Interplay between Social Influence and Network Centrality: A Comparative Study of Shapley Centrality and Single-Node-Influence Centrality

Wei Chen
Microsoft Research Asia

Shang-Hua Teng
University of Southern California
Network Centrality: Key Concept in Network Science

• Key question: who are at the central positions in a network?
• Classical Centrality Measures: Degree, Distance, Betweenness, Eigenvalue (PageRank)
• Issue: Only deal with static network structure, what about the effect of social interaction dynamics on network centrality?
Social Influence: Dynamics on Social Networks

• Social Influence: Social influence is everywhere
 – Adoptions of ideas, innovations, products, opinions
 – Conformity, social pressure, obedience
 – Influences are propagated in the network

• Questions:
 – How to incorporate social influence in centrality measure?
 – How to systematically study influence-based centrality measures?
Our Approach

• Comparative study on two centrality measures:
 – Single-Node-Influence (SNI) centrality: since node’s influence used as centrality
 – Shapley centrality: based on cooperative game theory, allocate total influence as credits/shares to nodes

• Axiomatic study: axiomatic characterization of both centralities
 – Provide the precise difference of the two centralities

• Algorithmic study: efficient algorithms for both centralities
Definitions of SNI and Shapley Centralities
Stochastic Influence Propagation Models

- Model how influence stochastically propagate in a network, starting from a seed set
- Classical models: Independent Cascade (IC) Model, triggering model [Kempe, Kleinberg, Tardos ‘03]
 - No need to understand the mechanism for this talk
- Influence spread $\sigma(S)$: expected number of nodes activated
 - Measure the power of set S
General Influence Instance

- **Influence instance** $\mathcal{I} = (V, E, P_\mathcal{I})$
 - $P_\mathcal{I}$: $2^V \times 2^V \rightarrow [0,1]$
 - $P_\mathcal{I}(S, T)$: probability that seed set S activates exact target set T
 - $S \subseteq T$

- **Influence spread**:
 - $\sigma(S) = \sum_{T \subseteq V} P_\mathcal{I}(S, T) \cdot |T|$
Influence-based Centrality Measure

• Influence-based centrality measure ψ

 $\psi: \{ I \} \rightarrow \mathbb{R}^n$

• Centrality measure as dimension reduction

Influence instance $\approx 2^{2n}$ dimension

Influence spread $\approx 2^n$ dimension

Centrality n dimension
Single-Node-Influence (SNI) Centrality

• Node ν’s SNI centrality is ν’s influence spread
 \[\psi_{\nu}^{SNI}(I) = \sigma_{I}(\{\nu\}) \]

• Natural and intuitive
• Measure node’s power in isolation
Cooperative Game Theory and Shapley Value

- Measure individual power in group settings
- Cooperative game over $V = [n]$, with characteristic function $\tau: 2^V \rightarrow \mathbb{R}$
 - $\tau(S)$: cooperative utility of set S
- Shapley value $\phi: \{\tau\} \rightarrow \mathbb{R}^n : \phi_v(\tau) = \frac{1}{n!} \sum_{\pi \in \Pi} (\tau(S_{\pi,v} \cup \{v\}) - \tau(S_{\pi,v}))$
 - Π: set of permutations of V
 - $S_{\pi,v}$: subset of V ordered before v in permutation π
 - Average marginal utility on a random order
- Enjoy a unique axiomatic characterization
Shapley Centrality

• Node \(v \)'s Shapley Centrality is the Shapley value of the influence spread function

\[
\psi_v^{\text{Shapley}}(I) = \phi_v(\sigma I)
\]

– Treat influence spread function as a cooperative utility function

• Measure node's power in groups

• More precisely, node's marginal influence in a random order
Axiomatic Characterizations of Shapley and SNI Centralities
Why Axiomatization?

- Provide *unique* characterization of a centrality measure
- Know the determining factors of a centrality measure
- Axiomatic comparison among different centrality measures
Shapley Centrality: An Axiomatic Characterization

• Five axioms uniquely determining Shapley centrality
• Axiom 1 (Anonymity). Invariant under node id permutation
• Axiom 2 (Normalization). Sum of centrality measure is n
 – For every instance I, $\sum_{v \in V} \psi_v(I) = n$
 – Average centrality measure per node is 1
 – A share division of the total influence spread
Axiom 3 (Independence of Sink Nodes)

- **Axiom 3**: Sink node projection preserves the centrality of other sink nodes

- **Sink node**
 - v is a sink node in I, if $\forall S, T \subseteq V \setminus \{v\}$
 \[P_I(S \cup \{v\}, T \cup \{v\}) = P_I(S, T) + P_I(S, T \cup \{v\}) \]
 - Sink nodes have no influence to others, but others may influence sink nodes.

