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ABSTRACT
Accurate estimation of the click-through rate (CTR) in sponsored
ads significantly impacts the user search experience and businesses’
revenue, even 0.1% of accuracy improvement would yield greater
earnings in the hundreds of millions of dollars. CTR prediction is
generally formulated as a supervised classification problem. In this
paper, we share our experience and learning on model ensemble de-
sign and our innovation. Specifically, we present 8 ensemble meth-
ods and evaluate them on our production data. Boosting neural net-
works with gradient boosting decision trees turns out to be the best.
With larger training data, there is a nearly 0.9% AUC improvement
in offline testing and significant click yield gains in online traffic.
In addition, we share our experience and learning on improving the
quality of training.
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1. INTRODUCTION
Search engine advertising has become a significant element of

the web browsing experience. Choosing the right ads for a query
and the order in which they are displayed greatly affects the prob-
ability that a user will see and click on each ad. Accurately esti-
mating the click-through rate (CTR) of ads [10, 16, 12] has a vital
impact on the revenue of search businesses; even a 0.1% accuracy
improvement in our production would yield hundreds of millions
of dollars in additional earnings. An ad’s CTR is usually modeled
as a classification problem, and thus can be estimated by machine
learning models. The training data is collected from historical ads
impressions and the corresponding clicks. Because of the sim-
plicity, scalability and online learning capability, logistic regres-
sion (LR) is the most widely used model that has been studied by
∗This work was done during her internship in Microsoft Research.
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Google [21], Facebook [14] and Yahoo! [3]. Recently, factoriza-
tion machines (FMs) [24, 5, 18, 17], gradient boosting decision
trees (GBDTs) [25] and deep neural networks (DNNs) [29] have
also been evaluated and gradually adopted in industry.

A single model would lead to suboptimal accuracy, and the above-
mentioned models all have various different advantages and dis-
advantages. They are usually ensembled together in an industry
setting (or even machine learning competition like Kaggle [15]) to
achieve better prediction accuracy. For instance, apps recommen-
dation in Google adopts Wide&Deep [7] that co-trains LR (wide)
and DNN (deep) together; ad CTR in Facebook [14] uses GBDT
for non-linear feature transformation and feeds them to LR for the
final prediction; Yandex [25] boosts LR with GBDT for CTR pre-
diction; and there also exists work [29] on ads CTR that feeds
the FM embedding learned from sparse features to DNN. Simply
replicating them does not yield the best possible level of accuracy.
In this paper, we share our experience and learning on designing
and optimizing model ensembles to improve the CTR prediction in
Microsoft Bing Ads.

The challenge lies in the large design space: which models are
ensembled together; which ensemble techniques are used; and which
ensemble design would achieve the best accuracy? In this paper,
we present 8 ensemble variants and evaluate them in our system.
The ensemble that boosts the NN with GBDT, i.e., initializes the
sample target for GBDT with the prediction score of NN, is con-
sidered to be the best in our setting. With larger training data, it
shows near 0.9% AUC improvement in offline testing and signifi-
cant click yield gains in online traffic. To push this new ensemble
design into the system also brings system challenges on a fast and
accurate trainer, considering that multiple models are trained and
each trainer must have good scalability and accuracy. We share our
experience with identifying accuracy-critical factors in training.

The rest of the paper is organized as follows. We first provide a
brief primer on the ad system in Microsoft Bing Ads in Section 2.
We then present several model ensemble design in detail in Sec-
tion 3, followed by the corresponding evaluation against production
data. The means of improving model accuracy and system perfor-
mance is described in Section 5. Related work is listed in Section 6
and we conclude in Section 7.

2. ADS CTR OVERVIEW
In this section, we will describe the overview of the ad system in

Microsoft Bing Ads and the basic models and features we use.



2.1 Ads System Overview
Sponsored search typically uses keyword based auction. Adver-

tisers bid on a list of keywords for their ad campaigns. When a user
searches with a query, the search engine matches the user query
with bidding keywords, and then selects and shows proper ads to
the user. When a user clicks any of the ads, the advertiser will
be charged with a fee based on the generalized second price [2,
1]. A typical system involves several steps including selection,
relevance filtration, CTR prediction, ranking and allocation. The
input query from the user is first used to retrieve a list of candi-
date ads (selection). Specifically, the selection system parses the
query, expands it to relevant ad keywords and then retrieves the
ads from advertisers’ campaigns according to their bidding key-
words. For each selected ad candidate, a relevance model estimates
the relevance score between query and ad, and further filters out
the least relevant ones (relevance filtration). The remain-
ing ads are estimated by the click model to predict the click prob-
ability (pClick) given the query and context information (click
prediction). In addition, a ranking score is calculated for each
ad candidate by bid ∗ pClick where bid is the corresponding bid-
ding price. These candidates are then sorted by their ranking score
(ranking). Finally, the top ads with a ranking score larger than the
given threshold are allocated for impression (allocation), such
that the number of impressions is limited by total available slots.
The click probability is thus a key factor used to rank the ads in ap-
propriate order, place the ads in different locations on the page, and
even to determine the price that will be charged to the advertiser if
a click occurs. Therefore, ad click prediction is a core component
of the sponsored search system.

