2 ≤ ` ≤ 20

E[XL|L ∈ H(n, p)] = O(µn−0.4`−0.8).

Otherwise, for2 ≤ ` ≤ 20,
(

2k/3
`

)
E[XL|L ∈ H(n, p)] = O(µn−0.2`−1.6),

for 21 ≤ ` ≤ k/3,
(

2k/3
`

)
E[XL|L ∈ H(n, p)] = O(µn−(0.07+o(1))`).

Similarly, fork/3 ≤ ` ≤ 2k/3− 1,

(
2k/3

`

)
E[XL|L ∈ H(n, p)] = O(n−(0.07+o(1))(2k/3−`)).

Using Lemma 3.9 we complete the proof of Lemma 3.8.
To estimate the variance ofX =

∑
i≥1 Xi, consider

∑

j:j 6=i

Pr[Xj = 1|Xi = 1]− Pr[Xj = 1]

≤
∑

`≥1

∑
L:L⊆Hi
|L|=`

E[XL|L ∈ H(n, p)].

Lemma 3.9 yields that the case` = 1 contributes much
more than all other cases combined. (Here the distinction
between connected and disconnectedL is not necessary.
The distinction will be needed to prove Lemma 3.11.) Us-
ing the fact that any one of the2k/3 clauses associated with
Xi can be the clause shared withXj , one obtains

E[(X − µ)2] = (8/3 + o(1))k2n−1.4µ2 = O(n1.8).

Chebyschev’s Inequality then gives

Pr[|X − µ| ≥ bn0.9] = O(b−2), for b ≥ 1.

2



3.5.3 Hyperedges participate in only few 2-regular
subhypergraphs

Lemma 3.8 established that with high probability,H(n, p)
has collection of roughlyµ = Θ(n1.4) 2-regular subhyper-
graphs, where each such subhypergraph is onk = Θ(n0.2)
vertices and has the expansion properties of Lemma 3.6. It
remains to show that we can find a subcollection of this col-
lection that has the additional property that no hyperedge
participates in more thanO(k) of the subhypergraph. For
this purpose we impose an additional constraint on the col-
lection.

Definition 3.10 A collection of2-regular hypergraphs is
callednearly disjointif each pair of hypergraphs in the col-
lection shares at most one hyperedge.

We can now strengthen Lemma 3.8 so as to achieve our
main lemma.

Lemma 3.11 (Main Lemma) There isc > 0 so that, with
probability0.9+o(1), the random hypergraphH(n, p) with
p = n−1.6 has a nearly disjoint collection of2-regular sub-
hypergraphs onk vertices satisfying the following.

(i) The collection has more than(1 + o(1))µ/2 elements.
(ii) All subhypergraphs in the collection satisfy the expan-
sion properties described in Lemma 3.6
(iii) For each edgee in H(n, p), the number of hypergraphs
containinge in the collection is at most(12+o(1))n−1.4µk.

4. Algorithms for finding witnesses

Our witnesses for non-satisfiability are of polynomial
size, and they can be checked in polynomial time. In this
section we address the question of how such a witness can
be found. Observe that our results for sufficiently dense ran-
dom 3CNF formulas imply not only that witnesses exist, but
moreover, that the refutation inequality (1) is satisfied with
some slackness. For concreteness, let us call the inequality
t > d(Iφ + λn) the robust refutation inequality, and call
witnesses for which this inequality holdrobust witnesses.

Theorem 4.1 If a 3CNF formulaφ has a robust witness
with d À log m, then a witness of non-satisfiability forφ
can be found in time polynomial in

(
m
k

)
. (Recall thatm is

the number of clauses, andk andd are the respective para-
meters of the(k, t, d)-collection associated with the robust
witness.)

Proof: (sketch) As noted in Proposition 2.4, computing
the imbalanceIφ andλ does not pose a problem (especially
as it suffices to computeλ only approximately, due to the
slackness in the robust witness). The remaining task is to
find a (k, t, d)-collection as implied by the robust witness.

We may assume that the values ofk andd are known (as
there are only polynomially many possible values, and all
of them can be tried out). Fixingk andd, we propose the
following algorithm for finding a(k, d, t)-collection with
larget.

First, enumerate all inconsistentk-tuples. Using ex-
haustive search, this takes time proportional to

(
m
k

)
. (We

do not know whether there are substantially faster algo-
rithms for finding even a single inconsistentk-tuple.) Let
T1, T2, . . . , T` be the list of all inconsistentk-tuples.

Next, set up the following linear program. With every
Ti we associate a variablexi and the constraint0 ≤ xi ≤
1. In addition, for every clauseC we have the constraint∑

i|C∈Ti
xi ≤ d. The objective function is to maximize∑

i xi. The optimal value of the LP is at leastt, because the
(k, d, t)-collection associated with the robust witness is a
solution to the LP. The LP, which has` ≤ (

m
k

)
variables, can

be solved in time polynomial in its size. (It is conceptually
simplest to use a generic linear programming algorithm for
this purpose, though other options also exist.) For everyi,
let x∗i be the (fractional) value given toxi by the LP.

Now use randomized rounding. EveryTi is chosen into
the collection with probabilityx∗i . The expected size of the
collection is then at leastt. Standard concentration results
imply that with high probability the size of the collection is
at leastt(1 − o(1)), and moreover, that no clause is used
more thand(1 + o(1)) times in the collection. This last fact
uses the assumption thatd À log m. This provides a wit-
ness of non-satisfiability, because of the slackness involved
in the original robust witness.

Finally, observe that there is no need to actually perform
the randomized rounding. The fractional solution to the LP
by itself certifies the existence of a(k, t(1 − o(1)), d(1 +
o(1)))-collection (as proved by the randomized rounding
argument). Hence the refutation algorithm is deterministic
rather than randomized.2

Corollary 4.2 For sufficiently largec, most random 3CNF
formulas withn variables andcn1.4 clauses can be refuted
in time2O(n0.2 log n).

Proof: The probabilistic analysis of Section 3 implies
that most 3CNF formulas of density as in the corollary have
robust witnesses withk = O(n0.2). The corollary now fol-
lows from Theorem 4.1. 2

An interesting question is what is the smallest density for
which most random 3CNF formulas can be refuted in poly-
nomial time. The best previous bound iscn1.5 clauses for
some specific constantc > 1 [11]. Combining the approach
of the current paper with that of [11], we can extend this
to arbitrarily small constantc > 0. This requires some ad-
ditional work, but details are omitted from this conference
version.
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