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Abstract We consider 3CNF formulas with variables andn = 8n
clauses, in which the clauses are chosen independently at

We consider random 3CNF formulas withvariables random. Our results are not sensitive to minor variations
andm clauses. It is well known that when > cn (for a on the model, but for concreteness, assume the following
sufficiently large constant), most formulas are not satisfi- model: one takes a random permutation on all possible
able. However, it is not known whether such formulas are 23 (’;) 3CNF clauses, and picks the first clauses in the
likely to have polynomial size witnesses that certify that they permutation. It is well known (see for example [13, 19])
are not satisfiable. A value of ~ n3/? was the forefront  that wheng is sufficiently large (say3 > 5), almost all
of our knowledge in this respect. When> ¢n?/2, such such formulas are not satisfiable. For random 3CNF formu-
witnesses are known to exist, based on spectral techniquedas of sufficiently high density, we consider two tasks:
Whenm < n?/2~¢, it is known that resolution (which is a
common approach for refutation) cannot produce witnesses 1. Deterministic refutation. Design a polynomial time al-
of size smaller thar™". Likewise, it is known that certain gorithm that never accepts a satisfiable formula, and
variants of the spectral techniques do not work in this range. show that it accepts most formulas of dengity

In the current paper we show that whem > cn’/?,
almost all 3CNF formulas have polynomial size witnesses
for non-satisfiability. We also show that such a witness can
be found in timeC(""*1osm) whenever it exists. Our ap-
proach is based on an extension of the known spectral tech-
niques, and involves analyzing a certain fractional packing
problem for random 3-uniform hypergraphs.

2. Nondeterministic refutation. Design a nondetermin-
istic polynomial time algorithm with properties as
above. Equivalently, design polynomial sizénesses
for non-satisfiabilitythat can be checked (though not
necessarily found) in polynomial time, never exist for
satisfiable formulas, and exist for most formulas of
densitys.

) Clearly, deterministic refutation is at least as hard as non-
1. Introduction deterministic refutation. Observe also that in the context of
random formulas, the larget is, the easier is the refuta-
The 3SAT problem, namely, deciding whether a 3CNF tion task, because any refutation algorithm that applies to
formula is satisfiable, is one of the central NP-complete smaller densities may simply be run on a prefix of the larger
problems. Deciding whether a formula is not satisfiable density formula.
is complete for co-NP. The question of whether there isa Random 3CNF formulas often serve to show the limi-
nondeterministic polynomial time algorithm that recognizes tations of well known refutation algorithms. Takimgso-
non-satisfiable 3CNF formulas (or in other words, polyno- lution as a prominent example, it was shown [6, 3, 5, 4]
mial size witnesses for non-satisfiability) is equivalent to the that resolution fails to provide nondeterministic polyno-
well known “NP=co-NP?” open question. The question of mial time refutation for most formulas of densitie$/2—¢
whether there are deterministic polynomial time algorithms (wheree > 0 can be taken to be arbitrarily small), though it
for non-satisfiability is the even better known “P=co-NP?” is known to provide nondeterministic polynomial time refu-
question (which is equivalent to the “P=NP?” question). In tation for most formulas of densities/ logn. (In resolu-
this paper (similar to many other previous papers, some oftion, one attempts to refute a CNF formula by deriving the
which will be mentioned shortly), we study "average case” empty clause. The claugé v Z can be derived from the
versions of these questions. two clausesY” v x and Z v z. For more details, see the
The average case model involves a density parangeter aforementioned references.)



The strongest refutation algorithms known for random Proposition 1.1 There is a polynomial time algorithm that
3SAT are based on a "spectral” approach first suggestedfor almost every 3CNF formula of density proves that
in [17] for 4SAT. This approach involves computing eigen- every satisfying assignment must satisfy all but at most
values of certain matrices derived from the formula. These c¢y/3n clauses as 3XOR, whetés some universal constant.
spectral algorithms were extended to apply to 3SAT [14,
18, 11], and they are known to deterministically refute most ~ Proposition 1.1 is given for the sake of intuition, but the
formulas of density:n'/2, for a sufficiently large constant  detailed presentation of our approach will not refer to it ex-
c. Attempts to extend these techniques so as to work forplicitly. For this reason we shall not present the proof of
densities below,/n have failed so far. For example, in [12] Proposition 1.1, but only note that it follows by combining
it is shown that a natural use of semidefinite programming the first part of the proof of Theorem 2.6 with the proofs of
cannot refute 3CNF formulas at such low densities. Lemmas 3.2 and 3.3.

Further motivation for studying deterministic refutation ~ The new aspect of our work is in the use of inconsistent
of random3CNF formulas is given in [9]. There itis shown tuples of clauses.
that if there is no deterministic refutation for mastNF
formulas withcn clauses (where is an arbitrarily large  Definition 1.2 A collection ofk clauses is arevenk-tuple
constant) then certain combinatorial optimization problems if every variable appears in it an even number of times. (Ob-
(such as minimum graph bisection and dehsgubgraph)  serve that the fact that we are dealing with 3CNF clauses
do not have polynomial time approximation schemes. It is implies thatt must be even.) An evértuple is aninconsis-
an open question whether it is NP-hard to approximate thesdent k-tuple if the total number of appearances of negated
problems arbitrarily well, though further evidence that these literals in its clauses is odd (and hence this also holds for
problems are indeed hard to approximate is given in [20].  Positive literals).