2.2 Models
Consider a training data set D = {(xi,yi)} with n examples (i.e.,

|D|= n), where each sample has m features xi ∈ Rm with observed
label yi ∈ {0,1}. We formulate click prediction as a supervised
learning problem, and binary classification models are often used
for click probability estimation p(click = 1|user,query,ad). Given
the observed label y ∈ {0,1}, the prediction p gets the resulting
LogLoss (logistic loss), given as:

`(p) =−y · log p− (1− y) · log(1− p), (1)

which means the negative log-likelihood of y given p. In the fol-
lowing, we will give a brief description on two basic models used
in our production.
Logistic Regression. LR predicts the click probability as p =
σ(w ·x+b), where w is the feature weight, b is the bias, and σ(a) =

1
1+exp(−a) is the sigmoid function. It is straightforward to get the
gradient as ∇`(w) = (σ(w ·x)−y) ·x = (p−y) ·x that is used in an
optimization process like SGD. The left part in Figure 1 depicts the
LR model structure. LR is a generalized linear model that mem-
orizes the frequent co-occurrence between feature and label, with
the advantages of simplicity, interpretability and scalability. LR es-
sentially works by memorization that can be achieved effectively
using cross-product transformations over sparse features. For in-
stance, the term co-occurrence between the query and ad can be
cross combined to capture their correlation, e.g., the binary fea-
ture “AND(car, vehicle)” has value 1 if “car” occurs in the query
and “vehicle” occurs in the ad title. This explains how the co-
occurrence of a crossed feature correlates with the target label.
However, since the LR model itself can only model the linear re-
lation among features, the non-linear relation has to be combined
manually. Even worse, memorization does not generalize to query-
ad pairs that have never occurred in the past.
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Figure 1: Graphical illustration of basic models: LR, DNN and
GBDT.

Deep Neural Network. DNN generalizes to previously unseen
query-ad feature pairs by learning a low-dimensional dense em-
bedding vector for both query and ad features, with less burden of
feature engineering. The middle model in Figure 1 depicts four
layers of the DNN structure, including two hidden layers each with
u neuron units, one input layer with m features and one output
layer with one single output. With a top-down description, the
output unit is a real number p ∈ (0,1) as the predicted CTR with
p = σ(w2 · x2 + b2), where σ(a) = 1

1+exp(−a) is the logistic acti-

vation function. w2 ∈ R1×u is the parameter matrix between out-
put layer and the connected hidden layer, b2 ∈ R is the bias. x2 ∈
Ru is the activation output of the last hidden layer computed as
x2 = σ(w1 ·x1+b1), where w1 ∈ Ru×u,b1 ∈ Ru,x1 ∈ Ru. Similarly,
x1 = σ(w0 · x0 +b0) where w0 ∈ Ru×m,b0 ∈ Ru and x0 ∈ Rm is the
input sample. Different hidden layers can be regarded as different
internal functions capturing different forms of representations of
a data instance. Compared with the linear model, DNN thus has
better for catching intrinsic data patterns and leads to better gen-
eralization. The sigmoid activation can be replaced as a tanh or
ReLU [19] function.

2.3 Training data
The training data is collected from an ad impressions log, that

each sample (xi,yi) represents whether or not the impressed ad al-
located by the ad system has been clicked by a user. The output
variable yi is 1 if the ad has been clicked, and yi is 0 otherwise.
The input features xi consist of different sources that describe dif-
ferent domains of an impression. 1). query features that include
query term, query classification, query length, etc. 2). ad features
that include ad ID, advertiser ID, campaign ID, and the correspond-
ing terms in ad keyword, title, body, URL domain, etc. 3). user

features that include user ID, demographics, and user click propen-
sity [6], etc. 4). context features that describe date, and location.
and 5). crossing features among them, e.g., QueryId_X_AdId (X
means crossing) that cross the user ID with the ad ID in an example.
One-Hot Encoding Features. These features can be simply rep-
resented as one-hot encoding, e.g., QueryId_X_AdId is 1 if the
user-ad pair occurs in the example. Consider that there would be
hundreds of million of users and ads, as well as millions of terms,
and even more crossing features. The feature space has extremely
high dimensionality, and they are meanwhile extremely sparse in
a sample. This high dimensionality and sparsity introduces con-
straints on the model design and also introduces challenges on the
corresponding model training and serving.
Statistic Features. They can be classified into three types: 1).
Counting features that include statistics like the number of clicks,
the number of impressions, and the historical CTR over different
domains (basic and crossing). e.g., QueryId_X_adId_Click_6M,
and QueryId_X_AdId_Impression_6M that counts the number of
clicks for specific (QueryId, AdId) pair in last six months. To
account for this display position bias [9], we use position-normalized
statistics such as expected clicks (ECs) and clicks over expected



clicks (COEC) [6]:

COEC =
∑

R
r=1 cr

∑
R
r=1 ir ·ECr

(2)

where the numerator is the total number of clicks received by a
query-ad pair; the denominator can be interpreted as the expected
clicks (ECs) that an average ad would receive after being impressed
ir times at rank r, and ECr is the average CTR for each posi-
tion in the result page (up to R), computed over all pairs of query
and ad. We thus can obtain COEC statistics for specific query-ad
pairs. The counting feature is essential to convert huge amounts
of discrete one-hot encoding features (billions) to only hundreds of
dense real-valued features. A hash table is used to store the statis-
tics and they are looked up online through the key likes “iPhone
case_Ad3735”. The statistics are refreshed regularly with a mov-
ing time window. 2). For some lookup keys (e.g., the long tail
ones), there are too few impressions and clicks thus the statistics
are pretty noisy. However, they still occupy a large amount of hash
table storage. The solution is to assign these low impression/click
data to a “garbage group”, and the statistic that corresponds to this
group is the default value if the key is missing in the hash table. A
garbage feature with a binary value thus indicates whether or
not current sample is in garbage group. 3). Semantic feature

such as BM25. We also have a query/ad term based logistic regres-
sion model to capture the semantic relationship between the query
term and ad term. The prediction output is treated as a feature.
Position Feature. We also record the specific position in which
an ad is impressed. A search result page view (SRPV) may con-
tain multiple ads at different positions, either in the mainline right
after the search bar or in the right sidebar. Position feature w.r.t a
specific position is the expected CTR based on a portion of traffic
with randomized ad order. The specialty of position feature is that
it never interacts with other statistic features (during feature engi-
neering and model learning), but separates them out independently.
The underlying consideration lies in the displayed position and the
ad quality being two independent factors that affect the final click
probability. Actually, we treat the position feature as a position
prior as p(click = 1|ad, position) ∝ p(click = 1|ad) · p(position).
This separation of position features and other features is also vali-
dated by our experiments where it outperforms the model that inter-
acts with them together. Since we do not know the position where
the ad will be displayed, a default position (ML-1) is used to pre-
dict click probability online. In this way, we mainly compare the
ad quality in the click prediction stage, i.e., all ads are set with
the same value for position feature, and the specific position is fi-
nally determined in the ads allocation stage. Note that we still
collect the click log into training data even when the correspond-
ing clicked position is not ML1, as this is helpful for enriching the
training data.

