
Leveraging Re-costing for Online Optimization of
Parameterized Queries with Guarantees

Anshuman Dutt
Microsoft Research

andut@microsoft.com

Vivek Narasayya
Microsoft Research

viveknar@microsoft.com

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

ABSTRACT
Parametric query optimization (PQO) deals with the prob-
lem of finding and reusing a relatively small number of plans
that can achieve good plan quality across multiple instances
of a parameterized query. An ideal solution to PQO would
process query instances online and ensure (a) tight, bounded
cost sub-optimality for each instance, (b) low optimization
overheads, and (c) only a small number of plans need to be
stored. Existing solutions to online PQO however, fall short
on at least one of the above metrics. We propose a plan re-
costing based approach that enables us to perform well on
all three metrics. We empirically show the effectiveness of
our technique on industry benchmark and real-world query
workloads with our modified version of the Microsoft SQL
Server query optimizer.

Keywords
Parameterized Queries; Online; Workload; Cost sub-optimality

1. INTRODUCTION
Applications often interact with relational database sys-

tems through parameterized queries, where the same SQL
statement is executed repeatedly with different parameter
instantiations. One approach for processing parameterized
queries is to optimize each query instance, thereby generat-
ing the best plan for that instance (referred to as Optimize-
Always). However, the drawback of this approach is that
it can incur significant optimizer overheads, particularly for
frequently executing or relatively inexpensive queries. An-
other simple approach, that is commonly used in today’s
commercial database systems [22, 25], is to optimize the
query for only one instance (e.g. the first query instance or
an application specified instance), and reuse the resulting
plan for all other instances (referred to as Optimize-Once).
While the latter approach greatly reduces optimization over-
heads, the chosen plan may be arbitrarily sub-optimal for
other query instances. Furthermore there is no way to quan-
tify the sub-optimality resulting from Optimize-Once.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’17, May 14-19, 2017, Chicago, IL, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3064040

Parametric query optimization (PQO) techniques approach
this problem by attempting to find a middle-ground between
Optimize-Always and Optimize-Once. They store a small set
of carefully chosen execution plans for a parameterized query
rather than only one as in Optimize-Once. When a new query
instance arrives they judiciously select one of these plans to
use such that the cost of the selected plan is not much worse
when compared to the cost of the plan if that query instance
had been optimized (as in Optimize-Always). Online tech-
niques for PQO such as [4, 2, 17] make decisions progressively
– as each new query instance arrives – on which stored plan
to use for that instance (or to optimize the instance), and
whether to update the set of plans stored.

The effectiveness of any online solution to PQO can be
measured using three metrics: (a) cost sub-optimality : cost
of the selected plan relative to the cost of the optimal plan
for each query instance, (b) optimization overheads: fraction
of query instances that are optimized, (c) number of plans
stored. An ideal online PQO solution would guarantee a
tight bound on cost sub-optimality, optimize only a small
fraction of query instances, and store only a few plans.

Existing online approaches to PQO fall short on one or
more of the above three metrics. Specifically, the only prior
online approach that guarantees bounded cost sub-optimality
is PCM [4]. To provide this guarantee, it assumes that the
cost of a plan increases monotonically with selectivity. The
drawbacks of the PCM technique are that it optimizes a large
fraction of query instances and requires a large number of
plans to be stored. In contrast, heuristic approaches to on-
line PQO such as [4, 2, 17] are successful in significantly
lowering the optimization overhead. However, they are sus-
ceptible to incur unbounded cost sub-optimality, and require
a large number of plans to be stored.

We propose a new technique for online PQO that, given
a bound on cost sub-optimality that can be tolerated, effec-
tively addresses all three metrics above, based on the follow-
ing key ideas.

Selectivity check: Our first contribution is a check that
can determine if the optimal plan for a previously optimized
instance qa can also be used for a new instance qb, while
guaranteeing that its cost sub-optimality is within the spec-
ified bound. This check is very efficient as it only requires
comparing the selectivities of parameterized predicates of qa
with the corresponding selectivities of qb. Its soundness is
based on a conservative assumption on how rapidly the cost
of a plan changes with selectivity. We will explain why this
assumption is realistic for most relational operators. If the

selectivity check is successful, we can reuse a stored plan
for qb and thereby reduce optimization overheads (since we
avoid an optimizer call).

Cost check: For query instances where the selectivity check
fails, we invoke a cost check that relies on a new Recost API
that we have implemented in the database engine. We use
this API to compute the cost of using the optimal plan as-
sociated with an already optimized instance qa, for a new
query instance qb. Using this cost, and the selectivities of qa
and qb, the cost check determines whether the optimal plan
for qa can be used for qb while still guaranteeing the same
bound on plan cost sub-optimality. Although the Recost
API is more expensive than a selectivity check, it is much
faster than the traditional optimizer call (up to two orders of
magnitude in our implementation). Hence, if the cost check
passes, we still achieve significant reduction in optimization
overheads. In practice, many query instances that fail the
selectivity check typically pass the cost check, and can there-
fore still use a stored plan with bounded cost sub-optimality.

Redundancy check: This check applies when both the
above checks fail. In this case we need to optimize the new
query instance qb. If this optimization results in a new plan,
we first check whether it is redundant with respect to the
existing stored plans, i.e., whether one of the stored plans
could ensure bounded cost sub-optimality for qb. Otherwise,
this plan is added to the set of stored plans. Thus, only non-
redundant plans are stored, thereby reducing the memory
required. This check also leverages the Recost API.

We refer to our technique as SCR for its characteristics of
exploiting three checks: Selectivity check, Cost check and
Redundancy check. Finally, we note that our technique can
also guarantee an upper limit on number of stored plans
without compromising guarantees on cost sub-optimality.
Although limiting the number of stored plans increases opti-
mization overheads, we empirically observe that this increase
is not significant for practical settings.

We have implemented our techniques in the Microsoft
SQL Server 2016 database engine. Our experiments are con-
ducted on TPC-DS and TPC-H industry benchmark queries
as well as two real-world workloads. We observe that on each
of the three metrics, the SCR technique performs similar or
significantly better than the best existing techniques as dis-
cussed in Section 7. The following are some of the empirical
conclusions from our evaluation:

• Cost sub-optimality: In terms of average cost sub-
optimality across instances of a given query, the perfor-
mance of SCR is typically much better than PCM, while
all heuristic techniques perform much worse. For instance,
when configured to guarantee a maximum sub-optimality
of 2, SCR achieves 95th percentile value of 1.22 as com-
pared to 1.92 of PCM, and > 6 for even the best heuristic
technique. For lower values of the bound, e.g. 1.1, the
performance for SCR at 95th percentile is quite close at
1.09.
• Optimizer overheads: For optimizer overheads, SCR is

significantly better than PCM and comparable to heuristic
techniques. At the 95th percentile, SCR incurs optimizer
calls for 13.9% of the query instances, which is comparable
to 10.9% for the best heuristic technique – the average is
much better at 3.7% and 3.2%, respectively. In contrast,
for PCM, even the average overheads are >30%.

• Number of plans: SCR is significantly better than all
previous techniques. The 95th percentile values are 15 for
SCR in our experiments, 93 for the best heuristic technique
and 219 for PCM.

The rest of the paper is organized as follows. We formal-
ize the online PQO problem in Section 2. In Section 3, we
discuss the limitations of existing online PQO techniques
and show a glimpse of SCR performance, using an example
query sequence. We present a solution overview in Section 4
and our technical results and algorithms in Sections 5 and 6.
Section 7 discusses experimental results. We provide a de-
tailed comparison of related work in Section 8 and conclude
in Section 9.

2. PROBLEM DESCRIPTION
Given a parameterized query (a.k.a query template) Q, we

use the term dimensions for the number of parameterized
predicates and denote it with d. We use qe to denote an ex-
ample instance of Q and a vector sV ectore for compact rep-
resentation of instance qe that captures corresponding selec-
tivities for the parameterized predicates, e.g. (s1, s2, ..., sd).
Further, for example query instance qe, the optimal plan, as
determined by the query optimizer, is denoted with Popt(qe).
For a given plan P and query instance qe, the optimizer es-
timated cost is denoted with Cost(P , qe). Next, we define
a workload W to be a sequence of query instances for the
query template Q, i.e., W = <q1, q2, ..., >. Finally, let P
denote the set of all plans that are optimal for at least one
query instance in W , and n denote the cardinality of P.

Online PQO setting. An online PQO technique needs to
decide which plan to use for each incoming query instance in
an online fashion. It does so by storing a set of plans in a plan
cache and then deciding whether to pick one of the cached
plans or make an optimizer call. This is usually done by
associating each plan with a inference region, i.e., selectivity
region where it can be reused. At any intermediate state, we
denote the query instance currently being processed with qc
and the set of previously processed instances with Wpast.

