

CoRE Working Group G. Selander

Internet-Draft F. Palombini

Intended status: Informational Ericsson AB

Expires: July 10, 2017 K. Hartke

 Universitaet Bremen TZI

 January 6, 2017

 Requirements for CoAP End-To-End Security

 draft-hartke-core-e2e-security-reqs-02

Abstract

 This document analyses threats to CoAP message exchanges traversing

 proxies and derives the security requirements for mitigating those

 threats.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 10, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

 Provisions Relating to IETF Documents

 (http://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Selander, et al. Expires July 10, 2017 [Page 1]

Commented [DT1]: Because of RFC 8075 and other types
of protocol proxies, the term End-to-End does not belong
here. Perhaps “multihop”? or “Security Requirements for
CoAP Communication through Proxies”?

However, since this is a security requirements document, I
would instead recommend that this not be constrained to
CoAP and actually be end-to-end.

Internet-Draft Requirements for CoAP End-To-End Security January 2017

Table of Contents

 1. Introduction . 3

 1.1. Assets and Scope . 4

 1.2. Terminology . 5

 2. Proxying . 6

 2.1. Threats and Security Requirements 7

 2.1.1. Client-side . 7

 2.1.1.1. Threat 1: Spoofing 8

 2.1.1.2. Threat 2: Delaying 9

 2.1.1.3. Threat 3: Withholding 9

 2.1.1.4. Threat 4: Flooding 9

 2.1.1.5. Threat 5: Eavesdropping 9

 2.1.1.6. Threat 6: Traffic Analysis 9

 2.1.2. Server-side . 11

 2.1.2.1. Threat 1: Spoofing 12

 2.1.2.2. Threat 2: Delaying 12

 2.1.2.3. Threat 3: Withholding 12

 2.1.2.4. Threat 4: Flooding 12

 2.1.2.5. Threat 5: Eavesdropping 13

 2.1.2.6. Threat 6: Traffic Analysis 13

 2.2. Solutions . 14

 2.2.1. Forwarding . 15

 2.2.1.1. Examples . 15

 2.2.1.2. Functional Requirements 17

 2.2.1.3. Processing Rules 17

 2.2.1.4. Authenticity 17

 2.2.1.5. Confidentiality 19

 2.2.2. Caching . 19

 2.2.2.1. Examples . 19

 2.2.2.2. Functional Requirements 21

 2.2.2.3. Processing Rules 21

 2.2.2.4. Authenticity 22

 2.2.2.5. Confidentiality 23

 3. Publish-Subscribe . 24

 3.1. Threats and Security Requirements 24

 3.1.1. Subscriber-side 24

 3.1.1.1. Threat 1: Spoofing 26

 3.1.1.2. Threat 2: Delaying 27

 3.1.1.3. Threat 3: Withholding 27

 3.1.1.4. Threat 4: Flooding 27

 3.1.1.5. Threat 5: Eavesdropping 27

 3.1.1.6. Threat 6: Traffic Analysis 27

 3.1.2. Publisher-side 27

 3.2. Solutions . 28

 3.2.1. Brokering . 28

 3.2.1.1. Functional Requirements 30

 3.2.1.2. Processing Rules 30

Selander, et al. Expires July 10, 2017 [Page 2]

Internet-Draft Requirements for CoAP End-To-End Security January 2017

 3.2.1.3. Authenticity 30

 3.2.1.4. Confidentiality 30

 4. Security Considerations 30

 5. IANA Considerations . 30

 6. References . 31

 6.1. Normative References 31

 6.2. Informative References 31

 Acknowledgments . 32

 Authors' Addresses . 32

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] is a Web

 application protocol designed for constrained nodes and networks

 [RFC7228]. CoAP makes use of Datagram Transport Layer Security

 (DTLS) [RFC6347] for security. At the same time, CoAP relies on

 proxies for scalability and efficiency. Proxies reduce response time

 and network bandwidth use by serving responses from a shared cache or

 enable clients to make requests that these otherwise could not make.

 CoAP proxies need to perform a number of operations on requests and

 responses to fulfill their purpose, which requires the DTLS security

 associations to be terminated at each proxy. The proxies therefore

 do not only have access to the data required for performing the

 desired functionality, but are also able to eavesdrop on or

 manipulate any part of the CoAP payload and metadata exchanged

 between client and server, or inject new CoAP messages without being

 protected or detected by DTLS.

 __________ _________ _________ __________

 | | | | | | | |

 | |---->| |---->| |---->| |

 | Client | | Proxy | | Proxy | | Server |

 | |<----| |<----| |<----| |

 |__________| |_________| |_________| |__________|

 : : : : : :

 '-------------' '-----------' '-------------'

 Security Security Security

 Association Association Association

 A B C

 Figure 1: Hop-by-Hop Security

 One way to mitigate this threat is to secure CoAP communication at

 the application layer using an object-based security mechanism such

 as CBOR Object Signing and Encryption (COSE) [I-D.ietf-cose-msg]

 instead of or in addition to the security mechanisms at the network

 layer or transport layer. Such a mechanism can provide "end-to-end

Selander, et al. Expires July 10, 2017 [Page 3]

Commented [DT2]: draft-ietf-core-coap-tcp-tls adds
support for TLS.

Internet-Draft Requirements for CoAP End-To-End Security January 2017

 security" at the application layer (Figure 2) in contrast to the

 "hop-by-hop security" that DTLS provides (Figure 1).

 __________ _________ _________ __________

 | | | | | | | |

 | |---->| |---->| |---->| |

 | Client | | Proxy | | Proxy | | Server |

 | |<----| |<----| |<----| |

 |__________| |_________| |_________| |__________|

 : :

 '---'

 Security Association

 Figure 2: End-to-End Security

 This document analyses security aspects of sensor and actuator

 communications over CoAP that involve proxies (Section 2) and

 publish-subscribe brokers (Section 3). The analysis is based on the

 identification of assets associated with these communications and

 considering the potential threats posed by proxies to these assets.

 The threat analysis provides the basis for deriving security

 requirements that a solution for CoAP end-to-end security should

 meet.