The main result of this paper is nondeterministic refuta-
tion of random 3CNF formulas of densities belgf. Our The signiﬁcgnce of inc_o_nsistent tuples of clauses comes
method (which is based on the spectral approach) works al-fom the following proposition.
ready for densitie§ = cn?/ (for sufficiently largec > 0), " ) i
a range where resolution is known not to be polynomial. we Proposition 1.3 For any assignment to the variables, at
do not know whether the witnesses implied by our nonde- '€@st one of the clauses of an inconsisteniple is not sat-
terministic refutation can be found in polynomial time, but iSfiéd as 3-XOR.
we show that they can be found in time roughly exponential
in n/3%. The authors are not aware of any previous refuta- e .
tion/algorithm (whether deterministic or nyoﬁdeterministic) by + £ + £3 = 1 modulo 2. Assigning a litera; to true

that was proved to run in time better than exponential in (false, respectlyely) will be mterpreted as .settmg: 1
n/ 3 (for random 3CNF formulas of density < n1/2). (¢; = 0, respectively). An assignment satisfies the clause as

In an intuitive sense (which we do not wish to make 3.XOR ff it _satisfies the corresponding equation. Pi.Ck anar
exact), our state of knowledge following the current work p|trary assgnment and substitute th? correspondmg values
is that with respect to the "average” complexity of 3SAT, N th? equatlons. of th.e—tuple. Summing up all e_quat|ons,
co-NP C NP for densities above/. and co-NPC P for the right hand side gives 0 (modulo 2), becakss even.

densities above'/2. Pushing either of these densities down Th? I”eft hand ﬁllqte gllves 1 (mOd.Ltj.lo 2t)h kans can be seen
is an interesting question, as follows. If all literals were positive, than for any assign-

ment, the left hand side sums up to 0 (modulo 2), because
there is an even number of occurrences of each literal. Flip-
ping a single literal flips the sum modulo 2. As there is an
odd number of negative literals in an inconsistéruple,
Given previous work on refutation, the main new idea the sum must be 1 (modulo 2). Having established that the
that we introduce is fairly simple, though apparently is was |eft hand side of the sum differs from the right hand side,
not previously observed. Proving that this idea actually we can deduce that at least one equation is not satisfied, and
works requires some nontrivial probabilistic analysis. hence at least one clause is not satisfied as 3XQR.
The starting point is a principle that was explicitly intro- A random 3CNF formula is expected to contain many
duced in [9], and later used in refutation algorithms, such inconsistent-tuples, ifk is sufficiently large. For example,
as in [11]. The principle relates between satisfying as- it is not hard to prove the following lemma.
signments of random formulas, and assignments that satisfy
most clauses as if they were 3XOR clauses, namely, set anemma 1.4 If k3% > n, then the expected number of in-
odd number of literals (either one or three) to true. consistenk-tuples in a random 3CNF formula (expectation
taken over choice of formula) is "large” (say, more that).

Proof: View every clause((y, {5, ¢3) as an equation

1.1. The main idea



Lemma 1.4 by itself does not suffice for our refutation denoted by.
algorithm, and is given merely for intuition. Its proof is The first two components of our witness were used also
omitted. in previous work on refuting random 3CNF formulas [9,
In its simplest form, our witness of non-satisfiability will ~ 11].
be composed of > ¢\/3n disjoint inconsistenk-tuples. o ) )
On the one hand, Proposition 1.3 implies that in any assign-Definition 2.1 Let ¢ be a 3CNF formula with: variables
ment, at least different clauses are not satisfied as 3XOR. andm clauses. Thembalanceof a variable: (denoted by
On the other hand, Proposition 1.1 implies that in any sat- 1) is the difference in absolute value between the number
isfying assignment, there are at most3n of clauses not ~ Of times it appears with positive polgrlty and the number of
satisfied as 3XOR. The conditidn> ¢/An implies thatno  times it appears with negative polarity. Ttwtal imbalance
satisfying assignment can exist. of pisly =3, .
If k-tuples are to be disjoint, then necessatikg m/k,
and thusm/k > ny/3, implying k¥ < /3. Together with
the conditionk3? > n of Lemma 1.4, this implies that our

approach can potentially work wheh> n?/°. Definition 2.2 Let ¢ be a3-CNF formula withn variables
The description above is an oversimplification of our (denoted by, , . . . , #,,) andm clauses. Thenatrix induced
refutation approach. It turns out to be advantageous toby ¢ is a symmetric matrix of ordes that will be denoted
allow some limited overlap between inconsistéruples,  py 1/, Its entries are derived from as follows. Initially,
and compensate for this by taking a larger number of incon- )| entries are 0. Thereafter, every clausedothanges six
sistentk-tuples. On a conceptual level, having more flex- of the entries, two entries for each pair of variables in the
ibility allows our approach to be applied to a wider range ¢jause. The change i$1/2 if the polarities of the vari-
of formulas. But more important for the current context, gples do not match, and1/2 if they do match. For ex-
there are concrete technical reasons why allowing overlapampje, the clauséz;, z;, z;) changesM,; (and My, to

is desirable. One reason is that it is not clear to us whetherpreserve symmetry) antdy;, (and Mj;) by +1/2, and M;;
known techniques suffice in order to prove that there are (and M;;) by —1/2.