2.1 Metrics
We consider following set of metrics for comparison and

performance evaluation of online PQO techniques,

1. Cost sub-optimality. For query instance qe, let P(qe)
denote the plan used by the online technique. Then sub-
optimality for qe is defined as

SO(qe) =

(
Cost(P(qe), qe)

Cost(Popt(qe), qe)

)
Any plan P , for which 1 < SO(qe) ≤ λ, is termed as λ-
optimal plan for qe. Further, we measure the worst case
sub-optimality across the workload sequence using MSO
defined as follows:

MSO = max
qe∈W

(SO(qe))

Since MSO captures only worst case performance and
does not reflect whether such cases are frequent or rare,
we also measure aggregate performance of the technique
over the given workload using TotalCostRatio defined as:

TotalCostRatio =

∑
qe∈W

Cost(P(qe), qe)∑
qe∈W

Cost(Popt(qe), qe)

Observe that TotalCostRatio falls in the range [1,MSO],
and lower values indicate better performance.

2. Optimization overheads. We use numOpt to denote
the number of optimizer calls made across the workload.
We also consider the average overhead for picking a plan
from the cache, whenever the optimizer is not invoked.

3. Number of plans cached. We denote the maximum
number of plans stored in the plan cache with numPlans.
We also consider other bookkeeping memory overheads
required to maintain a set of plans and support the deci-
sion of plan picking for a new query instance.

For the purpose of evaluation, we generate fixed length
workloads, such that |W | = m, in which case numPlans ≤
numOpt ≤ m. Also, we use only optimizer estimated costs
in our evaluation since the execution times may suffer high
variability in dynamic execution environments (system load,
concurrency, available memory etc.), which is an orthogonal
problem.

Optimize-Always and Optimize-Once are alternative tech-
niques that presume extreme settings, i.e., numPlans =0 and
numOpt =1, respectively but may be highly wasteful or sub-
optimal otherwise. The existing online PQO techniques try
to minimize numOpt, either while guaranteeing an upper
bound on the MSO (PCM [4]), or with no bound on MSO
at all (Ellipse [4], Density [2], Ranges [17]1). Also, none
of the existing techniques supports a limit on numPlans, an
important metric in practice.

2.2 Problem definition
In this work, we focus on designing an online PQO tech-

nique that aims to minimize optimizer overheads while en-
suring that every processed query instance q satisfies SO(q)
≤ λ, where λ ≥ 1 is an input parameter.2

We also study a variant of the above problem with an
additional constraint that the number of plans stored in the
plan cache cannot exceed k ≥ 1.

3. EXISTING TECHNIQUES
Previous techniques for online PQO have been successful

to various degrees in terms of reducing optimizer calls. We
first provide a summary of their plan inferencing criteria in
Table 1. Then, we discuss a few shortcomings of these tech-
niques with regard to the three metrics of Section 2.1 using
the example workload shown in Figure 1. This workload con-
sists of 13 query instances which are marked in the figure as
i[j], where i represents ith query instance qi and j denotes
jth plan Pj which is optimal plan for qi, i.e., Popt(qi). The
comparative performance of all existing techniques including
a glimpse of proposed technique SCR, is visually captured in
Figure 1 (except for Density which is self explanatory).

• Limitations affecting optimizer overhead: For all
existing techniques, the reuse of a stored plan P is possi-
ble only after workload has provided two or more instances

1We refer to this technique as Ranges as it stores a plan
with a selectivity range around the corresponding optimized
instance and reuses the plan whenever any new instance falls
within the selectivity range.
2This goal is identical to PCM [4].

PCM The current query instance qc lies in a rectangular re-
gion created by a pair of previously optimized query
instances such that one dominates the other in the selec-
tivity space and their optimal costs are within λ-factor

Ellipse qc lies in an elliptical neighborhood of a pair of previ-
ously optimized instances with the same optimal plan

Ranges qc lies in a rectangular neighborhood enclosed by a min-
imum bounding rectangle for all previously optimized
instances with the same optimal plan

Density qc has sufficient number of instances with the same op-
timal plan choice in a circular neighborhood

Table 1: Criteria that must be satisfied by existing online
techniques to skip optimizer call for a new query instance qc

Figure 1: Inference regions for various techniques while pro-
cessing example workload for a 2-dimensional query

that satisfy certain pre-conditions (Table 1). Such restric-
tions may prevent reuse of a suitable plan that already
exists in plan cache. For instance, PCM or Density cannot
make any inference using plan P1 even after it was known
to be optimal for many instances (q1, q3, q5, etc.).
• Limitations affecting cost sub-optimality: All plan

inference techniques that use selectivity-based neighbor-
hoods can seriously compromise MSO, since they do not
take into account the cost behavior of the inferred plan
or optimal plan – as explained in Appendix A. In the ex-
ample workload, while the elliptical region around q1 and
q5 provides optimal plans for q10 and q12, it also results
in a sub-optimal plan (P1) for q13. Similarly for Ranges,
the rectangular neighborhood for plan P1 containing in-
stances q1, q5 and q6 provides an optimal plan for q10 and
q12 but also leads to selection of sub-optimal plan (P1) for
q7. Further, the absence of any mechanism to detect sub-
optimality of inferred plan choices, may lead to repeated
mistakes in plan inferences and hence high values of Total-
CostRatio. For example, any instance close to q7 would be

assigned plan P1 by Ranges. Finally, Density would also
wrongly assign P1 to q13.
• Limitations affecting number of plans required:

Existing techniques mostly use trivial policies for man-
aging the plan cache, e.g. store every new plan and never
drop a plan. As a result, they are prone to storing a large
number of plans. For example, the techniques in [4] were
found to store hundreds of plans (for d ≥ 3). Note that,
the example workload does not highlight this limitation
of existing techniques (all technique store 4 plans).

Overall, none of the existing techniques provide the abil-
ity to control cost sub-optimality and number of plans while
also achieving significant reduction in optimizer overheads.

Performance of SCR: In comparison to existing techniques,
SCR invokes optimizer calls for only 6 instances while PCM
required 12 and best heuristic technique required 8 opti-
mizer calls. For every optimized instance qi in Figure 1,
the surrounding region (smaller region with dark boundary)
represents the set of all possible instances that can satisfy
the selectivity check with respect to qi and is termed as in-
ference region due to selectivity check.3 Similarly, for some
instance (q1 and q7) we highlight the inference region due
to cost check (shaded without boundary). For q4 and q11, it
infers plan P2 since they satisfy the selectivity check for q2

and hence avoids optimizer calls. The plans for q10 and q13

are also inferred due to the selectivity check. Further, plan
P1 is chosen for q3 because the cost check with q1 succeeds
even though selectivity check fails. Likewise, plans for q8

and q12 are inferred due to the cost check. In short, SCR
saves significantly more optimizer calls than PCM and does
not pick sub-optimal plans like the heuristic techniques.

4. SOLUTION OVERVIEW
We now present an overview of the architecture and mod-

ules in our solution to the online PQO problem. We also
discuss the requirements that a database engine needs to
satisfy for effective implementation of our solution. We fol-
low the same basic framework as first proposed in [4], but
with important extensions as described next.

4.1 Architecture
The architecture of our solution is shown in Figure 2. At

any intermediate stage, the plan cache stores a set of plans
and extra information to capture their inference regions –
we denote the set of plans with PC .

When a new query instance qc arrives, the first step is
to compute its selectivity vector (sV ectorc) which is then
passed to the getPlan module. This modules interacts with
the plan cache and makes the decision to optimize or not for
qc. Let P(qc) denotes the plan chosen for qc. getPlan tries
to find the plan P(qc) from the plan cache failing which
an optimizer call is made to obtain the optimal plan for
qc. Note that getPlan occurs on the critical path of query
execution, and must therefore be efficient.

If qc is optimized, then we get the plan Popt(qc), which is
then fed to the manageCache module. This module makes
the following decisions regarding the state of plan cache: (a)
If Popt(qc) is found to already exist in plan cache, then how

3Note that, the regions due to selectivity check have a spe-
cific geometrical shape, which is explained in Section 5.

to modify its inference region. (b) If Popt(qc) is not found
in the plan cache, then whether to store or not. (c) For
each of the existing plans in plan cache, drop or not. Since
manageCache does not need to occur on the critical path of
query execution, it can be implemented asynchronously on
a background thread.

Figure 2: SCR architecture

4.2 Requirements from the database engine
To support implementation of proposed solution technique,

the database engine needs to support following two APIs in
addition to the traditional optimizer call.

1. Compute selectivity vector: Given a query instance
qc, efficiently compute and return sV ectorc.

2. Recost plan: Given a plan P and a query instance qc,
efficiently compute and return Cost(P , qc).

Note that the selectivity vector is a generic requirement
across all existing online PQO techniques [17, 4, 2], and even
Recost has been used in previous offline PQO techniques [14,
9]. It is however critical that in our case that the Recost
API is much more efficient compared to an optimizer call.
An implementation outline of both routines for Microsoft
SQL Server can be found in the Appendix B.

4.3 Outline for getPlan and manageCache

getPlan module. Our technique utilizes a two step check to
make the decision optimize or not for new instance qc. The
first check, called the Selectivity check, takes two sV ectors
for qe, qc and the sub-optimality requirement λ as input
and returns true only if plan Popt(qe) can be inferred to
be λ-optimal at qc, purely on the basis of sV ectors and
an assumption on plan cost functions – the details of this
check are provided in Sections 5.3 and 6.2. Only when this
check fails, the Cost check is invoked. The Recost feature
is used to compute the cost of one or more stored plans for
query instance qc to check whether one of these plans can
be inferred to be λ-optimal for qc. If both checks fail to
identify a plan, an optimization call is made for qc.