2.4 Baseline Model
Figure 2 depicts the baseline model we use, where several LRs

and a NN model are ensembled together. Several LR models are
first trained 1 so that each is fitted based on the one-hot features
(with up to billions), and their prediction scores are treated as statis-
tic features. Combined with the statistic and position feature listed
above (Section 2.3), they are then fed into an NN model. NN is a
“special” DNN with one single hidden layer. NN rather than DNN
is selected since adding more layers and more units would have
substantial offline gain, but the online gain is poor and not stable.
1We adopt FTRL (“Follow The (Proximally) Regularized
Leader”) [21, 20] or L1 regularization [11] to produce sparse
model.

...

statistic features position biasLR scores

Figure 2: NN model used in production. There are three parts in
input features: 1). the predicted scores of LRs; 2). statistic features;
3). position bias.

Besides, DNN introduces much more system costs in both training
and serving. The postilion bias is only connected to a special hid-
den unit of NN to avoid the interaction. This cascading ensemble
(stacking) shows good offline and online accuracy, and is consid-
ered the baseline that is compared with several novel ensembles
described in Section 3.

On the one hand, we do not use a single model like LR and
combine one-hot features and statistics features together, since it
is hard to fit a good linear model with comparable cost, consider
that there are a large number (1B) of sparse features and a small
number of (100-500) dense features. Moreover, since the historical
correlation in one-hot features is represented as the corresponding
weights (parameters), thus the corresponding model needs to be
updated frequently even with online learning to fit the latest trends.
As a comparison, the statistic feature is updated in real-time that the
corresponding model does not need to be re-trained frequently, e.g.,
the historical CTR of an advertiser can be updated as soon as a click
or an impression of that advertiser occurs 2. Lastly, the dimension-
ality of statistic features is much less than one-hot features, posing
less challenge to offline training and online serving. Based on these
factors, we choose to use NN as the baseline model that is fit from
these statistic features. Note that all features including position fea-
tures are first normalized by means of x−min

max−min . On the other hand,
however, if we only keep the statistic feature, the tail cases could
have poor prediction accuracy, since there are few impressions in
training data and they will fall into the garbage group. Therefore,
the NN model trained from the statistic features has no discrim-
ination among these rare cases, thus leads to over-generalize and
make less accurate prediction [7]. As a comparison, with more
fine-grained term-level one-hot features with cross-product feature
transformations, linear models (LRs) can memorize these “excep-
tion rules” and can learn different term-crossing weight 3. Two LR
models are ensembled, one is trained from older dataset and an-
other is trained from the latest dataset. To mitigate the potential
loss, our solution thus resorts to ensemble LR and NN together.

3. MODEL ENSEMBLE DESIGN
Different models can complement each other, and a model ensemble

that combines multiple models into one model is a common prac-
tice in an industry setting to achieve better accuracy. In this sec-
tion, we describe the different model ensemble designs and the cor-

2We actually have long term and real-time counting feature, the
long term ones are updated per day and the real time ones are up-
dated in seconds.
3We can record these term-level counts as statistic features but with
more overheads. One feasible approach is to feed the dense embed-
ding of these sparse term-crossing features to DNN, and we treat it
as future work.



responding design consideration, which aim to provide better pre-
diction accuracy than the baseline model.

3.1 Ensemble
Ensemble approaches. There are different ensemble [26] tech-
niques that aim to decrease variance and bias, improve predictive
accuracy (stacking), etc. The following is a short description of
these methods: 1). Bagging stands for bootstrap aggregation. The
idea behind bagging is that an overfitted model would have high
variance but low bias in bias/variance tradeoff. Bagging decreases
the variance of prediction by generating additional data from the
original dataset using sampling with repetitions. 2). Boosting
works with the under-fitted model that has high bias and low vari-
ance, i.e., the model cannot completely describe the inherent rela-
tionship in the data. With the insight that the model residuals still
contain useful information, boosting at its heart repeatedly fits a
new model on the remaining residuals. The final result is predicted
by summing all models together. GBDT is the most widely used
boosting model. 3). Stacking also first applies several models to
the original data and the final prediction is the linear combination
of these models. It introduces a meta-level and uses another model
or approach to estimate the weight of each model, i.e., to determine
which model performs well given these input data. 4). Cascad-
ing model A to model B means the results of model A are treated
as new features to model B. Compared with stacking, cascading is
more like joint training [7], with the difference that the cascaded
models are not trained together but are trained separately without
knowing each other. In contrast, joint training optimizes all param-
eters simultaneously by taking parameters of all models as well as
the weights of their sum into account at training time. To simplify
the description, we represent cascading A to B as A2B and boosting
A with B as A+B.

There are still questions regarding specific ensemble design that
remain unanswered. Which models are ensembled together? Which
ensemble techniques are used? Which ensemble design would achieve
the best accuracy? Sometimes bagging or boosting works great,
sometimes one or the other approach is mediocre or even negative.
To answer them in our setting, we will present 8 ensemble variants
in the next part.