Q(n*2) disjoint inconsistenk-tuples (fork ~ n%2)in a
random 3CNF formula withn ~ n'-4 clauses. Intuitively, The second component of our witness is the largest
the source of the difficulty is as follows. Once one packs eigenvalue of\/,, which we shall denote by. The smaller
Q(n) k-tuples, this uses uf(n'?) clauses, and a new the absolute value of is, the better. The use of eigenval-
"random” k-tuple is likely to hit one of these clauses, and ues as part of refutation algorithms for CNF formulas was
hence not to be disjoint from the existifigtuples. By al- introduced in [17] and used in several works thereatfter.
lowing overlap betweerk-tuples, this source of difficulty Remark. We assume for simplicity of the presentation
is avoided. Thereafter, the probabilistic analysis needed inthat A (which might not be rational) can be represented ef-
order to prove that our approach works becomes manageficiently with infinite precision. A more formal treatment
able (though it still remains complicated and requires ex- may replace\ everywhere in this manuscript either hy-1
pertise in the probabilistic method). Another reason for al- rounded to the nearest integer (wheis very close to being
lowing overlap concerns the design of algorithms for find- an integer), or by \| otherwise. Details are omitted.

ing the witness for non-satisfiability. Having a witness that  Recall the notion of an inconsistent tuple from Defini-
depends on a disjoint collection bftuples spells bad news, tion 1.2.

because (disjoint) set packing problems are notoriously dif-

ficult to solve (and are also NP-hard to approximate within Definition 2.3 A (k. ¢, d)-collectionis a collection oft in-

a factor of O(k!~<)). In contrast, once we allow overlap consistent-tuples, in which every inconsistefrtuple con-
between sets, the underlying computational problem resem1ains only clauses from, and every clause from is con-
bles a fractional packing problem, and these problems cant@ined in at mostl of the inconsistent-tuples.

be handled more efficiently. This will be used in the proof
of Theorem 4.1.

The first component of our witness Ig, the imbalance
of ¢. The smalletd is, the better.

The third component of our witness is @&,¢,d)-
collection. This component will be most effective when the
. o ratiot/d is large. Note that necessarily < md, and hence
2. The Wltness fOI’ non-SatISflabI“ty to havet/d |arge7 we need to be small.

We now present a complete description of our witness

In this section we present the components of the witnessfor non-satisfiability.
for non-satifiability, and prove that no satisfiable 3CNF for-  The witness.Given a 3CNF formulas with n variables
mula can possibly contain such a witness (and hence theand m clauses, the witness is composed of the following
witness proves non-satifiability). The input formula will be three components:



1. The valuely of the imbalance, as defined in Defini-
tion 2.1.

2. The largest eigenvalug of the matrix My that was
defined in Definition 2.2.

3. A (k,t,d)-collection as defined in Definition 2.3, with
t < n?.

The components need to satisfy the followirgjutation
inequality:
‘> d([¢ + )\n) .
2

This completes the description of the witness.

The conditiont < n? isimposed only so as to ensure that
the witness is of polynomial size, and serves no other pur-
pose. Likewise, the exact value/ofs not important, though
clearlyk < m. Moreover, it does not matter whether all in-

1)

sets to true, and valuel on coordinates corresponding to
variables that sets to false. The fact that has norm,/n
implies thatn\ > v% M,v4. Using the definition of\/,,
it is not hard to see that every clause that is satisfied either
once or twice byA contributes+1 to v M,v4, Whereas
every other clause contributess. Hencen\ > m;—3(m—
m1) =4mqy —3m. O

Observe that a random assignment satisfies/4
clauses as NAE in expectation, and hence the lower bound
on \ implied by Lemma 2.5 is nonnegative.

Theorem 2.6 Let ¢ be a 3CNF formula with variables
andm clauses. Ify has a witness as described above that
satisfies the refutation inequality (1), then there is no as-
signment satisfying.

Proof: Assume for the sake of contradiction thatis
satisfiable, and le!l be a satisfying assignment. By de-

consistent tuples in the collection have the same cardinalityﬁnition of the notion of imbalanced can satisfy at most

k, but we assume they do, so as to simplify the presentation(

in this paper.

Proposition 2.4 The witness can be checked in polynomial
time.

Proof: The imbalance, can be computed in polyno-
mial time, and hence can be checked in polynomial time.
The same applies to the eigenvalugsee also the remark
following Definition 2.2). In fact, neither, nor A need to
be given explicitly as part of the witness, as both can be
computed efficiently frong.

For every everk-tuple in the(k,t,d) collection, one

needs to check that every variable appears in the respective We now turn to the(k, t,d) collection.