Figure 3: Neighboring instances of q0 with assumption specific bounds on cost of P in terms of C (cost of P at q0)

manageCache module. If the optimization of qc results in a
plan that already exists in the plan cache, we modify its in-
ference region to include qc. Even if the plan is not present in
the plan cache, it is possible that one of the existing plans is
λ-optimal for qc as both checks in getPlan are conservative.
In such a case, we consider the new plan to be redundant
and discard it from the cache. Instead, we modify the in-
ference region of the existing λ-optimal plan. Otherwise, we
add the new plan Popt(qc) to the cache.

Discussion We note that any online PQO technique would
benefit a query workload only if the query optimization over-
heads are not trivial compared to the execution time [11].
For instance, a query for which the average execution time
is ≈ 30 sec against average optimization time of only 50
msec, would not get any noticeable benefit. In contrast, a
different query that has an average optimization time of 350
msec against average execution time 200 msec, can achieve
significant benefits using online PQO.

5. DESIGN OF getPlan MODULE
We first describe our approach to decide if a plan that al-

ready exists in the plan cache can be reused for a new query
instance while guaranteeing λ-optimality. This forms the ba-
sis of inferring λ-optimality regions around each optimized
instance and leads to the construction of selectivity and cost
checks of the getPlan module. The λ-optimality guarantee is
based on the assumption of bounded cost growth for plans,
whose validity we examine for typical physical operators in
a relational database system.

5.1 Plan reuse approach
When a query instance qe is optimized, we get plan Popt(qe).

The sub-optimality of Popt(qe) when used for another query
instance qc is given by:

SubOpt(Popt(qe), qc) =
Cost(Popt(qe), qc)

Cost(Popt(qc), qc)
(1)

The challenge is that computing exact value of sub-optimality
is not possible without making optimizer call for qc, which
would defeat the very purpose of plan reuse.

Our approach is to infer an upper bound on the value of
SubOpt(Popt(qe), qc) by utilizing an upper bound on the
cost of the numerator and a lower bound on the cost of the
denominator. We show in Section 5.2, that such cost bounds

can be computed by using the selectivity ratio’s between qe
and qc under bounded cost growth assumption on plan cost
functions.

We also exploit the fact that the above sub-optimality
bound can be further tightened if we can obtain the exact
value of numerator. Interestingly, computing the numerator
requires only re-costing of plan Popt(qe) for query instance
qc, which, in our implementation is up to two order of mag-
nitude faster than an optimizer call.

Finally, the above plan reuse approach is not restricted
only to the optimal plan for qe, and can be utilized for any
generic plan P as long as its sub-optimality at qe is known.
We exploit this property (in manageCache) to retain only a
subset of optimal plans without violating λ-optimality.

5.2 Bounded cost growth (BCG) assumption
Our assumption on plan cost functions can be viewed as an

extension of the Plan Cost Monotonicity (PCM) assumption
that has been used in past work [4].4

Consider a plan P whose cost at query instance q0 =
(s1, s2) of a 2-dimensional query is C. Also consider query in-
stances q1 = (α1s1, s2) and q2 = (s1, α2s2), with α1, α2 > 1.
A visual representation of such instances is provided in Fig-
ure 3a. Note that, we use 2-dimensional query template for
the sake of presentation and the arguments can be general-
ized for n-dimensions in a straightforward manner.

PCM assumption: This assumption intuitively means that
the cost of a plan increases with increase in each individual
selectivity, i.e., (a) Cost(P , q1) > C, (b) Cost(P , q2) > C.
Thus, it provides a lower bound on cost of P at q1 and q2.

BCG assumption: This is an extension to PCM assumption
where it is also assumed that for every individual selectivity
dimension, if the selectivity value increases by a factor α,
the resulting increase in cost of P is upper bounded by a
known function of α. That is,
(a) C < Cost(P , q1) < f1(α1)C
(b) C < Cost(P , q2) < f2(α2)C

4Also, similar to past work on PQO problem, we continue
to assume the following: (a) plan cost functions are smooth,
(b) other factors that may influence plan costs, e.g. join-
selectivities, main memory etc., remain the same across all
query instances and (c) selectivity independence between
base predicates.

where both f1 and f2 are increasing functions defined over
the domain (1, ∞). Similar assumption has also been used
previously in [16, 20] in different contexts. We present ar-
guments for our choice of fi’s in Section 5.4.

5.2.1 Cost implications for neighboring instances
We analyse the cost implications of PCM and BCG as-

sumptions on query instances q3 through q8, whose selectiv-
ity vectors are shown in Figure 3a.

For q3 = (α1s1, α2s2), PCM assumption implies cost lower
bound, i.e., Cost(P , q3) > C, while successive application of
BCG assumption implies both lower and upper bounds on
cost of P , i.e., C < Cost(P , q3) < f1(α1)f2(α2)C.

For q5 = (s1
α1
, s2), PCM provides an upper bound on the

cost of P by considering q5 as the reference for q0, that
is, Cost(P , q0) > Cost(P , q5) ⇒ Cost(P , q5) < C. On
the other hand, BCG again provides lower as well as up-
per bounds on cost:

⇒ C

f1(α1)
< Cost(P , q5) < C

The case of q4= (s1
α1
, α2s2) is interesting since selectivity

increases in one dimension and decreases in the other. In
this case, PCM cannot provide any bound on cost of P . In
contrast, BCG still provides both lower and upper bounds
on the cost of P as follows:

Cost(P , q5) < Cost(P , q4) < f2(α2)Cost(P , q5)

We can use the cost bounds for q5 to get,

C

f1(α1)
< Cost(P , q4) < f2(α2)C

In a similar manner, the cost lower and upper bounds for
q6, q7 and q8 can also be inferred using BCG assumption.
All the cost bounds are shown in Figure 3b for PCM and
Figure 3c for BCG.

5.3 Constructing λ-optimal region
Next, we formalize the cost implications of the BCG as-

sumption to define cost and sub-optimality bounds for plan
Popt(qe) for a generic neighboring query instance qc. We
use these bounds to construct λ-optimal region for Popt(qe)
around qe. In this analysis, we follow the assumption fi(α) =
α and examine its validity in the following section.

Consider two query instances qe and qc, let Pe and Pc
denote their optimal plan choices and (α1, α2, ..., αd) be
the vector of selectivity ratios between their sV ectors with

each αi =
si(qc)

si(qe)
. Further, let L =

∏
αi<1

1
αi

, denote the net

cost decrement factor due to selectivity ratios. Similarly, let
G =

∏
αi>1

αi denote the net cost increment factor between

qe and qc. The following lemma gives cost bounds for Pe at
arbitrary instance qc,

Lemma 1 (Cost Bounding Lemma). Under the assump-
tion that the bounding functions are known to be fi(αi)= αi,
Cost(Pe, qc) satisfies the following bounds,

Cost(Pe, qe)

L
< Cost(Pe, qc) < G× Cost(Pe, qe)

Further, following theorem bounds the sub-optimality of
Pe at generic instance qc,

Theorem 1 (Sub-optimality Bound). Under the as-
sumption that the fi(αi)= αi holds for both plans Pe and Pc,
SubOpt(Pe, qc) < GL.

Proof for the above theorem can be found in Appendix C.
Note that similar results can derived for other possible bound-
ing functions, e.g. for fi(α) = α2, we get the following
bound: SubOpt(Pe, qc) < (GL)2.

Improved upper bound on SubOpt(Pe, qc). Next, let R
denote that multiplicative cost factor for plan Pe between

qc and qe, i.e. R =
Cost(Pe, qc)

Cost(Pe, qe)
. R can be easily computed

if qe has been optimized and Pe is re-costed at qc. Since
we now know the exact value of numerator cost in terms
of R (rather than upper bound in terms of G) in the sub-
optimality expression for Pe at qc, the sub-optimality upper
bound tightens to RL.

Figure 4: λ-optimal region for Pe around instance qe

A sample representation of the λ-optimal region around qe
is provided in Figure 4. The inner region is the selectivity
based λ-optimal region that is defined by GL ≤ λ. Geo-
metrically, it is a closed region bounded by straight lines
(y = s2λ

s1
x and y = s2

s1λ
x) and hyperbolic curves (y = s1s2λ

x

and y = s1s2
λx

). Interestingly, its area coverage is given by:

(λ− 1

λ
) lnλ× s1s2, which is an increasing function of λ and

selectivities of qe but independent of the plan choice for qe.
5

Once we know the value of R after using Recost for plan Pe
at qc, we can use RL ≤ λ to detect whether qc lies in Recost
based λ-optimal region of Pe (outer region in Figure 4 with
symbolic shape). Thus, use of Recost helps in identifying
extra opportunities of plan reuse if the cost growth is slower
than that assumed by the selectivity based inference.6

5The area of λ-optimal region remains the same even after
changes to the underlying cost model as long as the cost
growth bounding functions remain the same, i.e., fi(α) = α.
6Note that, the true λ-optimal region of plan Pe around a
given instance qe may be even bigger and our checks capture
only a conservative portion. Also, the same plan Pe may be
optimal at multiple query instances.