3.2 Ensemble design
Design principles. There are several principled rules taken into
consideration when we design the ensemble: 1). We do not con-
sider the bagging approach since the variance of DNN is not signif-
icant especially if we regularize the model complexity, e.g., NN
instead of DNN is used in production. The gain from bagging
would be marginal. 2). Diversity is key to ensemble design. Non-
parametric models such as decision trees are introduced to increase
diversity since it differs largely with parametric models such as LR
and DNN. Parametric models are usually optimized with gradient
descent, while non-parametric models are fitted by greedily distin-
guishing the examples via clustering (K-Means) or splitting (de-
cision tree). We believe the ensemble among non-parametric and
parametric models would get more complementary benefits for ac-
curacy. Boosting is commonly associated with gradient boosting
decision trees (GBDTs). 3). Co-training between non-parametric
models such as GBDT and parametric models such as LR/DNN is
difficult even infeasible thus we do not consider joint training in
this paper. Note that it is not easy to co-train multiple parametric
models when they are optimized with different optimizers (FTRL
of LR VS. AdaGrad of DNN) with different mini-batches and dif-
ferent asynchronization requirements. 4). We skip the ensemble
of DNN and LR on statistic features. Our baseline model actu-

ally has the ensemble between DNN and LR already on one-hot
features. However, in the last prediction stage, there are only statis-
tic features. In this situation, the ensemble between DNN and LR
is unnecessary since DNN is considered more powerful than LR
such that for any given LR model there is always a DNN that has
the same or larger representation capability. 5). Cascading is also
emphasized. On the one hand, it is considered to have the bene-
fits of co-training. 4 On the other hand, unlike co-training, it can
ensemble the parametric and non-parametric models together. In
the next, we will describe 9 ensemble variants that are all based on
the same training data as our baseline model.
GBDT. The Gradient-Boosted Decision Tree (GBDT) is the ensemble
of decision trees, and is widely used as it can model non-linear cor-
relation, obtain interpretable results and does not need extra feature
preprocessing such as normalization. GBDT iteratively trains T
decision trees in order to minimize a loss function. During each it-
eration, the algorithm uses the current ensemble to predict the label
of each sample and then compare the prediction with the true label.
The dataset is re-labeled with the corresponding “residual” to put
more emphasis on training instances with poor predictions. Thus,
in the next iteration, a new decision tree will be fitted to correct
for previous mistakes. The specific mechanism for re-labeling in-
stances is defined by a loss function. Specifically, the t-th tree ( ft )
is added to minimize the following objective:

`t =
n

∑
i=1

`(yi,yt−1
i + ft(xi)), where ft ∈ Γ (3)

where yt
i is the prediction of the i-th instance at the t-th iteration.

Γ = { f (x) = wq(x)},(q : Rm → L,w ∈ RL) is the structure space
of decision trees. Here q represents the tree structure that maps a
sample to the corresponding index of exit leaf (q(x)). Each leaf has
a score (w). L is the number of leaves in the tree. Given sample x,
GBDT uses T additive functions to predict the output, each subtree
corresponds to a scoring function ft and a shrinkage rate γt :

p = σ(ȳ); ȳ =
T

∑
t=1

γt · ft(x) (4)

The right part of Figure 1 depicts a GBDT model where nodes in
blue color are the exit leaves. The specialty of our design is that the
sample score in the first tree is initialized as the corresponding po-
sition bias whose value is roughly the expected CTR of all samples
collected from an bucket traffic with randomized ad order. Note
that we use the inverse position bias, i.e., given pb = σ(x),
we use x instead of pb. As pointed out in Section 2 that position
bias cannot be crossed with other features, thus we never split po-
sition feature during training.
GBDT2LR: Cascading GBDT to LR. As pointed out by He, et
al. [14], GBDT is a powerful way to implement non-linear and
crossing transformations on input features. Specifically, we treat
each individual tree as a categorical feature that takes as feature
value the index of the leaf where a sample falls in. They are repre-
sented as one-hot encoding. These newly transformed features are
then fed into LR as input feature. Essentially, GBDT based trans-
formation is considered a supervised feature encoding that converts
a real-valued feature vector into a compact binary-valued vector. A
traversal from the root node to a leaf node represents a rule on the
splitting features along the path. Fitting a linear classifier on the
resulting binary vector is to learn the weights for these rules.

4It has part of the benefit since only one model’s parameters are
changed.



LR2GBDT: Cascading LR to GBDT. Conversely, we can also
cascade LR to GBDT (with T subtrees). It first trains an LR model
and uses as an input feature the prediction score of LR to a GBDT
model. Given a sample x, the specific scoring formula is as follows:

p = σ(ȳ); ȳ =
T

∑
t=1

γt · ft(x,σ(ylr)) (5)

Position bias here is only used in LR and never used in GBDT. LR
has better accuracy if we use the inverse position bias rather than
the normalized value. This is because the position bias is the ex-
pected CTR, i.e., the expected value of LR prediction, and the linear
combination of non-position features (i.e., logit) can be regarded as
the adjustment to the expected CTR. The inverse position bias is
essentially to convert the position feature to the expected logit.
GBDT2DNN: Cascading GBDT to DNN. This is a cascading
ensemble that first trains a GBDT model, and the predicting score
of GBDT is fed as input feature (xgbdt ) into a DNN model. Given
a sample x, the specific scoring formula is as follows:

p = σ(ȳ); ȳ = σ(w1 · x1 +b1);
x1 = σ(w0 · (x0,xgbdt)+b0)

(6)

The position feature is only used to initialize the GBDT and not
used in DNN to avoid the cross interaction. DNN here has only one
hidden layer to simplify the description. Unlike GBDT2LR, we do
not feed the transformed categorical features from GBDT to DNN,
since DNN resorts to embedding to deal with the categorical fea-
tures. Considering that we have a large number of trees and each
tree has a large number of leaves, this introduces scalability issue
on the DNN trainer. 5

DNN2GBDT: Cascading DNN to GBDT. The opposite direction
that cascades DNN to GBDT also should be tried. Specifically, it
first trains a DNN model, and the DNN’s predicting score is then
fed as an input feature to a GBDT model. Given a sample x, the
specific scoring formula is as follows:

p = σ(ȳ); ȳ =
T

∑
t=1

γt · ft(x,ydnn) (7)