3m + Iy)/2 literals. Every clause contains at least one
of these satisfied literals. Lemma 2.5 implies tHasatis-

fies at mostn; = (3m + An)/4 clauses as NAE. The rest
of them — m; clause must be satisfied three times.y
Hence each of them contains two more satisfied literals (be-
yond the one already counted). It follows that the number
of clauses containing two literals satisfied Ays at most:

3 I
m_m_2(m_m1) —

3m Iy Iy +An
——42 <

HenceA satisfies at least — (I, + An)/2 as 3XOR (this
relates to the 3XOR principle of Proposition 1.1).

By Proposi-

clauses an even number of times, that every clause indeedion 1.3, each of theé inconsistentt-tuples must contain

belongs tap, and that the number of negative literals is in-

at least one clause not satisfied as 3XOR4byAS there are

deed odd. Moreover, one needs to check that every clausat most(Is + An)/2 such clauses, and each of them par-

appears in at most of the evenk-tuples, and that the total
number of everk-tuples ist. Clearly, all these checks can
be made in polynomial time (in, m), because < n?.

The refutation inequality can also be checked in poly-
nomial time. (Again, see also remark following Defini-
tion2.2) O

We now show that a satisfiable formula cannot have a

witness as described above. We first present a known con-

nection between the eigenvalueof A, and assignments
that satisfy clauses af in a "not all equal” (NAE) fashion,
namely, satisfy either one or two literals in a clause.

Lemma 2.5 If there is an assignment that satisfies;
clauses inp as NAE, then the largest eigenvaluef M, is
at least(4m, — 3m)/n.

Proof: Let A be an assignment that satisfias clauses
of ¢ as NAE. Consider the-dimensional vectow4 that
has valud on coordinates corresponding to variables that

ticipates in at most inconsistentc-tuples, there can be a
satisfying assignmemt only if t < d(Is+ An)/2. O

3. Dense random 3CNF formulas have wit-
nesses

In section 2 we presented a witness certifying that a
3CNF formula is not satisfiable. In this section, we show
that most 3CNF formulas withh > n!'4 clauses have such

a witness.

Theorem 3.1 Let ¢ be a random 3CNF formula with
variables andm = gn clauses, whergg = cn®* for a
sufficiently large constant Then almost surely:

1. The imbalance satisfigg, = O(ny/3) = O(n'?).
O(VB)

2. The largest eigenvalue satisfies
O(TLO'2).



model in which each of the possible = 23(3) clauses
is chosen to be i independently with probabilityn /M.
Another variation is a model in which we choose each 3-
tuple of variables to be a clause independently with prob-
Items 1 and 2 above are known (being part of the 3XOR ability m/(%), and thereafter choose the polarities of the
principle), and their proofs are presented in Lemmas 3.2variables independently at random. All these models are
and 3.3. The more challenging part of our analysis is to sufficiently similar to each other (say, when < n%/2) so
prove item 3, and the proof is given in Section 3.4. Sec- that the events that we consider happen with overwhelming
tion 3.1 explains how different ingredients of the proofs fit probability in one of the models iff they happen with over-

3. There are(k,t,d) collections with parameters =
O(n/B?) = 0(n%?),t = QnB) = Qn'*) and
d= O(k) = O(n%2).

together.

whelming probability in all models. (See for example [21]

Substituting these parameters in the refutation inequal-for a similar setting.)

ity (1), we see that the left hand sideli$n3), whereas the
right hand side i£)(n2/3%/2). Hence the inequality is sat-
isfied wheng > ¢n?/®, for some sufficiently large constant
C.

3.1. General observations

The most complicated part of our proof is to prove the

existence of(k,t,d) collections. To simplify the presen-
tation of this part of the proof, we shall fig = n04

(which is the smallest value that interests us), and prove

thatd = O(n%2) andt = Q(n'*), without insisting that

We omit the formal proofs of the observations made
above in this section.

3.2. The imbalance

The following lemma is known and its proof is given
here for completeness.

Lemma 3.2 The expected imbalance (over the choice of
3CNF formula¢ with n variables andm Bn > n
clauses) satisfieB (1,) = O(n/j).

Proof: All expectations and probabilities in this proof

the value of the leading constants is such that the refutationgre taken over the choice of

inequality is satisfied. However, this suffices for our pur-
pose for the following reason. Increasifgoy some con-
stant factor, increased, and by O(,/c), d can be kept
fixed, and thert is increased by a factor ef(by treating the
random formula as a concatenationcaindom formulas).
Hence regardless of the leading constants in(Ghand 2
notation, we can choosesufficiently large so as to make
the refutation inequality hold.