5.4 Examining validity of BCG assumption
While BCG promises to provide additional leverage com-

pared to PCM for plan reuse with guarantees, the question
of finding valid bounding functions, that is fi, remains open.
To this end, we first discuss bounding functions for standard
physical operators in relational databases.

First, the cost of a Scan operator increase linearly with
input selectivity. Therefore, if input selectivity is increased
by a factor α, we expect the cost to increase at most by a
factor α. Next, the cost of a Nested Loops Join operator
increases as a function of s1s2 where s1 and s2 represents
the selectivity of the two inputs. We therefore expect that,
if any one of the input’s selectivity increases by a factor α,
then the cost of the operator can go up by at most a factor
α. If the selectivity increases by a factor α for both inputs,
the cost can go up by at most a factor of α2. Thus, assuming
fi(α) = α as the bounding function for each selectivity input
would suffice for these operators. Observe that for a Hash
Join operator, the cost increases as a function of s1 + s2
(grows slowly compared to Nested Loops Join). Hence, the
above bounding function suffices for Hash Join, although the
upper bound thus achieved has different degree of tightness
for Nested Loops Join and Hash Join. In general, for a series
of n binary-joins using the above operators, if selectivity of
each input selectivity increases by a factor α, then total
cost may increase by a factor of at most αn. Also, we can
expect that for any operator that scans each of its input only
once, e.g. union, intersection, and even scalar user-defined
functions, using fi(α) = α should be sufficient.

For operators whose implementation may require sorting
of input, for example, Sort Merge Join, Sort, sorting-based
Group By, the operator cost may vary as s1 log s1 and hence
its cost may increase super-linearly with input selectivity.
Even for such operators, it is possible to choose a polyno-
mial bounding function (of the form αn with n>1) by using
the inequality such as ln x ≤ x−1√

x
with 1 ≤ x ≤ ∞ [19]. For

arbitrary physical operators that fall outside the above set
of standard relational operators, our framework can han-
dle such an operator if an appropriate polynomial bounding
function can be defined.

Finally, we note that, in practice, the cost models of mod-
ern query optimizers can be quite complex. The cost func-
tions may be piece-wise linear, or may even contain disconti-
nuities, e.g. the optimizer might model the transition point
from memory based sort to disk based stored due to limited
memory. Also, there may be other factors that impact the
plan cost, e.g. join selectivities. Despite this, we observed
during our extensive experiments that using fi(αi) = αi as
bounding functions faces only rare violations. The degree
and impact of such violations on MSO and TotalCostRatio
metrics are reported in Section 7.2.

6. IMPLEMENTATION DETAILS

6.1 Plan cache data structure
At any intermediate stage when Wpast has been processed,

let W opt denotes the set of instances optimized till now. The
plan cache contains a plan list and an instance list. The plan
list contains a subset of plans that are optimal across W opt

and instance list contains a 5-tuple I =< V,PP,C, S, U >
for each instance qe in W opt where

1. V denotes the selectivity vector for qe

2. PP is a pointer to plan P(qe) in plan list. It may be
different from Popt(qe) as explained later in Section 6.3

3. C is the optimizer estimated optimal cost for qe
4. S is the sub-optimality P(qe) at qe
5. U is the running count of the number of query instances

for which getPlan picks plan P(qe) through instance qe

Figure 5: Example contents of Plan cache

The instance list contains one entry for each of the op-
timized query instances and typically many instances from
instance list point to the same stored plan in plan list – a
visual representation of the plan cache data structure is pro-
vided in Figure 5. In each entry in the instance list: V , C, S
are required to capture inference region of plan pointed by
PP and hence support getPlan, while S and U are required
by manageCache to support ability to reject new plans and
drop existing plans, respectively.

Overheads discussion. The instance list is a very small
contributor, since: (a) we store an entry only for optimized
query instances, which is usually a small fraction of all in-
stances and (b) the memory required for each 5-tuple is small
(≈100 bytes). In comparison, the memory overheads of plan
list can be much larger since we need to store enough infor-
mation to support execution as well as efficient re-costing
for each stored plan. Our implementation suggests these
overheads to be few hundred KBs per plan. An alternative
implementation of Recost may help in reducing the memory
overheads but may cause increase in its time overheads.

6.2 getPlan implementation
Based on results in Section 5, we now present the specific

implementation for selectivity and cost check to determine
whether one of the existing plans in the plan cache is λ-
optimal for new instance qc. A pseudocode of the entire
getPlan module is given in Algorithm 1.

Selectivity check: This check determines whether qc lies
in the selectivity based λ-optimal region of one of the stored
instance qe. For any given qe from the instance list, we first
compute G and L using sV ectorc and V and then check
whether GL ≤ λ

S
. Note that, the above check allows the

possibility of P(qe) to be sub-optimal with S < λ without
violating the λ-optimality guarantee of getPlan. If P(qe)
is indeed the same as Popt(qe) then the check simplifies to
GL ≤ λ.

Cost check: This check determines whether qc lies in the
re-cost based λ-optimal region around any of the stored in-
stance qe. For this check, we first compute L using sV ectorc
and V . Then, we compute R by using the Recost feature to
compute Cost(P (qe), qc) and dividing it by C, i.e. optimal
cost for qe. With the above, the cost check is RL ≤ λ

S
.

Further, whenever a stored query instance qe succeeds the
selectivity or cost check with new instance qc, the counter U
is increased to keep track of the number of query instances
where the stored instance qe helped in avoiding the opti-
mizer call. Thus, it captures the query instance distribution
which is then leveraged by the manageCache module.

Data: Q, λ, qc, sV ectorc
InstList IQ = getList(Q);
//selectivity check ;
for instance qe in IQ do

G = computeG(sV ectorc, V);
L = computeL(sV ectorc, V);

if GL ≤ λ
S

then
U++ ;
return plan(PP);

end

end
//cost check ;
for instance qe in IQ do

newCost = doRecost(Q, plan(PP), qc);

R = newCost
C

;

L = computeL(sV ectorc, V);

if RL ≤ λ
S

then
U++ ;
return plan(PP);

end
end
return getOptPlan(qc);

Algorithm 1: getPlan algorithm

Overheads discussion. The overheads of getPlan routine
include: (1) sV ector computation, (2) traversal of instance
list during selectivity and cost check, and (3) Recost calls
during the cost check. Empirically, we found that overheads
due to Recost calls dominate the getPlan overheads. A single
invocation of Recost typically requires 2 to 10 milliseconds,
depending on the number of parameters and the memory
representation used for re-costing plans (see Appendix B).
This can easily exceed the overheads of sV ector computation
and scanning a list of few thousand instances.

For this reason, we use the following heuristic to control
the number of Recost calls: instances with large values of
GL are less likely to satisfy the cost check. To implement
this, selectivity check collects potential candidates for cost-
check in increasing order of their GL values and rejects all
instances beyond a threshold. Also, storing instances with
sub-optimality≈1 (with cost-check), will lead to increased
coverage by selectivity regions and save future Recost calls.

Finally, if the number of instances in the list goes beyond
several thousand, overheads of selectivity check may become
comparable to that of sV ector computation. In such cases,
the overheads can also be improved by exploiting similar idea
of checking instances with smaller GL values first. This can
be achieved by using a spatial index that can provide such
instances without scanning the entire list. Also, there are
few other alternative heuristics that may help in improving
average getPlan overheads by only changing the storage of
instance list: (a) decreasing order of area of selectivity region
(a function of V and λ), (b) decreasing order of usage counts
of instances (U).

Choosing λ. To decide a suitable value of λ, we propose
to use Optimize-Always for a small initial subset of query in-

stances and observe the ratio between average optimization
overheads and average execution cost. For example, a query
where optimization overheads are close to 50% compared to
execution cost should use smaller value of λ compared to
another query for which optimization overheads dominate
the execution cost. The mechanism to keep track of this
information is already present in many database engines.

It may also be beneficial to use larger value of λ for cheaper
instances and smaller value for expensive instances of the
same query template. This is because low cost regions typi-
cally have small selectivity regions and high plan density [18].
We explain in Appendix D that our framework can support
such dynamic value of λ and it helps in saving optimizer
overheads as well as plan cache overheads at the expense of
a relatively small increase in TotalCostRatio.

6.3 manageCache implementation
Algorithm 2 gives an outline for the manageCache module.
After Popt(qc) is obtained by invoking the optimizer, the

first step is check whether the new plan is redundant with
respect to existing plans in the cache, as described next.

Redundancy check: We iterate over all plans in the plan
cache to determine the minimum cost plan and its sub-
optimality for query instance qc – let us denote them with
Pmin and Smin, respectively. Next, we check whether Smin ≤
λr, where λr < λ is a configurable threshold for the re-
dundancy check.7 This makes sure that the property of λ-
optimality is maintained even while storing only a subset
of encountered plans. If the above check satisfies, then we
infer that Popt(qc) is redundant with respect to plan cache.
Otherwise, we add the plan to plan cache. In principle, this
inclusion may also help us in discarding existing plans from
cache, as discussed in Appendix F.

Next, we describe the possible actions that can be regis-
tered to be completed by manageCache in an asynchronous
manner, depending on whether the plan already exists in
the plan cache or not, and the result of redundancy check:

1. Plan already exists in plan cache: The following 5-
tuple is added to instance list with a pointer to the plan
Popt(qc) already stored in plan list.