1.1. Assets and Scope

 In general, there are the following assets that need to be protected:

 o The devices at the two ends and their (often very constrained)

 system resources such as available memory, storage, processing

 power and energy.

 o The physical environment of the devices fitted with sensors and

 actuators. Access to the physical environment is assumed to be

 provided through CoAP resources that allow a remote entity to

 retrieve information about the physical environment (such as the

 current temperature) or to produce an effect on the physical

 environment (such as the activation of a heater).

 o The communication infrastructure linking the two devices, which

 often contains some very constrained networks.

 o The data generated and stored in the involved devices.

 An intermediary can directly interfere with the interactions between

 the two ends and thereby have an impact on all these assets. For

 example, flooding a device with messages has an impact on system

 resources, and the successful manipulation of an actuator command

Selander, et al. Expires July 10, 2017 [Page 4]

Internet-Draft Requirements for CoAP End-To-End Security January 2017

 (data generated by an involved device) can have a severe impact on

 the physical environment. An intermediary can also affect the

 communication infrastructure, e.g., by dropping messages.

 Even if an intermediary is trustworthy, it may be an attractive

 target for an attack, since such nodes are aggregation points for

 message flows and may be an easier target from the Internet than the

 sensor and actuator nodes residing behind them. An intermediary may

 become subject to intrusion or be infected by malware and perform the

 attacks of a man-in-the-middle.

 The focus of this document is on threats from intermediaries to

 interactions between two CoAP endpoints. Other types of threats, for

 example, attacks involving physical access to the CoAP-speaking

 devices, are out of scope of this document.

 Since intermediaries may perform a service for the interacting

 endpoints, there is a trade-off between the intermediaries' desired

 functionality and the ability to mitigate threats to the endpoints

 executed through an intermediary.

1.2. Terminology

 Readers are expected to be familiar with the terms and concepts

 described in [RFC7252] and [RFC7641].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 [RFC2119]. The key word "NOT REQUIRED" is interpreted as synonymous

 with the key word "OPTIONAL".

Selander, et al. Expires July 10, 2017 [Page 5]

Internet-Draft Requirements for CoAP End-To-End Security January 2017

2. Proxying

 To assess what impact various threats have to the assets, we need to

 specify and analyse how the proxies operate.

 _ _ __ ___________ __ _ _

 | Request | | Request |

 Client |---------->| |---------->| Server

 or | | Proxy | | or

 Proxy |<----------| |<----------| Proxy

 _ _ __| Response |___________| Response |__ _ _

 Figure 3: A Proxy

 Generally speaking, the functionality of a proxy is to receive a

 request from a client and to send a response back to that client.

 There are two ways for the proxy to satisfy the request:

 o The proxy constructs and sends a request to the server indicated

 in the client's request, receives a response from that server and

 uses the received data to construct the response to the client.

 o The proxy uses cached data to construct the response to the

 client.

 In both cases, the proxy needs to read some parts both of the request

 from the client and the response from the server to accomplish its

 task.

 The following subsections analyse the threats posed by a proxy from

 the perspective of the client on the one hand (Section 2.1.1) and the

 perspective of the server on the other hand (Section 2.1.2).

 Section 2.2 then presents the design space for possible security

 solutions to mitigate the threats.

Selander, et al. Expires July 10, 2017 [Page 6]

Internet-Draft Requirements for CoAP End-To-End Security January 2017

2.1. Threats and Security Requirements

2.1.1. Client-side

 __________ __ _ _

 | | Request |

 | |---------->|

 | Client | | Proxy

 | |<----------|

 |__________| Response |__ _ _

 Figure 4: The Client End

 The client sends a request to the proxy and waits for a response.

 From the perspective of the client, there are three possible flows:

 o The client receives a response.

 Reasons include:

 * The proxy duly processed the request and returns a response

 based on data it obtained from the origin server.

 * The proxy encountered an unexpected condition and returns an

 error response according to specification (e.g., 5.02 Bad

 Gateway or 5.04 Gateway Timeout).

 * (Threat 1:) The proxy spoofs a response. For example, the

 proxy could return a stale or outdated response based on data

 it previously obtained from the server or some fourth party, or

 could craft an illicit response itself.

 * (Threat 2:) The proxy duly processed the request but delays the

 return of the response.

 o The client does not receive a response.

 Reasons include:

 * The client times out too early.

 * (Threat 3:) The proxy withholds the response.

 o The client receives too many responses.

 Reasons include:

 * (Threat 4:) The proxy floods the client with responses.

 Furthermore, there are threats related to privacy:

Selander, et al. Expires July 10, 2017 [Page 7]

Commented [DT3]: Missing bullet equivalent to what you
have in section 3.1.1, i.e.:
 * The client made a bad request

and the proxy returns an

 error response accordingly.

Internet-Draft Requirements for CoAP End-To-End Security January 2017

 o (Threat 5:) The proxy eavesdrops on the data in the request from

 the client.

 o (Threat 6:) The proxy measures the size, frequency or distribution

 of requests from the client.

 Note that "cache poisoning" -- the case of caching injected incorrect

 responses -- is covered from the point of view of the client: it may

 result in the client receiving a spoofed message, or being flooded,

 or affect other nodes such that the client times out too early.

2.1.1.1. Threat 1: Spoofing

 With one exception (see below), this threat is REQUIRED to be

 mitigated by the security solution: the client MUST verify that the

 response is an "authentic response" before processing it.

 The definition of an "authentic response" depends on the desired

 proxy functionality and protection level (see Section 2.2), but

 usually means that the client can obtain proof for some or all of the

 following things:

 o that the requested action was executed by the origin server;

 o that the data originates from the origin server and has not been

 altered on the way;

 o that the data matches the specifications of the request (such as

 the target resource);

 o that the data is fresh (when the data is cacheable);

 o that the data is in sequence (when observing a resource).

 The proof can, for example, include a message authentication code

 that the proxy obtains from the origin server and includes in the

 response or an additional challenge-response roundtrip.