Here position feature is used normally in DNN and GBDT train-
ing, however, the predicting score of DNN (input feature to GBDT)
does not count the position bias to avoid cross interaction, i.e., the
weight of position bias is set to 0 during prediction.
GBDT+DNN: stacking GBDT and DNN. DNN and GBDT are
first trained separately used the same training data. Given a sam-
ple x, the final result is the average of prediction scores, with the
following formula:

p = σ(ȳ); ȳ =
1
2
· ydnn + ygbdt (8)

We do not average the final predicted probability directly, instead
the scores are averaged first and then input to sigmoid that returns
the final probability.
LR+GBDT: Boosting LR with GBDT. It initializes the GBDT
with a linear combination of input features learned by the LR. In
other word, the pseudo target of a sample is initialized as the “resid-
ual” between the prediction score of LR and the real target before
fitting the first tree f1(x). Although LR is a quite simple model,
its prediction result has already good accuracy, i.e., the residual is
quite small. Therefore, it is much easier to train compared with the
original GBDT. The prediction scores of these T weak learners are

5Wide&Deep [7] can train heterogenous feature combination with
both sparse features and dense embedding.

...
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Figure 3: DNN+GBDT.

added (boosted) sequentially to the prediction result of LR. Given
a sample x, the specific ensemble is represented as:

p = σ(ylr + ygbdt); ylr = w · x+b;

ygbdt = γ1 · f1(x)+
T

∑
t=2

γt · ft(x);

f1(x) = argmin
f

N

∑
i=1

`(yi,ylr i + f (xi));

(9)

Yandex [25] has adopted this boosting design for their ads CTR pre-
diction. Instead of adding the predicted probability of LR directly,
we actually add the logit computed by LR (w · x+b) first and then
apply the sigmoid to get the final prediction. Position feature (or
inverse position bias) is only used in LR, we do not use it in GBDT
to avoid the interaction between position feature and other features.
DNN+GBDT: boosting DNN with GBDT. Lastly, like LR+GBDT,
DNN can also be boosted by GBDT. It first trains a DNN model,
and the prediction score is used to initialize the GBDT (with T
subtrees), i.e., the GBDT try to fit the residual between the optimal
solution and DNN’s result . Similarly, the prediction score of these
T weak learners are added (boosted) sequentially to the prediction
score of DNN, and feed the sum to sigmoid that returns the final
probability. Given a sample x, the specific ensemble formula is as
follows:

p = σ(ydnn + ygbdt);

ygbdt = γ1 · f1(x)+
T

∑
t=2

γt · ft(x);

f1(x) = argmin
f

n

∑
i=1

`(yi,ydnni + f (xi));

(10)

Figure 3 depicts the model structure, where the position feature is
only used in DNN with the normalized (rather than reversed) value.

4. EVALUATION
We have compared these model ensembles against our baseline

setting, and DNN+GBDT turns out to have the best accuracy in terms
of offline testing AUC and click yields in online traffic.

4.1 Evaluation setup
Datasets. Training data used in this study consists of 56M exam-
ples which are randomly sampled from the logs generated in one
month. For each sample, there are several hundreds of statistic
features. To reduce the training cost, non-click cases are further
down-sampled with a 50% sampling ratio. Each non-click sample
is thus weighted by 2 such that the distribution is unchanged dur-
ing the training. The model predicting accuracy is tested against
dataset with 40M samples that are randomly drawn from the log
generated in next week right after the training log. Without explicit
description, all experiments have been applied to this dataset.



Accuracy Metric. The Area under Receiver Operating Character-
istic Curve (AUC) [8] and Relative Information Gain (RIG) [14]
are computed against the testing data to evaluate offline prediction
accuracy. We calculate AUC normally, but with a small difference
in RIG calculation that is defined as:

LLpredict =−
1
N

N

∑
i=1

yi · log pi +(1− yi) · log(1− pi),

LLempirical =−
1
N

N

∑
i=1

yi · log pe +(1− yi) · log(1− pe)

RIG =
LLpredict

LLempirical
−1

(11)

where yi is the observed label of testing sample i, pi is the pre-
dicted probability, and pe is the empirical CTR that is calculated
by #clicks

#impressions in testing set. LLpredict represents the mean cross
entropy (i.e., the average log-loss per impression), and LLempirical
is the average log-loss per impression if the CTR is predicted by a
naive model that always predicts with the average empirical CTR.
Dividing by LLempirical makes RIG insensitive to the average em-
pirical CTR. AUC essentially evaluates the rank order and RIG
measures the goodness of predicted value. For example, if we ap-
ply a global multiplier 0.5 to all predicted values, RIG will change
even though AUC remains the same. Modelling with higher AUC
and RIG value is considered to have better accuracy. Note that we
compute AUC or RIG both at position=ALL and position=ML1,
position=ALL is computed against the entire testing set, while po-
sition=ML1 is computed against a testing subset that consists of all
samples impressed at ML1. In production, we care about AUC at
position=ML1 more since the ads ranking, allocation and bidding
are all based ML1 position, and in our experience, an AUC gain
of 0.03% is statistically significant that exceeds the normal AUC
variance and should not be neglected as noise.