< sV ectorc, pointer(Popt(qc)), Cost(Popt(qc), qc), 1.0, 1 >

2. New plan that failed redundancy check: First Popt(qc)
is added to plan list and then the above 5-tuple is added
to instance list.

3. New plan that passed redundancy check: The new
plan is discarded but the instance list still gets following
5-tuple: < sV ectorc, Pmin, Cost(Popt(qc), qc), Smin, 1 >

6.3.1 Enforcing budget on numPlans

Our solution also supports dropping existing plans from
the plan cache. This may be required in case a plan cache
budget of k plans is enforced. We invoke this routine when
the addition of a new plan violates the budget constraint.

Note that, while dropping an existing plan may help us
in keeping numPlans in control, if not done correctly, it
could result in violation of sub-optimality bound along with
increased optimizer overheads for future query instances.
First, in order to ensure that dropping a plan does not re-
sult in a violation of the bounded sub-optimality guarantee,

7We used λr =
√
λ for reasons explained in Appendix E.

Data: Q, λ, qc, sV ectorc, Popt(qc), Cost(Popt(qc), qc)
//create new 5-tuple Tnew;
Vnew = sV ectorc, Snew = 1.0, Unew = 1;
Pnew = pointer(Popt(qc));
Cnew = Cost(Popt(qc), qc);
InstList IQ = getList(Q);
if Pnew ∈ PC then

//plan already in plan cache ;
Pnew = createPointer(Popt(qc), PC);
add Tnew to IQ ;

else
//plan is new for plan cache;
//use doRecost() to find minimum cost plan in cache;
Pmin = getMinCostPlan(Q, qc, PC);
Cmin = doRecost(Q, Pmin, qc);

Smin = Cmin
Cnew

;

//redundancy check: we used λr =
√
λ;

if Smin ≤ λr then
Pnew = getPointer(Pmin, PC);
Snew = Smin;
add Tnew to IQ ;

else
if |PC | == k then

//drop a plan to enforce plan budget ;
Pr = findMinUsagePlan(PC) ;
remove instances from IQ that point to Pr;
remove Pr from PC ;

end
Pnew = createPointer(Popt(qc), PC);
add Tnew to IQ ;

end
end

Algorithm 2: manageCache algorithm

while dropping plan P , we also remove all instances from
instance list that point to plan P . Second, whenever man-
ageCache is required to drop a plan, it drops the plan with
minimum aggregate usage count, i.e. sum over U values,
across its instances. This heuristic choice is equivalent to
least frequently used (LFU) policy and is expected to per-
form well in the cases when future workload has the same
query instance distribution as Wpast.

7. EXPERIMENTAL EVALUATION

7.1 Databases and Workloads
We have used 90 parameterized queries over two industry

benchmarks TPC-H (using data generator with skew [23]),
TPC-DS, and two real world databases RD1 (98 GB), RD2

(780 GB) to evaluate and compare our proposed solution
against various online PQO techniques. Specifically, RD2

allowed us to create high dimensional query templates (d ≥
5). For a large fraction of our parameterized queries, op-
timization overheads are significant compared to execution
overheads, making them good candidates for online PQO
evaluation. For instance, Q18 from TPC-DS had instances
with both optimization and execution overheads close to
500 msec each. In particular, the real world databases sup-
port queries that are often multi-block statements with large
number of relations causing large optimization times. Over-
all, the optimization overheads of queries on real datasets
varied between 0.5 sec to 5 sec, which was often a signifi-
cant fraction of or even greater than execution times. While
our evaluation also include query templates for which opti-
mization overheads were trivially small, they serve to com-

pare the ability and quality of plan inferencing for various
techniques.

Workload query instance generation. A workload sequence
can be challenging and interesting for evaluating online PQO
techniques if it contains instances with (a) widely varying se-
lectivities (b) large number of parameters (c) large number
of distinct optimal plan choices and (d) potential for plan
reuse across instances. To generate workloads with above
properties, (a) we modify queries by adding extra one-sided
range predicates, i.e. coli < vali or coli > vali, that can
support fine grained control large selectivity ranges; (b) we

create query templates with up to 10 parameters, ≈ 1
3

rd
of

them had d ≥ 4. Finally, to ensure properties (c) and (d) for
any given workload length m, we use the following bucketi-
zation of the selectivity space. We divide the space into re-
gions such that the selectivities of parameterized predicates
are: (a) small for all parameterized predicates (Region0),
(b) large for all parameterized predicates (Region1), and (c)
large only for ith parameterized predicate (Regiondi). With
the above, to construct a sequence of m instances, we gen-
erate m

d+2
instances from each region and then put them

together in random order to get the final sequence.
The ordering of query instances may have different per-

formance impact on different online PQO techniques. To
evaluate their performance across different kind of order-
ings, we construct several orderings from the same set of
instances, including random as well as adversarial orderings
as described in Appendix H.1 – performance with only ran-
dom ordering is reported in Appendix H.5.

Overview of evaluation. We evaluate performance of tech-
niques given in Table 2, using 450 workload sequences that
are constructed using 5 orderings for each of the 90 query
templates – each sequence has 1000 instances (2000 for d >
3). We also present individual experiments with even larger
values of number of query instances (m). Finally, we eval-
uate variants of existing techniques where they have advan-
tage of making store or not decision using redundancy check,
in Appendix H.6 and present a sample execution time ex-
periment in Appendix H.7.

OptOnce store and use first plan only
PCMλ PCM with λ parameter
Ellipse with parameter ∆= 0.90
Density radius = 0.1, confidence threshold = 0.5
Ranges near selectivity range = 0.01
SCRλ proposed technique with λ parameter

Table 2: Index for evaluated techniques

Next, we present the performance evaluation starting with
sub-optimality related metrics before moving on to numOpt
and numPlans metrics.

7.2 Evaluation of Cost Sub-optimality
For each of the 450 sequences, we get a value of MSO and

TotalCostRatio for each of the techniques. These values for
Optimize-Once are plotted in Figure 6 in increasing order of
TotalCostRatio values. Here, we find large number of high
values for MSO as well as TotalCostRatio indicating that the
workload sequences are challenging for Optimize-Once. We
also plot the results for best performing existing heuristic

Figure 6: MSO and TotalCostRatio (TC) distribution for
Optimize-Once and Ellipse

technique Ellipse in Figure 6. Although Ellipse does reduce
TotalCostRatio significantly, it does not avoid the risk of high
sub-optimality for certain instances, as is evident from fre-
quently high values of MSO. We also note that it results in
TotalCostRatio > 10 for a significant fraction of sequences.

In principle, PCM and SCR with λ = 2 should have en-
sured MSO ≤ 2, but we find that in practice that the un-
derlying assumptions about the cost model, i.e., cost mono-
tonicity and bounded cost growth do face occasional viola-
tions which result in MSO > 2. Still, as shown in Figure 7,
we find the MSO is < 2 for a very large fraction of instances.
Furthermore, we observe that such violations are rare; and
the resulting values of TotalCostRatio are < 2 for majority
of workload sequences.

We also find that violations of sub-optimality bound are
much fewer for SCR compared to PCM. One explanation
for this behavior is that PCM can potentially infer large se-
lectivity regions based on monotonicity assumption, which
when violated can cause large sub-optimality. In contrast,
for SCR the inference region for a plan is always localized
to a relatively small area around the instance, which means
that it has a lower chance of causing large sub-optimality
when BCG is violated. Further, our framework supports
detection and handling of certain cases of assumption viola-
tions, as explained in Appendix G.

Overall, MSO captures only rare sub-optimality violations8

and in terms of TotalCostRatio, SCR2 processes 99% of the
sequences with TotalCostRatio less than 2.16. Aggregate
sub-optimality performance is reported in Appendix H.2.

7.2.1 Impact of λ on SCR
Next, Figure 8 shows that the TotalCostRatio values of

SCR are consistently lower than allowed values of λ and the

8In fact, we found that all the significant MSO violations
correspond to a few query templates and shown multiple
times for different orderings of the same query template.

Figure 7: MSO and TotalCostRatio (TC) distribution for
PCM2 and SCR2

difference keeps increasing as we allow λ to increase from 1.1
to 2. In fact, with λ = 2, average TotalCostRatio value for
SCR is as low as 1.1. This means that using λ=2 does not
hurt much in terms of TotalCostRatio and helps significantly
in other metrics (as we will see in other experiments).

Figure 8: TotalCostRatio (TC) for SCR with varying λ

7.3 Evaluation of Optimizer Overheads
We first show, through a sample experiment, that the get-

Plan overheads are typically much smaller than the optimizer
calls due to our design of getPlan routine. For a 4000 in-
stance workload of TPC-DS Q18, SCR 1.1 (λr=0) retains
162 plans out of 264 and a naive implementation getPlan
needs to make 162 Recost calls. Our heuristic of pruning
instances with high GL values during the selectivity check,
improves the number to just 8. Further, use of redundancy
check with λr =

√
λ, helps by retaining only 5 plans and

at most 3 Recost calls are made by any getPlan call. While
few Recost calls are quite small compared to optimization
overheads, they still dominate the getPlan overheads as the
instance list is quite small since only 100 out of 4000 in-
stances are finally stored. The rest of the section discusses
overheads due to numOpt.