 Exception: A CoAP proxy is specified to return an error response

 (such as 5.02 Bad Gateway or 5.04 Gateway Timeout) when it

 encounters an error condition. Since the condition occurs at the

 proxy and not at the origin server, the response will not be an

 "authentic response" according to the above definition. (A proxy

 cannot obtain a proof that the server is unreachable from an

 unreachable server.) Thus, a client cannot tell if the proxy

 sends the response according to specification or if it spoofs the

 response. This threat is NOT REQUIRED to be mitigated by the

 security solution.

Selander, et al. Expires July 10, 2017 [Page 8]

Commented [DT4]: There is also a threat to the client
where the proxy eavesdrops on the data in the response.
That is, it is possible for the response to contain data
specific to the client (e.g., information about what the client
did before, or some data that the client previously passed in
a request). In other words, the privacy disclosure can
adversely affect either or both ends, depending on the
nature of the data in a request or in a response.

Commented [DT5]: “a” (not “the”) as there could be
multiple possible solutions

Internet-Draft Requirements for CoAP End-To-End Security January 2017

2.1.1.2. Threat 2: Delaying

 This threat is REQUIRED to be mitigated by the security solution.

 Delay attacks are important to mitigate in certain applications,

 e.g., when using CoAP with actuators. A problem statement and

 candidate solution can be found in

 [I-D.mattsson-core-coap-actuators].

2.1.1.3. Threat 3: Withholding

 This threat is NOT REQUIRED to be mitigated by the security solution,

 since a client cannot tell if the proxy does not send a response

 because it is hasn't received a response from the origin server yet

 or if it intentionally withholds the response.

2.1.1.4. Threat 4: Flooding

 A CoAP client is specified to reject any response that it does not

 expect. This can happen before the client verifies whether the

 response is authentic. Therefore, a flood of responses is primarily

 a threat to the system resources of the client, in particular to its

 energy. This threat is NOT REQUIRED to be mitigated by the security

 solution, but a client SHOULD generally defend against flooding

 attacks.

2.1.1.5. Threat 5: Eavesdropping

 This threat is REQUIRED to be mitigated by the security solution:

 clients MUST confidentiality protect the data in the requests they

 send.

 Note that this requirement is in conflict with the requirement that

 the proxy needs to be able to read some parts of the requests in

 order to accomplish its task. Section 2.2 analyses which parts can

 be encrypted depending on the desired proxy functionality and

 protection level. In general, a security solution SHOULD

 confidentiality protect all data that is not needed by the proxy to

 accomplish its task.

 The keys used for confidentiality protection MUST provide forward

 secrecy.

2.1.1.6. Threat 6: Traffic Analysis

 This threat is NOT REQUIRED to be mitigated by the security solution.

 It is RECOMMENDED that applications analyse the risks associated with

 application information leaking from the messages flow and assess the

Selander, et al. Expires July 10, 2017 [Page 9]

Commented [DT6]: Don’t overemphasize this. Some
clients may be on A/C and so energy is not the main threat…
if the link type does not provide reliability at L2, the threat
may instead be to cause loss of other more important
signals. The threat may also just be to slow down
performance of the client. Suggest changing “in particular”
to “for example”.

Commented [DT7]: This is hard to read. Suggest
rewording. Maybe “MUST protect confidentiality of the
data…”

Furthermore, it’s unclear. Protect from whom? Do you
mean protect with a key the proxy has but observers
between the client and proxy don’t? Or do you mean
protect with a key that the proxy does not have? I think you
mean the latter, but that’s not what this says.

Commented [DT8]: I think this is way too weak. Instead I
believe the requirement should be to inform the client of
what is needed and let the client determine whether that’s
acceptable or not. That is, the client should have explicit
knowledge of “what is needed by the proxy” and can choose
to only use that proxy if it’s acceptable to the client.

Commented [DT9]: “apps” can’t analyze risks. Apps
developers and security analysts need to do this.

Internet-Draft Requirements for CoAP End-To-End Security January 2017

 feasibility to protect against various threats, e.g., by obfuscating

 parameters transported in plain text, aligning message flow and

 traffic between the different cases, adding padding so different

 messages become indistinguishable, etc.

Selander, et al. Expires July 10, 2017 [Page 10]

Internet-Draft Requirements for CoAP End-To-End Security January 2017

2.1.2. Server-side

 _ _ __ __________

 | Request | |

 |---------->| |

 Proxy | | Server |

 |<----------| |

 _ _ __| Response |__________|

 Figure 5: The Server End

 A server listens for a request and returns a response.

 From the perspective of the server, there are three possible flows:

 o The server receives a request.

 Reasons include:

 * The proxy makes a request on behalf of a client according to

 specification.

 * The proxy makes a request (e.g., to validate cached data) on

 its own behalf.

 * (Threat 1:) The proxy spoofs a request.

 * (Threat 2:) The proxy sends a request with delay.

 o The server does not receive a request.

 Reasons include:

 * The proxy does not need to send a request.

 * (Threat 3:) The proxy withholds a request.

 o The server receives too many requests.

 Reasons include:

 * (Threat 4:) The proxy floods the server with requests.

 A proxy eavesdropping or inferring information from messages it

 operates on has an impact on a server in the same way as on a client:

 o (Threat 5:) The proxy eavesdrops on the data in the response from

 the server.

 o (Threat 6:) The proxy measures the frequency and distribution of

 responses from the server.

Selander, et al. Expires July 10, 2017 [Page 11]

Commented [DT10]: How is this a threat to the server? I
think this is a threat to the client, not the server.

Commented [DT11]: Or in the request to the server. The
request can contain confidential data about the server (e.g.,
resource paths) obtained from prior responses.

Internet-Draft Requirements for CoAP End-To-End Security January 2017

2.1.2.1. Threat 1: Spoofing

 With one exception (see below), this threat is REQUIRED to be

 mitigated by the security solution: the server MUST verify that the

 request is an _authentic request_ before processing it.

 The definition of an "authentic request" depends on the desired proxy

 functionality and protection level (Section 2.2), but usually means

 that the server can obtain proof for some or all of the following

 things:

 o that the proxy acts on behalf of a client;

 o that the data originates from the client and has not been altered

 on the way;

 o that the request has not been received previously.

 The proof can, for example, include a message authentication code

 that the proxy obtains from the client and includes in the request or

 a challenge-response roundtrip.