The ensemble with significant offline accuracy will be picked for
online A/B testing where we schedule two randomly sampled traf-
fic buckets from full traffic as control and treatment. These two traf-
fics have the same configuration settings through the whole serving
stack except the click prediction model. We draw conclusion only
when the online KPIs are statistic significant. We use the normal-
ized click yield (CY) which removes the impact from the difference
of impression yield.
Configuration of Model Ensembles. The evaluated model ensem-
bles are described in Table 1, respectively. All model ensembles are
trained and tested using the same dataset. Note that position fea-
tures are handled differently in different ensembles (Section 3). In
this section, DNN is configured to share the same configuration as
our baseline model (Figure 2), i.e., a simple NN that has only one
single hidden layer with 30 hidden units, and the activation is a sig-
moid function. All features fed to LR and NN are first normalized
by means of x−min

max−min to ensure the value in [0,1]. The learning rate
in DNN training starts from 0.005 and multiply by 0.2 every 4 itera-
tions. The number of iterations (epoches) is 20 to avoid over-fitting
based on the AUC gain trending on a validation set. Mini-batch
size is 1 by default. LR is trained in full batch with LBFGS since
the data size is small. There are 300 trees and each tree has 200
leaf nodes in GBDT, and the shrinkage ratio is 0.05 by default. The
evaluation on different hyperparameter settings will be described in
the next section.

4.2 Experiment Results
The experiment results of various ensembles are listed in Table 1.

All the results are compared with the baseline NN model. We care

much more about the accuracy at the ML1 position, but the re-
sults at ML=ALL are still listed for reference. We can draw the
observations and the corresponding explanations as follows: 1).
The GBDT model has the best predictive accuracy among single
models that has AUC lift 0.14% and RIG lift 0.36% than baseline
NN, while LR is the worst with about 1.81% AUC loss. 2). LR
is always weaker than NN, which is validated by the results that
LR < NN, LR2GBDT < NN2GBDT , GBDT 2LR < GBDT 2NN,
and LR+GBDT < NN +GBDT . This is within our expectations.
3). Almost all ensembles are better than the corresponding single
model, with the only exception on GBDT2LR and LR+GBDT that are
even worse than GBDT only. This indicates that boosting is better
than cascading (will be described in the next part). It is noteworthy
that GBDT2LR and LR+GBDT have been presented by Facebook [14]
and Yandex [25], respectively. They behaved poorly was proba-
bly because Facebook mainly works for feed ads and the position
feature may be not as important as with search ads.

4). Boosting is powerful that it can even further boost a non-
weak model such as NN, e.g., LR+GBDTV 2 > LR, and NN +
GBDT > NN, and it is generally better than cascading/stacking.
5). Lastly, NN+GBDT that boosts NN with GBDT turns out to be the
best with 0.40% AUC gain and 2.81% RIG gain, respectively. The
online A/B testing indicates that it has 1.3% click gains in online
traffic. With larger training data, it can bring additional 0.5% AUC
gains. Besides the A/B testing, we also have holdout flight that
validates the effectiveness of NN+GBDT. i.e, we have the same online
gain after mainstreaming into production.

4.3 Findings and Insights
The importance of Position Feature. The right treatment of po-
sition feature actually plays a critical role in prediction accuracy.
First, position feature should be used in inverted form rather than
the normalized one for LR, given that LRV 2>LR, LR+GBDTV 2>
LR + GBDT and LR2GBDTV 2 > LR2GBDT . We need the in-
versed form because the final sigmoid will convert it back to po-
sition CTR which is empirical CTR. Second, position feature is
the key factor in GBDT initialization and the boosting accuracy
largely depends on the specific initialization. This is a key rea-
son why NN +GBDT > NN2GBDT > GBDT > LR+GBDT . In
GBDT, we have the freedom to apply any kind of transformation
on the position feature before initialization, while afterward, it is
never changed and never used for splitting trees to avoid the inter-
action among position and other features. Single GBDT (GBDT )
and the cascaded GBDT (LR2GBDT and NN2GBDT ) are initial-
ized with the manually-designed inverse transformation on position
bias. However, it is hard to design a good transformation for a posi-
tion feature, and the manual design usually leads to suboptimal ac-
curacy. As a comparison, in boosting approach (NN +GBDT and
LR+GBDT ), the transformation on position feature is automati-
cally learned. For instance, in neutral net (shown in Figure 2), the
weight of position feature to the hidden unit and the weight of that
hidden unit to output can be learned together with other weights
of the statistic feature during training. NN +GBDT is better than
LR+GBDT because NN is considered better than LR.
Boosting is better than cascading. Most features in our setting
are statistic features, they are updated frequently with dynamically
changed value, e.g., for same < query,ad > pair, the feature values
are dynamic with different values at different time interval. There-
fore, there might be a split-point shift issue that the split point
learned at one day may not suitable for some days later. In cas-
cading ensembles (NN2GBDT and LR2GBDT ), the split points in
the first tree are learned from scratch and the split points of the
same feature may vary significantly. As a comparison, in boosting



Models Position=ML1 Position=ALL DescriptionAUC Gain RIG Gain AUC Gain RIG Gain
NN 0.00% 0.00% 0.00% 0.00% NN with 1 hidden layer and 30 hidden units (baseline model)
LR -1.97% -16.14% -1.46% -10.01% LR with normalized position bias
LR V2 -1.81% -10.68% -0.91% -5.13% LR with inversed position bias
GBDT2LR 0.06% -0.17% 0.05% 0.44% Cascade leaf index in GBDT as categorical feature to LR (used in Facebook [14])
LR+GBDT 0.12% -1.87% -0.33% -1.93% Boost LR with GBDT (used in Yandex [25])
LR2GBDT V2 0.13% -0.14% 0.03% 0.67% Cascade LR with inversed position bias to GBDT
GBDT 0.14% 0.36% 0.03% 0.91% GBDT initialized with inversed position bias
LR2GBDT 0.14% -0.27% 0.01% 0.50% Cascade LR with normalized position bias to GBDT
GBDT2NN 0.16% 1.29% 0.04% 1.32% Cascade GBDT to NN
LR+GBDT V2 0.24% 1.36% 0.07% 1.04% Boost LR (inversed position bias) with GBDT
NN2GBDT 0.25% 0.15% 0.08% 0.72% Cascade NN to GBDT
GBDT+DNN 0.25% 1.33% 0.15% 1.52% Average NN and GBDT
NN+GBDT 0.40% 2.81% 0.15% 1.30% Boost NN with GBDT

Table 1: Comparisons among different model ensembles. The result is ordered by the AUC gain at ML1. NN+GBDT turns to be the best, and
we can see the RIG is generally consistent with the AUC.

mode (NN +GBDT and LR+GBDT ), the split point shift issue is
much less serious than cascading, since the GBDT starts from the
result of NN and LR and just focuses on fitting the residual. We
observe this issue at A/B testing when experimenting NN +GBDT
and GBDT 2LR where NN is the baseline. During the entire 7
weeks, NN+GBDT and NN show stable and consistent prediction
error, while the average click probability of GBDT 2LR is unstable
and drops significantly.