We highlight in Figure 9 that the optimizer overheads for
PCM2 can be very high for certain sequences, e.g. when
instances appear in reverse order of optimal cost and it does

not get a chance to exploit the created inference regions.
With SCR2, the fraction of numOpt is significantly better
than most techniques and almost comparable to the best of
the heuristic techniques, i.e. Ranges [17].

Figure 9: numOpt % for various techniques

7.3.1 Impact of λ
Figure 10 shows that numOpt for SCR improves signifi-

cantly with increase in λ. Specifically, SCR1.1 could require
as large as 35% optimizer calls for a small fraction of work-
load sequences and it comes down to only 13% with SCR2
and the average numOpt improves from 12% to just 3%.

Figure 10: numOpt % for SCR with λ

7.3.2 Impact of number of query instances m
Figure 10 shows that for a small fraction of workloads even

SCR2 requires more than 10% optimizer calls and SCR1.1
requires >35%. While such overheads may not be adequate
in practice, we note that the required fraction of optimizer
calls reduce significantly with increase in the number of
query instances – similar behavior was also shown in [4].
To support this claim, we show the performance of an ex-
ample 4-dimensional query when the number of instances is
increased from 1000 to 10,000 in Figure 11. Here, we find
that the performance of PCM2 is matched by SCR1.1 itself
with increasing length of workload. Further, SCR2 performs
significantly better than PCM2 and its numOpt improves
from 6.5% to less than 1%. Similarly, for a 10-d example
query, the improvement in numOpt % is very similar to El-
lipse when it comes down from ≈ 25% for 1000 instances to
≈ 10% for 5,000 instances while PCM2 reduction is much
worse at ≈ 35% even for 5000 instances – more details in
Appendix H.3.

7.3.3 Impact of dimensions
We study the impact of increase in number of parameter-

ized predicates (d) on the fraction of optimizer calls. We
found that optimizer overheads increase rapidly for PCM2
adding ≈10% with each dimension reaching beyond 50% for
10 dimensional query. In contrast, the optimizer overheads
as well as the rate of increase is significantly better for SCR2

Figure 11: 4-d example query: numOpt % with varying m

as shown in Figure 12. Specifically, it starts with 6% and
increase only 5% with each dimension. SCR scales better
than PCM with increasing dimensions.

Figure 12: numOpt % for SCR2 and PCM2 with d

We also report the impact of enforcing plan cache budget
k on numOpt in Appendix H.4.

7.4 Evaluation of Number of Plans Cached
With regard to the numPlans metric, we first show that

SCR2 stores almost an order of magnitude fewer plans com-
pared to other techniques as shown in Figure 13(note that
the y-axis is in log-scale).

Figure 13: numPlans for various techniques (log scale)

7.4.1 Impact of λ
Next, we find that the number of stored plans improve

significantly with increase in λ for SCR, this behaviour is
captured in Figure 14.

7.5 Cases when Optimize-Once has MSO < 2
While our choices of workload sequences contained many

sequences where Optimize-Once performance was highly sub-
optimal, it also contained a significant fraction of sequences
where Optimize-Once achieved MSO ≤ 2. In other words, the
first instance of such sequences results in a plan that can be
reused for entire workload sequence without hurting sub-
optimality much, and therefore there is no significant ad-

Figure 14: numPlans for SCR with varying λ

vantage in performing more optimizer calls or storing more
plans in the plan cache. Thus, such sequences are specif-
ically interesting for evaluation for online PQO techniques
as they serve to evaluate the capability of the technique to
differentiate simpler workloads from complex ones. We find
that SCR performs particularly well in such cases storing less
than 2 plans on average while other techniques still need to
store tens of plans. Similarly, the fraction of optimizer calls
drops to 1.7% for SCR while most other techniques still need
10% or more optimizer calls.

Figure 15: Sequences where Optimize-Once has MSO < 2

8. RELATED WORK
There is a large body of literature that is relevant to plan

selection for parameterized queries. We categorize them
based on: (a) whether their plan identification phase is of-
fline or online and (b) whether they store a single plan or
multiple plans in the plan cache.

Offline or Online, SinglePlan. The online-single plan ap-
proach include the solutions like plan caching [22, 24] (equiv-
alent to Optimize-Once), Reopt-Bind [25], Specific-Generic
Plans [11]. We refer to these techniques as online since they
use a only one regular optimization call to identify the plan
to be stored and can reuse the stored plan after making sim-
ple efficient checks. There have been other approaches where
the plan to be stored is identified after an offline compile-
time effort that requires more than a single optimization
call. These techniques include [6], [5] and [1] and they
aim to pick a plan that has least expected cost, low vari-
ance and minimum total cost over extremes for the param-
eter space. While these approaches have different degree of
optimization overheads, the entire spectrum of single plan
approaches run into the basic limitation that a single plan
cannot ensure bounded sub-optimality in a arbitrarily large
selectivity space.

This limitation was handled to large extent by the pro-
posal of single dynamic plan [7]. However, it was shown in

[10] that such a dynamic plan may implicitly store many
more plans than required to ensure optimality in the selec-
tivity space. Also, the run-time overheads to resolve the
right plan for a given parameter instantiation could be too
high to be practical for complex queries.

Offline, MultiPlan. The goal is to identify a set of plans
that can ensure optimal execution performance for any in-
stance across the selectivity space [15, 10, 13, 18]. Its appli-
cability is limited due to the fact that it may require hun-
dreds of plans to be stored. While there have been many
innovative efforts [8, 14, 9] to significantly reduce the opti-
mizer or/and plan storage overheads by slightly relaxing the
plan quality requirement to be close to optimal – the op-
timizer overheads may still be wasteful for workloads that
originate from small unpredictable regions of the selectivity
space. Interestingly, many of these proposals also utilized
Recost feature for reduction of overheads, the difference is
that we use Recost feature in online setting where efficiency
is even more important. More recently, [21] studied multi-
objective PQO problem in anytime setting, which is quite
different from the focus of this paper, i.e., traditional PQO
problem in online setting.

Online, MultiPlan. The earliest known attempt related
to online PQO was [12], which aimed to recycle plans across
different query templates with ‘similar’ query structure. Al-
though their approach certainly addresses a wider problem
of plan reuse across different queries, it does not provide any
guarantee on performance sub-optimality. Quite recently,
there have been proposals that can handle unpredictable se-
quences of query instances, i.e., cursor sharing (similar to
Ranges in this paper) [17], PCM, Ellipse [4] and Density [2].
These techniques address only one of the three requirements
of an online PQO technique (see Section 2.1), while SCR can
address all three of them – a detailed discussion about their
limitations is provided in Section 3.

9. CONCLUSION
In this paper we present the SCR technique for online PQO

that leverages the functionality of plan re-costing and an ef-
ficient check based only on selectivities to significantly re-
duce optimization overheads and number of plans that need
to be stored while guaranteeing a tight bound on cost sub-
optimality. Efficient plan re-costing functionality and the se-
lectivity check are relatively straightforward to implement in
a database engine. We also demonstrate good average case
sub-optimality on a variety of complex benchmark and real-
world queries in the Microsoft SQL Server database engine.

All online techniques including SCR limit themselves to
plans that are optimal for at least one query instance ob-
served thus far. It is an interesting area of future work to
consider if further reduction in optimization overheads and
number of plans are possible without compromising cost sub-
optimality by considering plans that may not be optimal for
any query instance (e.g., using ideas similar to [1]). Such
an approach may be able to combine some of the benefits
of offline exploration (e.g., similar to [8]) with those of the
online technique.
Acknowledgements. We thank anonymous reviewers, Chris-

tian König, Wentao Wu and Bailu Ding for their valuable feed-

back that helped improve the paper.

10. REFERENCES
[1] M. Abhirama, S. Bhaumik, A. Dey, H. Shrimal, and

J. Haritsa, “On the stability of plan costs and the costs
of plan stability”, In PVLDB, 3(1), 2010.

[2] G. Aluc, D. DeHaan, and I. Bowman, “Parametric Plan
Caching Using Density-Based Clustering”, ICDE Conf.,
2012.

[3] B. Babcock and S. Chaudhuri, “Towards a Robust
Query Optimizer: A Principled and Practical
Approach”, ACM SIGMOD Conf., 2005.

[4] P. Bizarro, N. Bruno, D. Dewitt, “Progressive
Parametric Query Optimization”, IEEE TKDE, 21(4),
2009.

[5] S. Chaudhuri, H. Lee and V. Narasayya, “Variance
aware optimization of parameterized queries”, ACM
SIGMOD Conf., 2010.

[6] F. Chu, J. Halpern and J. Gehrke, “Least Expected
Cost Query Optimization: What Can We Expect”,
ACM PODS Conf., 2002.

[7] R. Cole and G. Graefe, “Optimization of Dynamic
Query Evaluation Plans”, ACM SIGMOD Conf., 1994.

[8] Harish D., P. Darera and J. Haritsa, “On the
Production of Anorexic Plan Diagrams”, VLDB Conf.,
2007.