 Exception: A CoAP proxy may make certain requests without acting on

 behalf of a client (e.g., to validate cached data). Since such a

 request does not originate from a client, the server cannot tell

 if the proxy sends the request according to specification or if it

 spoofs the request. It is up to the security solution how this

 issue is addressed.

2.1.2.2. Threat 2: Delaying

 This threat is REQUIRED to be mitigated by the security solution; see

 Section 2.1.1.2.

2.1.2.3. Threat 3: Withholding

 This threat is NOT REQUIRED to be mitigated by the security solution,

 since a server cannot tell if the proxy does not send a request

 because it has no work to do or if it intentionally withholds a

 request.

2.1.2.4. Threat 4: Flooding

 This threat is NOT REQUIRED to be mitigated by the security solution

 in particular, but a server SHOULD generally defend against flooding

 attacks.

Selander, et al. Expires July 10, 2017 [Page 12]

Internet-Draft Requirements for CoAP End-To-End Security January 2017

2.1.2.5. Threat 5: Eavesdropping

 This threat is REQUIRED to be mitigated by the security solution; see

 Section 2.1.1.5.

2.1.2.6. Threat 6: Traffic Analysis

 This threat is NOT REQUIRED to be mitigated by the security solution;

 see Section 2.1.1.6.

Selander, et al. Expires July 10, 2017 [Page 13]

Internet-Draft Requirements for CoAP End-To-End Security January 2017

2.2. Solutions

 A security solution has to find a trade-off between desired proxy

 functionality (such as caching) and the provided level of protection.

 From this trade-off results the definition of what constitutes an

 "authentic request" or "authentic response" and when a request or

 response is considered confidentiality protected.

 This section presents two exemplary choices of trade-offs:

 o The first case focuses on a high protection level by tying

 requests and responses uniquely together and confidentiality

 protecting as much as possible, at the cost of reduced proxy

 functionality.

 o The second case aims to preserve proxy functionality as much as

 possible, at the cost of reduced confidentiality protection.

 For both cases, this section presents an overview of the

 functionality and processing rules of the proxy and analyses the

 required authenticity and confidentiality properties of requests and

 responses. Due to space constraints, the analysis is limited to the

 CoAP header fields, the payload and the request and response options

 shown in Table 1.

 +---------------+---------------

 | Requests | Responses |

 +---------------+---------------

 | Accept | Content-Format |

 | Content-Format | ETag |

 | ETag | Location-Path |

 | If-Match | Location-Query |

 | If-None-Match | Max-Age |

 | Observe | Observe |

 | Proxy-Scheme | |

 | Proxy-Uri | |

 | Uri-Host | |

 | Uri-Port | |

 | Uri-Path | |

 | Uri-Query | |

 +---------------+---------------

 Table 1: Analysed CoAP Options

 Note that, since CoAP was not designed with end-to-end security in

 mind, a security solution extends the applicability of CoAP beyond

 its original scope.

Selander, et al. Expires July 10, 2017 [Page 14]

Commented [DT12]: Doesn’t seem right to me to have a
“Solutions” section heading in a “Requirements” document.
Maybe “Solution Approaches”?

I also think that some sections have too many solution-
specific details to appear in a Requirements document.

Commented [DT13]: asci art doesn’t line up

Internet-Draft Requirements for CoAP End-To-End Security January 2017

2.2.1. Forwarding

 In this case we study forwarding functionality of a CoAP forward

 proxy, and assume that caching is disabled. This is applicable to

 many security critical use cases where a response needs to be

 securely linked to a unique request from a client and cannot be re-

 used with another request.

 There may be a unique response for each request (see Figure 6) or

 multiple responses for each request (see Figure 7).

2.2.1.1. Examples

 Examples of the need for unique response for each request include

 alarm status retrieval and actuator command confirmation.

 Client Proxy Server

 | | |

 | Request | Request |

 |-------------->|-------------->|--.

 | | | |

 |<--------------|<--------------|<-'

 | Response | Response |

 | | |

 Figure 6: Message Flow with a Unique Response for Each Request

 Example: Alarm status retrieval

 Figure 6 can be seen as an illustration of a message exchange for

 a client requesting the alarm status (e.g., GET /alarm_status)

 from a server. Since the client wants to ensure that the alarm

 status received is reflecting the current alarm status and not a

 cached or spoofed response to the same resource, it must be able

 to verify that the received response is a response to this

 particular request made by the client. Therefore, the response

 must be securely linked to the request.

 Example: Actuation confirmation

 Another example for which Figure 6 serves as illustration is the

 confirmation of an actuator request. In this case a client, say

 in an industrial control system, requests a server that a valve

 should be turned to a certain level, e.g. PUT /valve_42/level

 with payload "3". In order for the client to correctly evaluate

 the result of a potential changed valve level, it is important

 that the client gets a confirmation how the server responded to

 the requested change, e.g., whether the request was performed or

Selander, et al. Expires July 10, 2017 [Page 15]

Commented [DT14]: Caching in the proxy? Or caching in
both the client application and the proxy?

Commented [DT15]: fix grammar. “a unique response”?
“unique responses”?

Commented [DT16]: Not sufficient. It has to be a
response whose value came _from the server_ (not just a
response with some value the proxy makes up)

Commented [DT17]: to

Internet-Draft Requirements for CoAP End-To-End Security January 2017

 not. Again, the client wants to ensure that the response is

 reflecting the result of this particular actuation request made by

 the client and not a cached or spoofed response. Therefore, the

 response must be securely linked to the request.

 An example of the use of multiple responses for each request is in

 security critical monitoring scenarios where time synchronization

 cannot be guaranteed. By avoiding repeated requests from the same

 client to the same resource, constrained node resources and bandwidth

 is saved.

 Client Proxy Server

 | | |

 | Request | Request |

 |-------------->|-------------->|--.

 | | | |

 |<--------------|<--------------|<-'

 | Notification | Notification |

 | | |

 |<--------------|<--------------|

 | Notification | Notification |

 | | |

 |<--------------|<--------------|

 | Notification | Notification |

 | | |

 Figure 7: Message Flow of Notifications of Linked to a Unique Request

 Example: Secure parameter monitoring

 Figure 7 can be seen as an illustration of a message exchange for

 a client monitoring an important parameter measured by the server,

 e.g., in a medical or process industry application. The client

 makes a subscription request for a resource and the server

 responds with notifications, e.g. providing updates to the

 parameter on regular time intervals.