As ¢ is chosen at random, the three paramefgrs and
the maximum possible (for a given fixedd) are random

variables. All three random variables enjoy the bounded

difference property. Namely, adding one clausestoan
changel, by at most 3, changa by at mostl (because

For any variabler; we denote byl; the number of ap-
pearances of in ¢;. It holds that}_;_, E[d;] = 3m. By
symmetry, for every it holds thatE[d;] = 22, which we
denote byi (for the purpose of this proof, not to be confused
with the parametef used elsewhere). Given tht= j the
polarities of the appearancesagfare random and indepen-
dent. HenceE[I? | d; = j] = j. It then follows that

E[I7) =Y Prld; = j] E[I7 | d; = ]
k

=D _iPrldi = j] = Bldi] = d.

the matrix associated with a single clause has no eigenvalueJsing the convexity of the square function

whose absolute value is larger than 1), and change at
mostd (once we have fixed). As a consequence of this,

it can be shown that all these random variables are highly

E[L] < +/E[I?] < Vd.

concentrated around their means or medians (see for eXBy linearity of expectationf[>>7"_, I;] < nv/d. In partic-
ample [1]). Hence it suffices to show that the medians or 5 \with probability at Ieasl/2l?; < 471\/3 O

means ofl,, A and the maximum possibleare in the de-
sired range, and this will imply that the fraction ¢fthat

have a witness is overwhelming (at ledst 0(2*”5) for

somed > 0).

3.3. The largest eigenvalue

The following lemma is known and its proof is sketched

The strong concentration results also imply that we may for completeness.

use interchangeably whichever is more convenient of the
common models for generating random formulas. For ex-

ample, we may use a model in which exactly clauses

Lemma 3.3 The valueX of the largest eigenvalue a¥/,
satisfies\ = O(+/3) with high probability (over the choice

are chosen at random, and consider either the version withof 3CNF formulap with n variables andn = gn clauses,
or without replacement. Alternatively, we may consider a and using for simplicity the choigg > n2/%).



Proof: (sketch) Consider the model in which each of
the 23() possible clauses is chosen to begirindepen-
dently at random with probabilityn/8(3). Each clause
contains three pairs of variables. View the mathik, as
the sum of three matriced/; + M, + M3, where each of

these matrices involves the contributions of just one type of

pair (e.g.,M; contains the contributions of the pairs com-
posed of the first and second variables in every claugg.of

For every matrix separately, its entries are identically dis-
tributed and statistically independent (except for the con-
straints imposed by symmetry). Each entry is distributed

symmetrically around O, and has varian®és/n). The
results of [16] then imply that with high probability, the

largest eigenvalue of each of the three matrices is at mos

O(+/B). Clearly, A cannot be larger than the sum of these
three eigenvalues. O

Remark. Lemma 3.3 is incorrect whem3 <«
logn/loglog n. However, variations of it can be extended
all the way down to constant values 6f See [10] for de-
tails.

3.4. Collections of inconsistent tuples

In this section we show that a random 3CNF formula
with n!4 clauses is likely to have @, t, d) collection with
k= 0(n"?),t=Q(n**) andd = O(n"?).

It is more convenient to first find a collection of even

of t = Q(n'*) 2-regular subhypergraphs such that every

vertex participates in at mogt = O(n’-2?) of these subhy-

pergraphs.

The proof of this theorem is deferred to section 3.5,

though the proof of some of the related lemmas will be

omitted due to space limitations. (A note concerning no-
tation: in Section 3.5k will denote the number of vertices
in the 2-regular subhypergraph, rather than the number of
hyperedges.) Here we sketch the overall structure of the
proof.

It is relatively easy to prove th&tcan be chosen to have
some value close ta%2, in a way that causes the expected

tnumber of (not necessarily induced) 2-regular subhyper-

graphs withk vertices to be roughly.’*. However, large
expectation does not automatically mean a high probability
event. For example, in the context of random 3CNF formu-
las, it is known that at density = 5, the expected number
of satisfying assignments of a random 3CNF formula is ex-
ponentially large, but still almost all such formulas are not
satisfiable [19]. To turn expectation results into high proba-
bility results, one may try to bound the variance.

To allow us to bound the variance, we exclude some of
the 2-regular subhypergraphs from consideration. The ex-
cluded 2-regular subypergraphs are those that include sub-
collections of hyperedges that are "dense”, namely involve
relatively few vertices compared to the number of hyper-
edges. As a simple example, we do not wish to allow a 2-

k-tuples with the above parameters, and only later extractregular subhypergraph to contain two hyperedges that share

from it those evert-tuples that are also inconsistent. When
considering eveRr-tuples, the polarity of variables does not

two vertices (and hence contain only four vertices in total).
More generally, for every value df we require a certain

matter. Hence a clause can be viewed as a 3-tuple of varidower bound on the number of vertices that every subcollec-
ables. In this case, a 3CNF formula can be viewed as ation of ¢ hyperedges needs to contain. 2-regular subhyper-

3-uniform hypergraph ovet vertices, where every clause

graphs that meet these requirements for all valugsvafl

corresponds to a hyperedge. A natural model for randombe calledexpanding The reason to concentrate on 2-regular
3-uniform hypergraphs is one in which each of the hyper- expanding subhypergraphs with no dense subcollections is

edges is inserted independently with probabityl his hy-

that dense subcollections are correlated with the existence

pergraph can model a 3CNF formula in which each 3-tuple of 2-regular subhypergraphs (which themselves are dense

of variables forms a clause with probabiljiyand thereafter

— they have a ratio of 3:2 between variables and clauses),

the polarities of variables are set independently at random.and hence dense subcollections have large effect on the vari-

In our context, the appropriate value for the paramgtisr
n~1-6, as this corresponds to a formula wkin'#) clauses
(in expectation). A 2-regular subhypergraph inducedcby
hyperedges (namely, a collection/ohyperedges in which

ance.