[9] A. Dey, S. Bhaumik, Harish D, and J. Haritsa,
“Efficiently approximating query optimizer plan
diagrams”, In PVLDB, 1(2), 2008.

[10] S. Ganguly, “Design and Analysis of Parametric Query
Optimization Algorithms”, VLDB Conf., 1998.

[11] A. Ghazal, D. Seid, B. Ramesh, A. Crolotte,
M. Koppuravuri, and Vinod G, “Dynamic plan
generation for parameterized queries”, ACM SIGMOD
Conf., 2009.

[12] A. Ghosh, J. Parikh, V. Sengar, and J. Haritsa. “Plan
selection based on query clustering”, VLDB Conf.,
2002.

[13] A. Hulgeri and S. Sudarshan, “Parametric query
optimization for linear and piecewise linear cost
functions”, VLDB Conf., 2002.

[14] A. Hulgeri and S. Sudarshan, “AniPQO: almost
non-intrusive parametric query optimization for
nonlinear cost functions”, VLDB Conf., 2003.

[15] Y. Ioannidis, R. Ng, K. Shim, and T. Sellis, “Parametric
query optimization”, The VLDB Journal 6, 2, 1997.

[16] L. Krishnan, “Improving Worst-case Bounds for Plan
Bouquet based Techniques”, ME thesis, Database
Systems Lab, Indian Institute of Science, 2015.
http://dsl.cds.iisc.ac.in/publications/thesis/lohit.pdf

[17] A. Lee and M. Zait, “Closing the query processing loop
in Oracle 11g”, In PVLDB, 1(2), 2008.

[18] N. Reddy and J. Haritsa, “Analyzing plan diagrams of
database query optimizers”, VLDB Conf., 2005.

[19] F. Topsφe, “Some bounds for the logarithmic
functions”, Australian Journal of Mathematical
Analysis and Applications,
http://ajmaa.org/RGMIA/papers/v7n2/pade.pdf

[20] I. Trummer, C. Koch, “Probably Approximately
Optimal Query Optimization”,
https://arxiv.org/abs/1511.01782, 2015.

[21] I. Trummer and C. Koch.“An Incremental Anytime
Algorithm for Multi-Objective Query Optimization”.
ACM SIGMOD Conf., 2015.

[22] https://technet.microsoft.com/en-us/library/
ms181055(v=sql.105).aspx

[23] https://www.microsoft.com/en-us/download/details.
aspx?id=52430

[24] http://www.info.teradata.com/HTMLPubs/DB TTU
13 10/index.html#page/Database Management/B035
1094 109A/ch17.19.35.html

[25] http:
//www.ibm.com/support/knowledgecenter/SSEPEK
10.0.0/comref/src/tpc/db2z bindoptreopt.html

APPENDIX
A. LIMITATIONS OF SELECTIVITY DIS-

TANCE BASED PLAN REUSE
Most of the existing techniques depend on a selectivity

distance based neighborhood to identify opportunities for
plan reuse [4, 17, 2]. We discuss the limitations of such
techniques with respect to cost sub-optimality performance.

For the purpose of this discussion, let us consider simplis-
tic plan cost functions of the following form,

Cost(s1, s2) = C1s1 + C2s2 + C3s1s2 + C4

First two terms capture the cost of scanning relations with
parameterized predicates, third term capture cost of binary
join operation between the parameterized relations and last
term captures the cost of those operators in the plan that
are independent of parameterized predicates. The coeffi-
cients are different for different execution plans depending
on their join-order and choice of physical algorithms, e.g.
Nested Loop vs Hash Join for binary join.

Next, consider query instances q1 = (s1, s2), q2 = (s1 +
δ, s2) and q3 = (s1, s2 +δ). Both q2 and q3 are at a distance
δ from q1 in the selectivity space, but in perpendicular direc-
tions. Now, we derive a function for cost difference between
for each pair q1, q2 and q1,q3.

Cost(q2)− Cost(q1) = C1δ + C3δs2

Cost(q3)− Cost(q1) = C2δ + C3s1δ

If the optimal plan at q1 is reused at q2, then its sub-
optimality can be unbounded since the increase in cost can
be unbounded depending on the values of coefficients C1 and
C2 which are not considered while making the plan reuse
decision. Further, the sub-optimality of reuse for q2 can be
very different compared to sub-optimality at q3 while they
lie at the same selectivity distance from q1. Finally, the
cost difference for the same selectivity distance also changes
depending on the selectivities of query instance q1, i.e., s1
and s2. For all the reasons given above, use of selectivity
distance to define inference region of any plan can be risky
in terms of cost sub-optimality.

Our technique avoids these limitations by using selectivity
(multiplication) factors and explicit cost computation using
Recost to infer a λ-optimal region around optimized query
instances. In fact, we can observe that the geometrical shape
of our selectivity based λ-optimality region is quite different
from the circular, elliptical or rectangular approximations
used by the existing techniques. Also, its exact shape as well
as size varies with the location in the selectivity space, i.e.,
s1 and s2 values – thereby, adapting to handle cost impact
of various combination of individual selectivity factors.

B. REQUIRED API IMPLEMENTATION
In principle, the required features of sV ector computation

and Recost can be implemented by reusing modules that are

already present inside the query optimizer, i.e., predicate
selectivity computation module and plan cost computation
module respectively. Also, their overheads are expected to
be much lower than an optimizer call since they require much
fewer invocations of these modules compared to a regular
optimizer call.

We provide the outline for implementation of required API
features in the Microsoft SQL Server database engine, which
follows Cascades framework. However, the discussion is ap-
plicable to any engine whose query optimizer is based on
memoization.

sV ector computation. Currently, the query optimizer com-
putes the selectivities of all parameterized base predicates
right after parsing stage. That is, during the phase where
logical properties of memo groups are determined. Hence,
API for sV ector computation can be efficiently implemented
by short-circuiting the physical transformation phase alto-
gether.

Recost computation. Consider that we need to Recost plan
Pe for query instance qc, where Pe is found after optimiza-
tion of qe. We propose to compute a cacheable representa-
tion for plan Pe at the end of optimization phase of query
instance qe. This representation is then stored along with
actual execution plan Pe in the plan cache and used to for
future Recost calls.

At the end of optimization phase, the optimizer choice
plan is extracted out of the Memo data structure. At this
stage, the size of Memo can be quite large as it may contain
many groups and expressions that were considered during
plan search but are no more required for the final opti-
mizer choice plan Pe. These extra groups and expressions
are then pruned and we term the resulting data structure as
shrunkenMemo. We found that such pruning reduces the
size of shrunkenMemo by around 70% or more for com-
plex queries that access large number of relations. This
shrunkenMemo can be stored in the plan cache. When
Recost API is invoked with a pointer to shrunkenMemo,
the cost for qc can be computed by replacing the new pa-
rameters in the base groups of shrunkenMemo, followed
by cardinality and cost re-derivation in a bottom-up fashion
that typically consists of arithmetic computations.

The overheads of this re-derivation process depends on
the number of groups in the shrunkenMemo and we found
huge savings due to the memo pruning step. Note that, the
overheads to create shrunkenMemo is only one time per
plan and not to be included in the overhead of Recost API.
Also, there can be alternative implementations of Recost
that require lesser memory overheads at the cost of increased
time overheads for each Recost call.

C. PROOF OF SUB-OPTIMALITY BOUND
Theorem 2 (Sub-optimality Bound). Under the as-

sumption that the fi(αi)= αi holds for both plans Pe and Pc,
SubOpt(Pe, qc) < GL.

Proof. Using lemma 1 for Pe, we know that

Cost(Pe, qc) < G× Cost(Pe, qe) (2)

Again using lemma 1 for Pc, we know that,

Cost(Pc, qc) >
Cost(Pc, qe)

L
(3)

But since Pe is known to be optimal plan for qe, we can say
that, Cost(Pc, qe) > Cost(Pe, qe), which leads to

Cost(Pc, qc) >
Cost(Pe, qe)

L
(4)

Using Eq.2 and Eq.4 together in sub-optimality expression
of Pe at qc, we get

SubOpt(Pe, qc) =
Cost(Pe, qc)

Cost(Pc, qc)
< GL

D. VARYING λ ACROSS INSTANCES
Our framework can easily support use of a dynamic value

of λ that is a function of C value stored in the instance
5-tuple. One possible way to enforce higher values of λ for
lower cost queries, is to ask for a range of threshold from
the user, i.e., [λmin, λmax] and use a exponentially decaying
function to map the cost C to appropriate λ to be used for
a given stored instance. This may result in increased MSO
but it is expected to result in reduced numOpt and num-
Plans without significant increase in TotalCostRatio. To eval-
uate its benefits, we performed a sample experiment with a
workload of 1000 instances (featuring 378 optimal plans) of
Q25 of TPC-DS with λmax=10 and λmin=1.1. Compared
with static value of λ=1.1, we found that numPlans improved
from 148 to 96, numOpt improved from 502 to 310 while To-
talCostRatio increased only from 1.03 to 1.08. We also found
that, the extra savings due to such dynamic threshold range
decrease as the value of λmin increases.