 The client wants to ensure that the first received notification

 reflects the current parameter value and that subsequent

 notifications are timely updates of the initial request. Since

 notifications may be lost or reordered, the client needs to be

 able to verify the order of the messages, as sent by the server.

 By monitoring the received messages and the time they are

 received, the client can detect missing notifications and take

 appropriate action.

Selander, et al. Expires July 10, 2017 [Page 16]

Commented [DT18]: and securely linked to the server

Internet-Draft Requirements for CoAP End-To-End Security January 2017

2.2.1.2. Functional Requirements

 FR1.1 The caching functionality MUST be inhibited; the CoAP option

 Max-Age of the responses SHALL be 0 (see Section 5.7.1 of

 [RFC7252]).

 FR1.2 To limit information leaking about the resource (see

 Section 2.2.1.5) the Proxy-Uri does not contain Uri-Path or

 Uri-Query.

2.2.1.3. Processing Rules

 In this case, the desired proxy functionality is to forward a

 translated request to the determined destination. There are two

 modes of operation for requests: Either using the Proxy-Uri option

 (PR1.1) or using the Proxy-Scheme option together with the Uri-Host,

 Uri-Port, Uri-Path and Uri-Query options (PR1.2).

 PR1.1 The Proxy-Uri option contains the request URI including

 request scheme (e.g. "coaps://"); the Proxy-Scheme and Uri-*

 options are not present.

 If the proxy is configured to forward requests to another

 proxy, then it keeps the Proxy-Uri option; otherwise, it

 splits the option into its components, adds the corresponding

 Uri-* options and removes the Proxy-Uri option. Then it makes

 the request using the request scheme indicated in the Proxy-

 Uri.

 PR1.2 The Proxy-Scheme option and the Uri-* options together contain

 the request URI; the Proxy-Uri option is not present.

 If the proxy is configured to forward requests to another

 forwarding proxy, then it keeps the Proxy-Scheme and Uri-*

 options; otherwise, it removes the Proxy-Scheme option. Then

 it makes the request using the request scheme indicated in the

 removed Proxy-Scheme option.

 PR1.3 Responses are forwarded by the proxy, without any

 modification.

2.2.1.4. Authenticity

 A request is considered authentic by the server (Section 2.1.2.1) if

 the server can obtain proof for all of the following things:

 A1.1 that the proxy acts on behalf of a client;

Selander, et al. Expires July 10, 2017 [Page 17]

Commented [DT19]: But this then prevents the client
application from doing any caching until its next request.
That might not be what the client wants. I think the Max-
Age is requirement of the specific resource, not of the
security solution per se.

Commented [DT20]: This is an example of a section that
appears to be a solution rather than “Requirements” for
solutions, as the document title and intro claim to be.

Internet-Draft Requirements for CoAP End-To-End Security January 2017

 A1.2 that the following parts of the request originate from the

 client and have not been altered on the way:

 * the CoAP version,

 * the request method,

 * all options except Proxy-Uri, Proxy-Scheme, Uri-Host, Uri-

 Port, Uri-Path and Uri-Query, and

 * the payload, if any.

 A1.3 that the effective request URI originates from the client and

 has not been altered on the way;

 A1.4 that the request has not been received previously;

 A1.5 that the request from the client to the proxy was sent

 recently.

 A response is considered authentic by the client (Section 2.1.1.1) if

 the client can obtain proof for all of the following things:

 A1.6 that the following parts of the response originate from the

 server and have not been altered on the way:

 * the CoAP version,

 * the response code,

 * all options, and

 * the payload, if any.

 A1.7 that the response corresponds uniquely to the request sent by

 the client.

 A1.8 that the response has not been received previously;

 A1.9 that the response from the server to the proxy was sent

 recently;

 A1.10 that the response is in sequence if there are multiple

 responses.

Selander, et al. Expires July 10, 2017 [Page 18]

Commented [DT21]: I disagree with this. One role of a
proxy can be to proxy between different versions.

Commented [DT22]: This might not be future proof to
new options. Perhaps there should be some way to tell for
any new option, whether it’s hop by hop or not. (Same
approach as taken in other protocols, like IPv6 options, etc.)

Internet-Draft Requirements for CoAP End-To-End Security January 2017

2.2.1.5. Confidentiality

 The following parts of the message are confidentiality protected

 (Section 2.1.1.5):

 o all options except Proxy-Uri, Proxy-Scheme, Uri-Host and Uri-Port;

 o the payload, if any.

2.2.2. Caching

 In this case we study caching: how a proxy may serve the same cached

 response to multiple clients requesting the same resource.

 The caching functionality protects communication-constrained servers

 from repeated requests for the same resources, possibly originating

 from different clients. This saves system resources, bandwidth, and

 round-trip time.

 There may be one response for each request (see Figure 8) or multiple

 responses for each request (see Figure 9).

2.2.2.1. Examples

 The first example is a simple case of caching.

 Client A Proxy Server

 | | |

 | Request | Request |

 |-------------->|-------------->|--.

 | | | |

 |<--------------|<--------------|<-'

 | Response | Response |

 | | |

 | |

 Client B | |

 | | |

 | Request | |

 |-------------->|--. |

 | | | from cache |

 |<--------------|<-' |

 | Response | |

 | | |

 Figure 8: Message Flow for Cached Responses

 Example: Caching

Selander, et al. Expires July 10, 2017 [Page 19]

Commented [DT23]: There’s a different (in a security
sense) case, which is to have a separate cache per client.
Currently this is assuming a shared cache, which has more
privacy issues because you can tell from a response whether
other clients requested it or not, which leaks information
about other clients to a snoopy client.

Internet-Draft Requirements for CoAP End-To-End Security January 2017

 In Figure 8, client A requests the proxy to make a certain request

 to the server and to return the server's response. The proxy

 services the request by making a request message to the server

 according to the processing rules. If the server returns a

 cacheable response, then the proxy stores the response in its

 cache, performs any necessary translations, and forwards it to the

 client. Later, client B makes an equivalent request to the proxy

 that the proxy services by returning the response from its cache.