We show that a random 2-regular subhypergraph has
constant (though a small constant) probability of being ex-
panding. Hence the expected number of expanding 2-

every vertex appears either twice or not at all) correspondsregular subhypergraphs is st#i(n'*). Now detailed cal-

to an everk-tuple of clauses. (Evel-tuples are somewhat

culations show that the variance is small, and so with high

more general in the sense that variables can appear any eveprobability the actual number is al§t(n'4).

number of times, but we shall not need this generality here.)

It remains to show thad, the number of 2-regular hy-

The most complicated technical part of this manuscript is pergraphs in which a hyperedge may participate, is small,

the proof of the following theorem.

Theorem 3.4 A 3-uniform hypergraph with vertices in

O(n°?). Again, it is not hard to show that in expectation
this is the case, but as explained before, expectation by itself
does not suffice. To avoid tedious variance calculations, we

which every possible hyperedge is included independentlynow restrict the structure of the collection of 2-regular sub-

with probabilityp = n=1% is likely to contain a collection

hypergraphs: we allow every two subhypergraphs to share



at most one hyperedge. A relatively easy computation basednay have loops and/or multiple edges, where a loop is an
on expectations shows that this does not decrease the sizedge containing a vertex twice or more like, v, w}. Call-

of the collection by much. But now, for every hyperedge, ing a hypergraph without loops and multiple edgesple

all 2-regular subhypergraphs in the collection that contain it it is known [7] that the random hypergraph is simple with
share no other hyperedge with each other. This eliminatesprobability (1 + o(1))e~!. Itis also easy to check that each
positive correlations that they might have had, and allows simple2-regular3-uniform hypergraph ot vertices arises

us to prove that with high probability their number is as ex- from exactly2” perfect3-matchings of clones. Therefore,
pected. the induced random hypergraph conditioned on being sim-

ple yields the uniform random-regular3-uniform hyper-
Corollary 3.5 Let ¢ be a random 3CNF formula with graphHs(k ; 3).

variables and:'!/8 clauses. Then with high probability Moreover, the uniform random perfegtmatching may
contains a(k7t2, d) collection with parameters = Q(n'*) be generated by selecting a uniform random permutation
andd = O(n%?). of 2k clones so that each perfetimatching may be real-

ized by precisely3!)2#/3(2k/3)! permutations. In particu-

Proof: (sketch) Theorem 3.4 implies that with high prob- lar. there are

ability ¢ contains an even collection with the above para-

meters. As the polarities are random, a symmetry argument , (o . (2k)!  _ (1+o0(1)3"2 2=2K/3((2k)1)2/3
implies that with probabilityl /2, at least half of the evelr 62k/3 (25 (4mk)1/3
tuples are inconsistent. This shows that the corollary holds (2)

with constant probability. As hinted in section 3.1, Tala- perfect3-matchings.
grand’s inequality can be used to boost this probability up ~ The hypergraphZ; (% ;3) induced by the configuration

(essentially ta — """ details omitted). O enjoys nice expansion properties. We characterize some
of these properties in terms of the maximum numbgt)
3.5. Random 3-uniform hypergraphs of vertices of degree in a subhypergraph with edges of

Hy(k,3). As k will be large (some increasing function of

A hypergraph is-uniform if every hyperedge contains n) in our intended applicationsz t.he following lemma ad-
exactly three vertices, ariiregular if every vertex is con-  dresses only the case thiais sufficiently large (the lemma
tained in exactly two hyperedges. LE{(n, p) be arandom 1S trivially incorrect wherk: < 40).
3-uniform hypergraph on the s&t of n vertices in which  |_emma 3.6 For some fixed constait > 0, for every suf-
each 3-tuple{z, y, 2} of distinct vertices becomes an (hy- ficiently largek, the induced random hypergragt; (k ;3)
per)edge with probability = n~'¢, independently of all  satisfies the following with probability at leakt
pthers. In this sgcuon vlvE show that (with high probabil- -1 forl<f<20
ity) H(n,p) contains®(n'-*) 2-regular subhypergraphs on &

k = ©(n%2) vertices such that each edgefif(n, p) is in s < { L1e - for 21k§ = @

O(n°?) of those subhypergraphs. LAl for g < €< 3,
especially,H; (k ;3) is a simple hypergraph.