5. TRAINING OPTIMIZATIONS
The next challenge is to optimize the performance and accuracy

in offline training. The detailed specific design and implementation
is beyond the scope of this paper. In this section, we will share
several accuracy-critical factors and optimizations that have proven
effective for GBDT and DNN, respectively.

5.1 Hyper-parameter tuning in GBDT
Data size and tree number. We first show that the accuracy of
GBDT improves as we increase the training data and number of
trees, as shown in Figure 4. It is shown in the Figure 4a that as
training data increases from 30M samples to 500M samples, AUC
improves from 0.40% to 0.49%, and the RIG improves from 2.8%
to 3.6%. We then fix the training data with 30M samples to evaluate
the impacts of tree number. Figure 4b depicts that AUC improves
from 0.29% to 0.52% and RIG improves from 2.1% to 3.2% when
the number of trees increases from 100 to 2,400. RIG starts to
degrade and AUC is saturated when tree number exceeds 2,000,
which may be due to over-fitting. Note that accuracy gain can also
been increased as we increase the number of leaf nodes (less than
400) in a single tree. This accuracy improvement is continuous
but becomes smaller until over-fitting as we add more trees. We
envision that more trees are required given more training data.
Bin Number and Feature Sampling. The feature value is first pre-
binned [4] to reduce the number of split candidates, thus smaller
bins lead to faster training. However, the number of bins would af-
fect the final prediction accuracy. Figure 5a illustrates that 64 bins
has the best accuracy and 16 bins has the worst accuracy, further
increasing the bins does not improve the accuracy but with a little
bit loss. We also perform stochastic boosting that randomly sam-
ples some features (or samples) to fit a tree. Figure 5b shows that
we can get the best accuracy with 60% sample rate, this roughly
means that we can nearly save 40% of training time 6.
6The saving depends on the specific training implementation.

Shrinkage Rate. The accuracy also depends on the proper hyper-
parameter such as shrinkage rate. Shrinkage is a kind of tree regu-
larization. The impacts on accuracy on ML1 position with different
shrinkage (η) are shown in Figure 6. For the small training set with
27M samples (Figure 6a), there is little AUC difference for different
shrinkage when tree number is less than 300. However, when the
tree number increases from 300 to 2,400, the testing AUC decreases
as we increase the shrinkage. As a comparison for the large train-
ing set with 470M samples (Figure 6b), AUC makes continuous
improvements for large shrinkage as we increase the tree number.
This indicates that a large training set can afford a larger shrinkage.
One possible reason is that a large amount of shrinkage for small
training data tends to cause over-fitting.

5.2 Accuracy Tuning for GBDT
Second Order Gradient. Inspired by XGBoost [4], we use second
order Taylor expansion to approximate the loss function. Accord-
ingly, the split gains and leaf scores are computed by considering
the second order gradient. The difference on the split gain com-
puting is shown in Table 2, where g(xi) = ∂ ft−1(xi)`(yi, f (xi)) and
h(xi) = ∂ 2

ft−1(xi)
`(yi, f (xi)) are the first and second-order gradient

on the loss function. For logloss, this second-order gradient based
algorithm makes the model converge faster since the splitting gain
calculation aims to reduce the global loss directly, rather than re-
duce the local loss of current tree that fits the pseudo residual (i.e.,
gradient). Figure 7 depicts the effectiveness of second-order gra-
dient based training. Compared with the first-order method, AUC
gain improves up to 0.05%. This will increase the training time by
20%-30%, since it introduces more computation in the split gain
calculation.

Method Split-Gain Calculation

first-order gains =
(∑xi≤s g(xi))

2

∑xi≤s 1 +
(∑xi>s g(xi))

2

∑xi>s 1 − (∑parent g(xi))
2

∑parent 1

second-order gains =
(∑xi≤s g(xi))

2

∑xi≤s h(xi)
+

(∑xi>s g(xi))
2

∑xi>s h(xi)
− (∑parent g(xi))

2

∑parent h(xi)

Table 2: Second-order gradient based split gain computation.

Negative Down-Sampling. A full day of Bing ads impression data
can contain a huge amount of instances. On the one hand, more
samples would achieve a better model. On the other hand, more
samples will slowdown the training. Negative down-sampling [14],
that keeps all positive (clicked) instances while performing uniform
down-sampling for negative instances, has proven to be an effec-
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Figure 4: GBDT accuracy is improved by increasing the size of
training data and the number of trees.

tive in speeding up the training. We re-weight the sample rather
than re-calibrate the model [14] to ensure the same average CTR
after down-sampling. For instance, the negative samples are re-
weighted by 2 if the down-sampling rate is 50%. Experiments
show that 50% sampling can save almost half the training time
while the metrics are almost neutral (-0.01%/+0.02% AUC/RIG for
ML1 position). Standard down-sampling does not consider the in-
herent imbalance in domains such as position. For instance, as-
sume there are 40 positive and 60 negative samples at ML1 posi-
tion, and 10 positive and 90 negative samples at ML4, after 50%
down-sampling, the negative number becomes 30 and 45 at ML1
and ML4, respectively. Compared with the corresponding pos-
itive number, there are too few negative samples at ML1 while
there are too many at ML4. In other words, the different posi-
tions should have different down-sampling rates. We have actu-
ally evaluated other sampling strategies that keep all positive/neg-
ative cases for clicked SRPV, and for non-clicked SRPV we ei-
ther do uniform down-sampling, SRPV-wise down-sampling

or position-wise down-sampling. The comparison among 4
different down-sampling methods against 120M data (after 50%
down-sampling) indicates that position-wise negative down-sampling
achieves the best accuracy.
Local Case-Control Sampling. We also evaluate the local case-
control (LCC) [27] sampling that does down-sampling for both
positive and negative instances. The sampling is different for dif-
ferent instances. Specifically, whether or not a sample is added
depends on the absolute prediction error from a pilot model (p(x)
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Figure 5: Impacts of hyper-parameter.

as below) which is trained on a small subset.

a(x,y) = |y− p(x)|=

{
1− p(x) y=1,
p(x) y=0.