 Both client A and B want to verify that the response is valid.

 In addition to multiple clients' requests being served by one

 response, each request may result in multiple responses. The

 difference compared to Section 2.2.1 is that in this example multiple

 clients may be served with the same response, further saving server

 resources.

 Client A Proxy Server

 | | |

 | Request | Request |

 |-------------->|-------------->|--.

 | | | |

 |<--------------|<--------------|<-'

 | Notification | Notification |

 | | |

 | |

 Client B | |

 | | |

 | Request | |

 |-------------->|--. |

 | | | from cache |

 |<--------------|<-' |

 | Notification | |

 | | |

 |<--------------|<--------------|

 | Notification | Notification |

 | | |

 | |

 Client A | |

 | | |

 |<--------------| |

 | Notification | |

 | | |

 Figure 9: Message Flow for Observe with Multiple Observers

 Example: Observe with caching

Selander, et al. Expires July 10, 2017 [Page 20]

Internet-Draft Requirements for CoAP End-To-End Security January 2017

 In Figure 9, the server exposes an observable resource (e.g., the

 current reading of a temperature sensor). Multiple clients are

 interested in the current state of the resource and observe it

 using the CoAP resource observation mechanism [RFC7641]. The goal

 is to keep the state observed by the clients closely in sync with

 the actual state of the resource at the server. Another goal is

 to minimize the burden on the server by moving the task to fan out

 notifications to multiple clients from the server to the proxy.

2.2.2.2. Functional Requirements

 The security solution SHOULD protect requests and responses in a way

 that a proxy can perform the following tasks:

 FR2.1 Storing a cacheable response in a cache. This requires that

 the proxy is able to calculate the cache-key of the request.

 Cacheable responses include 2.05 (Content) responses and all

 error responses.

 FR2.2 Returning a fresh response from its cache without contacting

 the server.

 FR2.3 Performing validation of a response cached by the proxy as

 well as validation of a response cached by the client.

 FR2.4 Observing a resource on behalf of one or more clients.

2.2.2.3. Processing Rules

 The proxy complies with the forwarding rules PR1.1 - 1.3

 (Section 2.2.1.3) and the rules below. The rules below have

 priority.

 PR2.1 If the proxy receives a request where the cache key matches

 that of a cached fresh response, then the proxy discards the

 request and replies with that response, else it makes a

 translated request.

 PR2.2 The proxy caches and forwards cacheable responses. If there

 is already a response in the cache with the cache key of the

 corresponding request, then the old response in the cache is

 marked as stale.

 PR2.3 If the proxy receives a request that contains an ETag option

 and the proxy has a fresh response with the same cache key and

 ETag, then the proxy replies to the request with a 2.03

 (Valid) response without payload, else it forwards a

 translated request.

Selander, et al. Expires July 10, 2017 [Page 21]

Commented [DT24]: This is always capitalized Cache-Key
in RFC 7252

Commented [DT25]: Cache-Key (and search for all other
occurrences in this doc)

Internet-Draft Requirements for CoAP End-To-End Security January 2017

 PR2.4 The proxy updates the Max-Age option according to the Max-Age

 associated with the resource representation it receives,

 decreasing its value to reflect the time spent in the cache.

 PR2.5 If the request contains an Accept option and if there is a

 fresh response that matches the cache key for the

 corresponding request except for the Accept option, and if the

 Content-Format of the response matches that of the Accept

 option, then the proxy forwards the cached response to the

 requesting client.

2.2.2.4. Authenticity

 A request is considered authentic by the server (Section 2.1.2.1) if

 the server can obtain proof for all of the following things:

 A2.1 that the following parts of the request originate from the

 client and have not been altered on the way:

 * the CoAP version,

 * the request method,

 * all options except ETag, Observe, Proxy-Uri, Proxy-Scheme,

 Uri-Host, Uri-Port, Uri-Path and Uri-Query, and

 * the payload, if any.

 A2.2 that the effective request URI originates from the client and

 has not been altered on the way;

 A response is considered authentic by the client (Section 2.1.1.1) if

 the client can obtain proof for all of the following things:

 A2.3 that the following parts of the response originate from the

 server and have not been altered on the way:

 * the CoAP version,

 * the response code,

 * all options except Max-Age and Observe, and

 * the payload, if any.

 A2.4 that the response matches the specifications of the request;

 A2.5 that the data is fresh (when the response is cacheable);

Selander, et al. Expires July 10, 2017 [Page 22]

Commented [DT26]: This is inherently dangerous since
the proxy can modify it in bad ways, such as prolonging the
Max-Age option, which is an indirect way to effectively
spoof/replay a value. I believe the security requirement is
that a solution MUST enforce that a proxy cannot increase
the Max-Age, it can only decrease it.

Commented [DT27]: Section 5.6.1 of RFC 7252 defines
fresh as within Max-Age. But the Max-Age is not protected
in A2.3. ASo how can it obtain proof that the data is fresh?
Again, I think the statement in A.2.3 about Max-Age is
wrong and it should instead require that Max-Age could not
have been altered upwards of what the server intended.

Internet-Draft Requirements for CoAP End-To-End Security January 2017

 A2.6 that the response is in sequence (when observing a resource).

2.2.2.5. Confidentiality

 No parts of a request are confidentiality protected

 (Section 2.1.2.5).

 A response is considered confidentiality protected (Section 2.1.2.5)

 if the payload of the response is confidentiality protected.

Selander, et al. Expires July 10, 2017 [Page 23]

Commented [DT28]: No idea what this means since
2.1.2.5 does require confidentiality protection.

Internet-Draft Requirements for CoAP End-To-End Security January 2017

3. Publish-Subscribe

 Much of the concerns about proxies as described previously in this

 document also applies to other kinds of intermediary nodes. In this

 section we study brokers in a publish-subscribe setting

 [I-D.ietf-core-coap-pubsub]. The case of combining brokers and

 proxies is out of scope for this version of the document.