3.5.1 Properties of the random2-regular 3-uniform

hypergraph For a setl of edges in &-uniform hypergraph, le¥’ (L)

be the set of all vertices contained in edges jmndV; (L)
For k divisible by3, a perfecB-matching of2k elementsis  is the set of vertices contained in precisgldges inZ, j >

a decomposition of thek elements int@k /3 sets of size 1. If L can be extended toaregular3-uniform hypergraph

3. To generate the-regular3-uniform hypergrapty (k ;3) with the expansion properties described in Lemma 3.6, then
uniformly at random among all simpteregulars-uniform  3|L| = [Vi(L)|+2[V2(L)| and|V (L)| = [V1(L)[+ [V2(L)]
hypergraphs ok = ©(n°2) vertices, one may use the con- imply that

figuration model (see [21] and refe_rences ther,eln/,/ for exam- \V(L)| = 3|L| — |Va(L)| > 3|L| — B(L]). A3)
ple). For each vertex, take two copies of, sayv’, v”. The

copiesv’, v are called clones af. The clones are used to Corollary 3.7 If L can be extended to @-regular 3-
generateH,(k;3). Providedk (and hencek) is divisible ~ uniform hypergraph with the expansion properties de-

by 3, generate a uniform random perféematching of all ~ Scfibed in Lemma 3.6, then, fér= [L|,

clones. The edges of the hypergraph induced by the perfect 20+1 for1<¢<20
3;Imatching can .be obtaineq by contraqting both/ofand V(L) >{ 1.9¢ for21 < /(< @
v” into v. Thatis,{u,v,w} is an edge if and only if the 159¢ for ﬁ <r<k

perfect3-matching contains 8-tuple consisting of clones _ _ _
of u,v,w. In general, the induced hypergragh; (k ; 3) In particular, L induces a simple hypergraph.



3.5.2 Many 2-regular subhypergraphs _ < n )2(k3)a(2k _ 3)p2k/371q
k-3
Our task in this section is to show th&t(n, p) contains a

collection of ©(n'*) 2-regular subhypergraphs. To show (L+ o) (,"5)2~ k=3 a(2k — 3)p?k/3-1
this, we shall limit our attention only t@-regular subhy- - (M) 2=k a(2k)p2k/3

pergraphs that have expansion properties as in Lemma 3.6,

because these expansion properties will be used in certain = (1+o(1))uk*n=22%(271 (2k)*) " 1p~!
variance calculations. = (44 o(1))pkn =14,

Itis not hard to see thdtcan be chosen such that the ex- ]
pected number of expandirfg, (k; 3) is as desired. Indeed, ~Generally, we have the following lemma.
Lemma 3.6 implies that, in expectation, there are Lemma 3.9 Let/ :— |L|. Then fort = 1,

®<(Z)2_ka(2k)p2k/3) E[Xp|L € H(n,p)] = (44 o(1))pkn =4

and for connected. with 2 < ¢ < 20
2-regular subgraphs df (n, p) with the expansion proper- -

ties described in the lemma. Observing E[XL|L € H(n,p)] = O(un~0-4-08),
k 2/3 .
n\o—k 2%/3 _ n"((2k)!) Otherwise, for2 < ¢ < 20,
<k>2 a(2k)p /= 9(;{71/3251@/3]{!”3‘21@/3)

()it € Honp) = 0un0219),

1 k k/3
-o(mm(zms) )

we takek = 2en®2+4.5log n—c, for appropriate constant
¢, so that the meap is betweencn!/2 anden'- for a 2k/3
constant: determined later. (It may not be possible to take ( ¢
¢, sothatu = (1 + o(1))cn'4, sincek must be an integer.)

Having established that the expected numbdigfk; 3) Similarly, fork/3 < ¢ < 2k/3 -1,
is as desired, the following lemma uses the second moment
method to show that with high probability, the expectation <2k/3

for21 < /¢ < k/3,

)E[XL|L € H(n,p)] = ()(/mf(o.07+o(1))4).

is attained. ’ )E[XL|L € H(n,p)] = O(n—(0.07+o(1))(2k/3—z))_
Lemma 3.8 There isc > 0 so that, with probabilityl — Using Lemma 3.9 we complete the proof of Lemma 3.8.
o(1), the random hypergrap (n, p) with p = n~'* has To estimate the variance of = >, , X;, consider
a collection of2-regular subhypergraphs oh vertices sat- =
isfying the followings. Z Pr[X; = 1|X; = 1] - Pr[X; = 1]
(i) The collection has more thafl — o(1))u elements. Jiii
(i) All subhypergraphs in the collection satisfy the expan-
sion properties described in Lemma 3.6. <Y ) E[XLIL € H(n,p)]

£>1 L:LCH,;

|L|=¢

Proof: Let H, Ho, ..., be all the2-regular hypergraphs ) )
on k vertices inV with the expansion properties. Then Lemma 3.9 yields that the cage= 1 contributes much

the expected number of such hypergraphgfif, p) is . more than all other cases combined. (Here the distinction
In other words, for the indicator random variahle — between connected and disconnecfeds not necessary.

1(H; € H(n,p)), andX := Y ... X,, the mean of¥ The distinction will be needed to prove Lemma 3.11.) Us-

is 4. =t ing the fact that any one of tt& /3 clauses associated with
To compute the variance of and other related quanti- - can be the clause shared witfy, one obtains

ties, an estimation in a general setting is convenient. For 21 2 14 2 1.8

a set of L edges, we will estimate the mean &f;, := E[(X — p)"T = (8/3 + o())k"n™ """ = O(n 7).