E. CHOOSING λR PARAMETER
The simplest policy to implement is to store every new

plan that is encountered (λr=1). But this may not be ac-
ceptable if there is limited (per query) memory available
in the plan cache. Even when memory is not a concern,
we observed that keeping more plans cause more getPlan
overheads and there is no significant degradation in sub-
optimality even if they are rejected, as highlighted by fol-
lowing sample experiment. For TPC-DS Q18 with 4000 in-
stances and λ = 1.1, λr = 0 retains 77 plans and requires
up to 8 Recost calls during getPlan to achieve TotalCostRa-
tio of 1.03. With λr=1.01, retained plans reduce to 14 and
#Recost calls reduce to 5 with no visible impact on Total-
CostRatio. Further, with λr =

√
λ, TotalCostRatio increases

only to 1.04 but it retains only 5 plans and #Recost calls
also reduces to 3. Further increase in λr do not provide
any improvement in getPlan overheads and in fact, cause
increase in the number of optimizer calls. This is because,
use of sub-optimal plans cause selectivity regions to shrink
around many instances as λ

S
gets closer to 1. For this reason,

we used λr =
√
λ in our evaluation to balance the trade off.

F. REDUNDANCY CHECK FOR EXISTING
PLANS IN CACHE

An existing plan P in plan cache is said to be redundant if
for each of the instances in the instance list that point to P ,
there exist an alternative λ-optimal plan in the plan cache.
Note that, it is not required that all instances should have
the same alternative plan.

We have discussed in Section 6.3 that this redundancy
check is done for each newly encountered plan. Hence, the

existing plans can become redundant only after a new plan
satisfies the entry level redundancy check and is added the
plan cache. Next, we describe how similar redundancy check
can be done for existing plans in cache.

For a given plan P for which we want to check redundancy,
we find all the associated instances IP and temporarily re-
move the set IP from instance list and plan P from plan list.
Then, we recycle each instance qe in IP by invoking getPlan
routine (simulated version, does not actually send plan to
executor) that gives an alternative λ-optimal plan and its
sub-optimality for qe. If getPlan succeeds for all instances in
IP , then we say that P is a redundant plan and can be dis-
carded. Then, we add the instances IP back into instance list
but with new 5-tuples created using alternative plan choice
and its sub-optimality. If getPlan fails for even one instance
of IP , we infer that P was not redundant and we add the
instances in IP and plan P back to the respective lists.

Note that, the overheads of redundancy check increase
with the size of IP . Specifically, it may require re-costing
every plan in plan cache (except P) for each of the instances
in IP . For this reason, it may be faster and more likely
to find a redundant plan if we do this redundancy check in
the increasing order of size of IP . In our evaluation, we have
used redundancy check only for the newly encountered plan.

G. HANDLING SUB-OPTIMALITY DUE TO
VIOLATION OF PCM AND BCG

The violation to PCM and BCG assumptions can be de-
tected using Recost in the following way: whenever an in-
stance qe is used to make a plan choice for another in-
stance qc using cost check, observe the costs Cost(P, qe) and
Cost(P, qc) where P is the optimizer choice plan for instance
qe. By comparing selectivity ratios between qe and qc and
the two costs, it can be detected whether any of the as-
sumptions are violated for P at qe and if yes, qe can then be
marked as removed for future plan reuse using cost-check to
avoid further sub-optimal plan inferences.

In addition, an inferred plan can be sub-optimal even if
P does not violate the BCG assumption, but it is actually
violated by the optimal plan at qc. There is no way to detect
or handle such cases without making an optimizer call and
Recost calls for qc. Since this way of detecting the violation
defeats the original purpose of plan inference, it cannot be
used frequently.

H. ADDITIONAL EXPERIMENTS

H.1 Generating various orderings
The purpose of these orderings is to test the reliability of

various techniques against workload sequences having com-
plex and unknown patterns. To construct various orderings
from a given set of instances, we first optimize each query
instance to obtain its optimal plan and optimal cost. Then
we use this information to create orderings with following
properties:

1. Decreasing order of optimal cost values.
2. Instances picked from optimality regions of different plans

in a round-robin fashion.
3. Inside-out order, i.e., where instances with near-average

optimal cost values occur first, and then slowly diverge
towards the extreme cost values.

4. Outside-in order, i.e. where instances with extreme opti-
mal cost values occur first, and slowly converge towards
average cost values.

H.2 Aggregate sub-optimality performance
The aggregate performance of various techniques for MSO

and TotalCostRatio is captured in Figure 16 and Figure 17
respectively. We first notice that most heuristic approaches
have average performance either comparable or even higher
than their 95 percentile values, indicating a high skew in the
performance across the workload. Hence, even if they han-
dle a large number of sequences reasonably well, the associ-
ated sub-optimality risk cause their overall average perfor-
mance to be an order of magnitude worse than SCR2 which
is truly close to optimal at average TotalCostRatio as low
as 1.1. Even PCM2 has TotalCostRatio value of ≈3, which
means that it takes 3 times more optimizer estimated cost
compared to Optimize-Always.

Figure 16: MSO performance

Figure 17: TotalCostRatio (TC) performance

H.3 numOpt with workload size (10-d example)
While the numOpt % is large for the above 10-d example,

we show in Figure 18 that numOpt % values comes down
significantly as the length of sequence (m) is increased up
to 5000 instances. It shows that SCR2 performance is sim-
ilar to heuristic technique Ellipse while achieving cost sub-
optimality comparable to PCM2.

H.4 Impact of k on numOpt of SCR2
SCR supports redundancy check while adding plans and

dropping of plans that have become redundant due to ad-
dition of a new plan. But sometimes, in order to satisfy a
hard budget on numPlans in terms of k, SCR may repeat-
edly throw and bring back plans that are not redundant,
leading to increased optimizer calls. In Figure 19, we show
the impact of imposing such budgets on SCR2 over all 450
workloads. It is found that the required number of optimizer
calls increase slowly with budgets of 10 and 5 implying that

Figure 18: Running numOpt % for a 10d example query

majority of the workloads could be completed within 5 plans
without major side-effect on numOpt. Only, when the bud-
get is very tight with k = 2, the numOpt values increase
significantly which tells that there were significant number
of workloads that required more than 2 plans.

Figure 19: numOpt % variation with plan cache budget(k)

H.5 Performance for only random orderings
The optimizer overheads for most existing techniques im-

prove when considered only for random order sequence. For
example, 95 percentile overheads for PCM2 comes down
from 81% to 39% and for Density it improves from 30% to
24%. SCR2, on the other hand, has similar performance
across all orderings and with evaluation restricted to only
random ordering the 95 percentile overheads are 11.9% that
is much lower than 39% for PCM2. Further, even in compar-
ison to best heuristic technique 95 percentile performance is
11.9% for SCR2 against 8.1% for Ranges. Overall, we can
conclude from this discussion that the advantage of SCR2
over other techniques is not an artifact of the specific or-
derings. In fact, it shows that SCR2 continues to provide
similar performance even when workload follows patterns
that hamper performance of other techniques.

Figure 20: Optimizer overheads (random orderings only)

H.6 Using Recost in existing techniques
While the existing techniques do not support redundancy

check in their proposed form, we have evaluated a scenario
where they could also use Recost feature to implement the
redundancy check similar to SCR. We find that this modifi-
cation helps every existing technique in improving the num-
Plans. In fact, it even helps in improving optimizer over-
heads for some of the existing techniques. This is because
such modification allows them to make larger selectivity in-
ference regions for each plan as there would now be more
instances with same plan choice. But, with regard to cost
sub-optimality metrics, we found that the MSO and Total-
CostRatio values either remain in the same high range or
even degrade further as shown in Figure 21. In contrast,
use of Recost feature brings advantage in overheads without
violating the sub-optimality constraint.

Figure 21: Impact of using Recost with existing techniques

H.7 Sample execution experiment
The reason we used optimizer costs for evaluation in the

paper is that execution times can be highly variable and may
depend heavily on execution environment (CPU load, avail-
able memory etc.). Still, we provide one sample execution
experiment, for 500 instances of a query based on TPC-DS
database, for which we observed optimization overheads to
be comparable to execution times (188 seconds compared to
230 seconds for processing the 500 instance sequence) (see
Table 3). Note that, PCM1.1 gives minimum execution time
but does not save much on optimization overheads. Existing
heuristic techniques save significant fraction of optimization
overhead but also suffer from sub-optimal executions as their
selectivity neighborhood parameter is relaxed. Due to a com-
bination of issues that include cost modelling error, SCR1.1
faces sub-optimality beyond the required bound of 1.1 for
many individual instances and slightly with regard to ratio
of total execution time (≈ 1.2), but saves heavily in the op-
timization overheads (which include optimization calls and
getPlan overheads). Overall, SCR1.1 saves around 40 sec-
onds more than the best performing comparative technique.
Also, SCR1.1 retains only 13 out of 101 plans, also much
better than best performing comparative technique.

Technique Opt. Time Exec. Time Total Time Plans
(sec) (sec) (sec)

OptAlways 188 230 418 101
OptOnce 0.5 543 543.5 1

Ellipse (∆ =0.9) 99 246 345 77
Ellipse (∆ =0.7) 66 262 328 63

SCR 1.1 19 261 280 13
PCM 1.1 141 238 379 95

Ranges (1%) 22 302 324 31

Table 3: Sample execution performance across techniques