 There are different ways for a pub-sub broker to operate. We

 consider the following broker operations:

 o The broker receives a request for a topic from a subscriber.

 o The broker receives a request for a publication to a topic from a

 publisher and forwards the request to the subscribers of the

 topic.

 We consider the setting where there is a security association between

 publisher and subscriber such that the publications can be protected

 during transfer, see Figure 10.

 ____________ __________ ___________

 | | | | | |

 | |----->| |<------| |

 | Subscriber | | Broker | | Publisher |

 | |<-----| |------>| |

 |____________| |__________| |___________|

 : :

 '--------------------------------------'

 Security Association

 Figure 10: Publisher-to-Subscriber Security

 Since there is no security association with the broker, we only

 consider the subscribe and publish functionality of the broker. Note

 that the broker needs to read the topic to accomplish this task.

3.1. Threats and Security Requirements

3.1.1. Subscriber-side

Selander, et al. Expires July 10, 2017 [Page 24]

Commented [DT29]: Grammar: “Many”

Commented [DT30]: Grammar: “apply”

Commented [DT31]: Why? This document claims to be
about “end-to-end” security.

Commented [DT32]: It’s cumbersome to see what the
deltas are between this and the proxy section.

Internet-Draft Requirements for CoAP End-To-End Security January 2017

 __________ __ _ _

 | | Request |

 | Sub- |---------->|

 | scriber | | Broker

 | |<----------|

 |__________| Response |__ _ _

 Figure 11: The Subscriber End

 The subscriber sends a subscription request to the broker and waits

 for a response.

 From the perspective of the subscriber, there are three possible

 flows:

 o The subscriber receives a response.

 Reasons include:

 * The broker duly processed the request and returns a response

 based on data it obtained from a publisher.

 * The subscriber made a bad request and the broker returns an

 error response accordingly (e.g., 4.04 Not Found).

 * The broker encountered an unexpected condition and returns an

 error response accordingly (e.g., 5.03 Service Unavailable).

 * (Threat 1:) The broker spoofs a response.

 * (Threat 2:) The broker duly processed the request but delays

 the return of a response.

 o The subscriber does not receive a response.

 Reasons include:

 * The subscriber times out too early.

 * (Threat 3:) The broker withholds a response.

 o The subscriber receives too many responses.

 Reasons include:

 * (Threat 4:) The broker floods the subscriber with responses.

 Furthermore, there are threats related to privacy:

 o (Threat 5:) The broker eavesdrops on the data in the request from

 the subscriber.

Selander, et al. Expires July 10, 2017 [Page 25]

Internet-Draft Requirements for CoAP End-To-End Security January 2017

 o (Threat 6:) The broker measures the size, frequency or

 distribution of requests from the subscriber.

 Note that "topic poisoning" -- the case of storing injected incorrect

 publications -- is covered from the point of view of the subscriber:

 it may result in the subscriber receiving a spoofed message, or being

 flooded, or affect other nodes such that the subscriber times out too

 early.

3.1.1.1. Threat 1: Spoofing

 With one exception (see below), this threat is REQUIRED to be

 mitigated by the security solution: the subscriber MUST verify that a

 response is an "authentic publication" before processing it.

 The definition of an "authentic publication" depends on the setting

 (Section 3.2), but usually means that the subscriber can obtain proof

 for some or all of the following things:

 o that the data matches the specifications of the request (such as

 the topic);

 o that the data originates from a publisher that is authorized to

 publish to the topic;

 o that the data has not been altered on the way between publisher

 and subscriber;

 o that the data is fresh (when the data is cacheable);

 o that the data is in sequence (when observing a topic).

 The proof can, for example, include a message authentication code

 that the proxy obtains from the origin server and includes in the

 response or an additional challenge-response roundtrip.

 Exception: A CoAP server like the broker is specified to return an

 error response (such as 4.04 Not Found or 5.03 Service

 Unavailable) when it encounters an error condition. Since the

 condition occurs at the broker and not at the publisher, the

 response will not be an "authentic response" according to the

 above definition. Thus, a subscriber cannot tell if the broker

 sends the error response according to specification or if it

 spoofs the response. This threat is NOT REQUIRED to be mitigated

 by the security solution.

Selander, et al. Expires July 10, 2017 [Page 26]

Internet-Draft Requirements for CoAP End-To-End Security January 2017

3.1.1.2. Threat 2: Delaying

 This threat is NOT REQUIRED to be mitigated by the security solution.

3.1.1.3. Threat 3: Withholding

 This threat is NOT REQUIRED to be mitigated by the security solution,

 since a subscriber cannot tell if the broker does not send a response

 because it is hasn't received a publication from the publisher yet or

 if it intentionally withholds the response.

3.1.1.4. Threat 4: Flooding

 A CoAP client like the subscriber is specified to reject any response

 that it does not expect. This can happen before the subscriber

 verifies if the response is authentic. Therefore, a flood of

 responses is primarily a threat to the system resources of the

 client, in particular to its energy. This threat is NOT REQUIRED to

 be mitigated by the security solution, but a subscriber SHOULD

 generally defend against flooding attacks.

3.1.1.5. Threat 5: Eavesdropping

 This threat is NOT REQUIRED to be mitigated: The broker needs to read

 all parts of the request from the subscriber to accomplish its task.

 It is RECOMMENDED that applications analyse the risks associated with

 application information leaking from the messages flow and assess the

 feasibility to protect against various threats, e.g., by obfuscating

 topic content.

3.1.1.6. Threat 6: Traffic Analysis

 This threat is NOT REQUIRED to be mitigated by the security solution.

 It is RECOMMENDED that applications analyse the risks associated with

 application information leaking from the messages flow and assess the

 feasibility to protect against various threats, e.g., by obfuscating

 parameters transported in plain text, aligning message flow and

 traffic between the different cases, adding padding so different

 messages become indistinguishable, etc.

3.1.2. Publisher-side

Selander, et al. Expires July 10, 2017 [Page 27]

Commented [DT33]: This is different from section
2.1.1.2. For any differences, it warrants an explanation why
the requirement is different.

Commented [DT34]: Again, explain why the requirement
level differs from 2.1.1.5.