- **Sink node projection**: $I \setminus \{v\} = (V \setminus \{v\}, E \setminus \{v\}, P_{I\setminus\{v\}})$
 \[P_{I\setminus\{v\}}(S, T) = P_I(S, T) + P_I(S, T \cup \{v\}) \]
 - Equivalent to removing the sink node and its incident links in the triggering model
Axiom 4 (Bayesian)

- Bayesian combination (convex combination) of influence instances gives convex combination of centrality measures.

\[\psi(I) = p\psi(I_1) + (1 - p)\psi(I_2) \]
Axiom 5 (Bargaining with Critical Sets)

• r-vs-1 critical set instance $I_{R,v}$
 – Bipartite graph: set R vs. a sink node v; $|R| = r$
 – Set R together activates all nodes
 – Missing any one in R, generates no further influence

• The sink node in the r-vs-1 critical set instance $I_{R,v}$ has centrality $\frac{r}{r+1}$
 – Smaller than 1, because others can influence v
 – When R gets larger, getting close to 1, because coalition in R gets weaker

• Can be explained by Nash bargaining solution
• Extend to general critical set instance $I_{R,U}$
Characterization Theorem for Shapley Centrality

• Characterization Theorem: Shapley centrality is the unique centrality measure satisfying Axioms 1-5, and these axioms are independent.

• Proof sketch:
 – Use vector representation of influence instances
 – Find a set of instances (critical instances \(\mathcal{I}_{R,U} \)) as a set of basis for the vector space
 – Centrality of basis instances are uniquely determined by the axioms
 – Linearity of convex combination preserves uniqueness
Axiomatic Characterization of SNI Centrality

- Axiom 4 (Bayesian). Centrality measure of Bayesian influence instance respects the linearity-of-expectation principle.
- Axiom 6 (Uniform Sink Nodes). Every sink node has centrality 1.
- Axiom 7 (Critical Nodes). In any critical instance $I_{R,U}$, the centrality of a node in R is 1 if $|R| > 1$, and is $|U|$ if $|R| = 1$.
- Theorem: SNI centrality is the unique one satisfying Axioms 4, 6, 7, and these axioms are independent.
Comparison of Shapley and SNI Centrality

<table>
<thead>
<tr>
<th></th>
<th>SNI Centrality</th>
<th>Shapley Centrality</th>
</tr>
</thead>
<tbody>
<tr>
<td>From definition</td>
<td>Focus on single node influence</td>
<td>Focus on influence in groups</td>
</tr>
<tr>
<td>On normalization</td>
<td>NO</td>
<td>YES, consider share division</td>
</tr>
<tr>
<td>On sink nodes</td>
<td>Treat them the same, only consider outgoing influence</td>
<td>Not the same, consider incoming influence</td>
</tr>
<tr>
<td>On critical nodes</td>
<td>Always 1 when $</td>
<td>R</td>
</tr>
<tr>
<td>Summary</td>
<td>Node influence power in isolation</td>
<td>Node irreplaceable power in group setting</td>
</tr>
</tbody>
</table>

Where R is a measure of node influence.
Scalable Algorithm
Algorithmic Challenge

- Influence spread computation is #P-hard
- Shapley value definition involves factorial
Our Approach

• Based on the reverse reachable set (RR-set) approach for influence maximization [Borges et al’14, Tang et al’14, ‘15]
 – RR set R: randomly select a node v, reserve simulate diffusion (in the triggering model), the set of nodes reversely reachable from v is R
 – Key property: $\sigma(S) = n \cdot \mathbb{E}_R[\mathbb{I}\{S \cap R \neq \emptyset\}]$

• For SNI: repeatedly sample RR sets, estimate influence spread of all nodes together $\psi_{SNI}^u = \sigma(\{u\}) = n \cdot \mathbb{E}_R[\mathbb{I}\{u \in R\}]$

• What about Shapley?
 – Key property for Shapley: $\psi_{Shapley}^u = n \cdot \mathbb{E}_R[\mathbb{I}\{u \in R\}/|R|]$
 – Almost the same algorithmic structure as SNI
Our Result

• SNI and Shapley centrality share the same algorithmic structure

• Can approximate SNI and Shapley centralities with ϵ multiplicative error, with probability $1 - 1/n^\ell$

\[
\begin{align*}
|\hat{\psi}_v - \psi_v| & \leq \epsilon \psi_v & \forall v \in V \text{ with } \psi_v > \psi^{(k)}, \\
|\hat{\psi}_v - \psi_v| & \leq \epsilon \psi^{(k)} & \forall v \in V \text{ with } \psi_v \leq \psi^{(k)}.
\end{align*}
\]

• Running time: $O\left(\frac{1}{\epsilon^2} \cdot \ell (m + n) \log n \cdot \frac{\mathbb{E}[\sigma(\bar{v})]}{\psi^{(k)}}\right)$

Near linear time \hspace{3cm} Constant in many graphs

k-th largest centrality
Conclusion and Future Work

• We provide dual axiomatic and algorithmic characterization
 – Axiomatically, exact characterization of SNI and Shapley centrality
 – Algorithmically, efficient computation for both using the same algorithmic structure

• Future work
 – SNI and Shapley centrality can be viewed as two end points in a spectrum, from node based centrality to group based centrality, what about others in the middle?
 – Extending traditional degree, distance, betweenness centralities etc. to influence based centralities?
 – More efficient algorithms?
Thank you, and questions?