(12)

After LCC sampling, the ratio of instances, which have been learned
well in NN as a pilot model, will drop and the ratio of poor learned
cases will increase. GBDT then focuses more on these poorly
learned cases with LCC sampling. Table 3 depicts the evalua-
tion effectiveness of LCC sampling. It is shown that NN+GBDT with
LCC sampling can further improve accuracy with 0.06% AUC gain
and 0.23% RIG gain. When we look into the breakdown metric, we
can see that most gain comes from tail traffic (0.22% AUC gain and
1.64% RIG gain), which are poorly learned part in the pilot model.
There is even slight loss at head traffic (-0.03% AUC loss and -
0.19% RIG loss), probably because the head traffic is significant
reduced in the sampled data. In our experiments, this method re-
moves 40%-80% training data depending on the original data set,
significantly reducing training cost.

Position=ALL Position=ML1
AUC Gain RIG Gain AUC Gain RIG Gain

lcc-sampling 0.04% 1.63% 0.06% 0.23%
Table 3: Offline metrics for lcc-sampling.

5.3 Hyper-parameter tuning in DNN
Hidden Layers and Neuron Number. We have also evaluated the
accuracy by adding more hidden layers and units. Figure 8a depicts
the results of NN +GBDT when the NN has a different number
of hidden units, and the evaluation on different hidden layers are
shown in Figure 8b. The results are relative to the baseline NN



0 500 1000 1500 2000 2500
Number of Trees

-1.5%

-1.0%

-0.5%

0.0%

0.5%

A
U

C
 G

a
in

η=0.05

η=0.1

η=0.2

η=0.3

η=0.4

(a)

0 500 1000 1500 2000 2500
Number of Trees

0.0%

0.2%

0.4%

0.6%

0.8%

A
U

C
 G

a
in

η=0.05

η=0.1

η=0.2

η=0.3

η=0.4

(b)
Figure 6: Impacts of learning rate on 27M training data (a), 470M
training data (b).

model with 30 hidden units. We can see that an increase in the
complexity of DNN will have marginal gain, e.g., with only 0.02%
extra gain when increase the units from 30 to 90. However, the
AUC will not improve as we further increase the unit number, with
even AUC and RIG loss when the unit number is 270. Similarly,
if each hidden layer has 30 units, adding more hidden layers does
not help and even cause loss; if each hidden layer has 120 units, 3
hidden layers is better than 2 hidden layers, but, adding more layers
only brings marginal gain until it gets saturated.

6. RELATED WORK
Sponsored search advertising relies heavily on the accurate, scal-

able and quick prediction of ad click-through rates. Click predic-
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Figure 8: Impacts of different DNN layers and units.

tion has received much attention from both industry and academia [10,
16]. The majority of large scale models in industry make use of lo-
gistic regression [21, 22, 14] for its scalability and online learning
capability. Google [21] trains LR using an FTRL-Proximal online
learning algorithm in order to increase model sparsity and mem-
ory saving. Microsoft [13] develops a Bayesian online learning
algorithm for sponsored search advertising in Bing Search Engine.
Yahoo Criteo [3] uses Bayesian logistic regression with hashing
one-hot encoding features to predict clicks for advertising. The
model updates with a new batch of data by leveraging the posterior
distribution of a previously trained model as the prior for the new
model. Facebook [14] combines decision trees with logistic regres-
sion. Decision trees transform each sample into the 1-of-K coding
of the index of the leaf it ends up falling in each tree.

Another trend of models for predicting click-through rate fo-
cuses on neural networks in order to improve the accuracy. Most
of these works [29, 23] focus on engineering the transformation of
raw features. [29] deploys factorization machines, or a sampling-
based restricted Boltzmann machine or denoising autoencoder as
the bottom layer of a deep neural framework in order to reduce
dimensions from one-hot sparse features to dense continuous fea-
tures. The deep crossing model [23] uses a single layer of the neural
network as the embedding layer for each individual feature in order
to avoid handcrafting combinatorial features. The output embed-
ding is then concatenated as the input to a residual network. Deep-
Intent [28] uses RNNs to model the word sequence in queries and
ads. On top of RNN, they propose attention based pooling to rep-
resent a sequence by a weighted sum of the vector representations
of all time steps. The work [30] leverages the temporal dependency
in user’s behavior sequence through RNNs. However, these deep
neural networks have marginal gains in real production. This is



why we adopt a shallow neural network empowered by boosting
tree ensembles to capture efficiency and accuracy.

7. CONCLUSION AND FUTURE WORK
In this paper, we share our experience on designing and opti-

mizing the model ensembles to improve ads CTR prediction in
Microsoft Bing Ads. The ensemble that boosts NN with the GBDT
turns out to be the best in our setting. We also share the experi-
ence in accelerating the training performance and improving the
training accuracy. We believe the model ensemble is a promising
direction; meanwhile, as indicated by position feature, the domain
knowledge is also indispensable in the ensemble design. In the fu-
ture, we will experiment different feature separation and different
ensemble designs to push the limit of accuracy, e.g., we will ex-
periment different DNN architectures such as the RNNs as well as
different learning algorithms.
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