Internet-Draft Requirements for CoAP End-To-End Security January 2017

 _ _ __ __________

 | Request | |

 |<----------| Pub- |

 Broker | | lisher |

 |---------->| |

 _ _ __| Response |__________|

 Figure 12: The Publisher End

 The publisher sends a publication request to the broker and waits for

 a response.

 The threat of the broker eavesdropping on the data in the publication

 request is REQUIRED to be mitigated by the security solution:

 publishers MUST confidentiality protect the data in the requests they

 send. This excludes parts that the broker needs to read to perform

 its job, e.g., the topic.

 The threat of the broker measuring the size, frequency or

 distribution of publication requests is NOT REQUIRED to be mitigated

 by the security solution; see Section 3.1.1.6.

 The broker is in full control of the response and may therefore

 arbitrarily spoof, delay, or withhold it. This threat is NOT

 REQUIRED to be mitigated. For example, a proof that the broker has

 notified all subscribers is NOT REQUIRED.

3.2. Solutions

3.2.1. Brokering

 In this case we study brokering: how a broker may serve the same

 publication to multiple subscribers observing the same topic.

 The brokering functionality protects communication-constrained

 publishers from repeated requests for the same resources, possibly

 originating from different subscribers. This saves system resources,

 bandwidth, and round-trip time.

Selander, et al. Expires July 10, 2017 [Page 28]

Commented [DT35]: This section is missing a lot of
details compared to sections 2.1.1, 2.1.2, and 3.1.1.

Internet-Draft Requirements for CoAP End-To-End Security January 2017

 Subscriber A Broker Publisher

 | | |

 | | Request |

 | .--|<--------------|

 | | | |

 | '->|-------------->|

 | | Response |

 | | |

 | Request | |

 |-------------->|--. |

 | | | from store |

 |<--------------|<-' |

 | Notification | |

 | | |

 | |

 Subscriber B | |

 | | |

 | Request | |

 |-------------->|--. |

 | | | from store |

 |<--------------|<-' |

 | Notification | |

 | | |

 | | Request |

 |<--------------|<--------------|

 | Notification | |

 | |-------------->|

 | | Response |

 | |

 Subscriber A | |

 | | |

 |<--------------| |

 | Notification | |

 | | |

 Figure 13: Message Flow for Publish Subscribe

 Example

 In Figure 13, the publisher publishes to a topic (e.g., the

 current reading of a temperature sensor). Multiple subscribers

 are interested in the current state of the topic and observe the

 topic as specified in [I-D.ietf-core-coap-pubsub]. The goal is to

 keep the state observed by the subscribers closely in sync with

 the actual state of the resource at the publisher. Another goal

 is to minimize the burden on the publisher by moving the task to

 fan out notifications to multiple subscribers from the publisher

 to the broker.

Selander, et al. Expires July 10, 2017 [Page 29]

Internet-Draft Requirements for CoAP End-To-End Security January 2017

3.2.1.1. Functional Requirements

 The security solution SHOULD protect subscription and publication

 requests in a way that a broker can perform the following tasks:

 FR3.1 Storing publications. This requires that the broker is able

 to read the topic of the request.

 FR3.2 Returning a stored publication without contacting the

 publisher.

3.2.1.2. Processing Rules

 The broker complies with the following rules:

 PR3.1 If the broker receives a request where the topic matches that

 of a cached publication, then the broker responds with that

 publication.

 PR3.2 The broker caches and forwards publication notifications.

3.2.1.3. Authenticity

 A publication is considered authentic by the subscriber if the

 subscriber can obtain proof for all all of the following things:

 A3.1 that the payload is associated to the topic;

 A3.2 that the payload has not been altered since published;

 A3.3 that the publication is in sequence.

3.2.1.4. Confidentiality

 The payload of a publication request is confidentiality protected.

4. Security Considerations

 This document is about security; as such, there are no additional

 security considerations.

5. IANA Considerations

 This document includes no request to IANA.

Selander, et al. Expires July 10, 2017 [Page 30]

Commented [DT36]: Redundantly redundant

Internet-Draft Requirements for CoAP End-To-End Security January 2017

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

 Application Protocol (CoAP)", RFC 7252,

 DOI 10.17487/RFC7252, June 2014,

 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained

 Application Protocol (CoAP)", RFC 7641,

 DOI 10.17487/RFC7641, September 2015,

 <http://www.rfc-editor.org/info/rfc7641>.

6.2. Informative References

 [I-D.ietf-core-coap-pubsub]

 Koster, M., Keranen, A., and J. Jimenez, "Publish-

 Subscribe Broker for the Constrained Application Protocol

 (CoAP)", draft-ietf-core-coap-pubsub-00 (work in

 progress), October 2016.

 [I-D.ietf-cose-msg]

 Schaad, J., "CBOR Object Signing and Encryption (COSE)",

 draft-ietf-cose-msg-24 (work in progress), November 2016.

 [I-D.mattsson-core-coap-actuators]

 Mattsson, J., Fornehed, J., Selander, G., and F.

 Palombini, "Controlling Actuators with CoAP", draft-

 mattsson-core-coap-actuators-02 (work in progress),

 November 2016.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer

 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for

 Constrained-Node Networks", RFC 7228,

 DOI 10.17487/RFC7228, May 2014,

 <http://www.rfc-editor.org/info/rfc7228>.

Selander, et al. Expires July 10, 2017 [Page 31]

Internet-Draft Requirements for CoAP End-To-End Security January 2017

Acknowledgments

 Thanks to Ari Keranen, John Mattsson, Jim Schaad and Ludwig Seitz for

 helpful comments and discussions that have shaped the document.

Authors' Addresses

 Goeran Selander

 Ericsson AB

 SE-164 80 Stockholm

 Sweden

 Email: goran.selander@ericsson.com

 Francesca Palombini

 Ericsson AB

 SE-164 80 Stockholm

 Sweden

 Email: francesca.palombini@ericsson.com

 Klaus Hartke

 Universitaet Bremen TZI

 Postfach 330440

 Bremen 28359

 Germany

 Phone: 421-218-63905

 Email: hartke@tzi.org

Selander, et al. Expires July 10, 2017 [Page 32]