2i:pcu, Xi conditioned onL € H(n,p). When|L| = 1 Chebyschev’s Inequality then gives
and usingy to denote the probability that a randdifij (& ;3)

has expansion properties, we have Pr[| X —pu| > =0(0b?%), forb>1.

E[Xp|L € H(n,p)] O



3.5.3 Hyperedges participate in only few 2-regular
subhypergraphs

Lemma 3.8 established that with high probabili&(n, p)
has collection of roughly: = ©(n'*) 2-regular subhyper-
graphs, where each such subhypergraph is en©(n"2)

vertices and has the expansion properties of Lemma 3.6. Itha
remains to show that we can find a subcollection of this col-
lection that has the additional property that no hyperedge

participates in more tha®(k) of the subhypergraph. For

this purpose we impose an additional constraint on the col-

lection.

Definition 3.10 A collection of2-regular hypergraphs is
callednearly disjointif each pair of hypergraphs in the col-
lection shares at most one hyperedge.

We may assume that the valuesiondd are known (as
there are only polynomially many possible values, and all
of them can be tried out). Fixing andd, we propose the
following algorithm for finding a(k, d, t)-collection with
larget.
First, enumerate all inconsisteittuples. Using ex-
ustive search, this takes time proportional’fd. (We
do not know whether there are substantially faster algo-
rithms for finding even a single inconsisteituple.) Let
T1,T5,...,T, be the list of all inconsisterit-tuples.

Next, set up the following linear program. With every
T; we associate a variable and the constraifl < z; <
1. In addition, for every clausé€’ we have the constraint
Zi‘cen x; < d. The objective function is to maximize
>, =i. The optimal value of the LP is at lea@sbecause the
(k, d, t)-collection associated with the robust witness is a

We can now strengthen Lemma 3.8 so as to achieve oursolution to the LP. The LP, which hés< () variables, can

main lemma.

Lemma 3.11 (Main Lemma) There ig > 0 so that, with
probability0.9+40(1), the random hypergrapH (n, p) with
p = n~ 16 has a nearly disjoint collection &regular sub-
hypergraphs ork vertices satisfying the following.

(i) The collection has more thafl + o(1))u/2 elements.

(i) All subhypergraphs in the collection satisfy the expan-
sion properties described in Lemma 3.6

(iii) For each edgez in H(n,p), the number of hypergraphs
containinge in the collection is at mogti2+o(1))n =14 k.

4. Algorithms for finding witnesses

Our witnesses for non-satisfiability are of polynomial

size, and they can be checked in polynomial time. In this o(1)))
section we address the question of how such a witness can,
be found. Observe that our results for sufficiently dense ran-
dom 3CNF formulas imply not only that withesses exist, but

moreover, that the refutation inequality (1) is satisfied with

some slackness. For concreteness, let us call the inequalit

t > d(I; + An) therobust refutation inequalityand call
witnesses for which this inequality hotdbust withesses

Theorem 4.1 If a 3CNF formula¢ has a robust witness
with d > logm, then a witness of non-satisfiability far
can be found in time polynomial iff;"). (Recall thatm is
the number of clauses, adandd are the respective para-
meters of thek, ¢, d)-collection associated with the robust
witness.)

Proof: (sketch) As noted in Proposition 2.4, computing
the imbalancd 4, and\ does not pose a problem (especially
as it suffices to comput& only approximately, due to the

be solved in time polynomial in its size. (It is conceptually
simplest to use a generic linear programming algorithm for
this purpose, though other options also exist.) For every
letz} be the (fractional) value given to, by the LP.

Now use randomized rounding. Everyis chosen into
the collection with probability:}. The expected size of the
collection is then at least Standard concentration results
imply that with high probability the size of the collection is
at leastt(1 — o(1)), and moreover, that no clause is used
more thani(1 + o(1)) times in the collection. This last fact
uses the assumption thats> log m. This provides a wit-
ness of non-satisfiability, because of the slackness involved
in the original robust witness.

Finally, observe that there is no need to actually perform
the randomized rounding. The fractional solution to the LP
by itself certifies the existence of (&, ¢(1 — o(1)),d(1 +
-collection (as proved by the randomized rounding
rgument). Hence the refutation algorithm is deterministic
rather than randomized. O

Corollary 4.2 For sufficiently largec, most random 3CNF

Yormulas withn, variables and=n!-* clauses can be refuted

in time 20(n" logn)

Proof: The probabilistic analysis of Section 3 implies
that most 3CNF formulas of density as in the corollary have
robust witnesses with = O(n%2). The corollary now fol-
lows from Theorem 4.1. O

An interesting question is what is the smallest density for
which most random 3CNF formulas can be refuted in poly-
nomial time. The best previous boundcis'® clauses for
some specific constant> 1 [11]. Combining the approach
of the current paper with that of [11], we can extend this
to arbitrarily small constant > 0. This requires some ad-

slackness in the robust witness). The remaining task is toditional work, but details are omitted from this conference

find a(k, t, d)-collection as implied by the robust witness.

version.
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