Abstract

The online problem of computing the top eigenvector is fundamental to machine learning. The famous matrix-multiplicative-weight-update (MMWU) framework solves this online problem and gives optimal regret. However, since MMWU runs very slow due to the computation of matrix exponentials, researchers proposed the follow-the-perturbed-leader (FTPL) framework which is faster, but a factor \sqrt{d} worse than the optimal regret for dimension-d matrices.

We propose a follow-the-compressed-leader framework which, not only matches the optimal regret of MMWU (up to polylog factors), but runs no slower than FTPL.

Our main idea is to “compress” the MMWU strategy to dimension 3 in the adversarial setting, or dimension 1 in the stochastic setting. This resolves an open question regarding how to obtain both (nearly) optimal and efficient algorithms for the online eigenvector problem.

1 Introduction

Finding leading eigenvectors of symmetric matrices is one of the most primitive problems in machine learning. In this paper, we study the online variant of this problem, which is a learning game between a player and an adversary [2, 14, 17, 22, 26].

Online Eigenvector Problem. The player plays T unit-norm vectors $w_1, \ldots, w_T \in \mathbb{R}^d$ in a row; after playing w_k, the adversary picks a feedback matrix $A_k \in \mathbb{R}^{d \times d}$ that is symmetric and satisfies $0 \preceq A_k \preceq I$. Both these assumptions are for the sake of simplicity and can be relaxed. The player then receives a gain

$$w_k^\top A_k w_k = A_k \bullet w_k w_k^\top \in [0, 1].$$

The regret minimization problem asks us the player to design a strategy to minimize regret, that is, the difference between the total gain obtained by the player and that by the a posteriori best fixed strategy $u \in \mathbb{R}^d$:

$$\min_{u \in \mathbb{R}^d} \max_{w \in \mathbb{R}^d} \sum_{k=1}^T w_k^\top A_k w_k - w_k^\top w_k.$$

A first arXiv version of this paper appeared on this date. This second version polishes writing and fixes typos.

1 We denote by $A \succeq B$ spectral dominance that is equivalent to saying that $A - B$ is positive semidefinite (PSD).

2 Firstly, all the results cited and stated in this paper, after scaling, generalize to the scenario when the eigenvalues of A_k are in the range $[l, r]$ for arbitrary $l, r \in \mathbb{R}$. For notational simplicity, we have assumed $l = 0$ and $r = 1$ in this paper. Secondly, if A_k is not symmetric or even rectangular, classical reductions can turn such a problem into an equivalent online game with only symmetric matrices (see Sec 2.1 of [17]).
The name comes from the fact that the player chooses only vectors in a row, but wants to compete against the leading eigenvector in hindsight. To make this problem meaningful, the feedback matrix A_k, is not allowed to depend on w_k but can depend on w_1, \ldots, w_{k-1}.

1.1 Known Results

The most famous solution to the online eigenvector problem is the *matrix multiplicative-weight-update (MMWU)* method, which has also been used towards efficient algorithms for SDP, balanced separators, Ramanujan sparsifiers, and even in the proof of $\text{QIP} = \text{PSPACE}$.

MMWU. At iteration k, define $W_k = \frac{\exp(\eta \Sigma_{k-1})}{\text{Tr}\exp(\eta \Sigma_{k-1})}$ where $\Sigma_{k-1} = A_1 + \cdots + A_{k-1}$ and $\eta > 0$ is the learning rate. Then, compute its eigencomposition

$$W_k = \frac{\exp(\eta \Sigma_{k-1})}{\text{Tr}\exp(\eta \Sigma_{k-1})} = \sum_{j=1}^d p_j \cdot y_j y_j^\top$$

where vectors y_j are normalized eigenvectors. Now, the MMWU strategy instructs the player to choose $w_k = y_j$ each with probability p_j. The best choice $\eta = \sqrt{\log d}/\sqrt{T}$ yields a total expected regret $O(\sqrt{T \log d})$ [27], and this is optimal up to constant [9]. It requires some additional, but standard, effort to turn this into a high-confidence result.

Unfortunately, the per-iteration running time of MMWU is at least $O(d^2)$ due to eigendecomposition, where d^2 is the complexity for multiplying two $d \times d$ matrices.\(^3\)

MMWU-JL. Some researchers also use the Johnson-Lindenstrauss (JL) compression to reduce the dimension of W_k from MMWU to make it more efficiently computable [3, 7, 23, 30]. Specifically, they compute a sketch matrix $Y = W_k^{1/2}Q$ using a random $Q \in \mathbb{R}^{d \times m}$, and then use $Y Y^\top$ to approximate W_k. If the dimension m is $O(1/\sigma^2)$, this compression inures an average regret loss of σ. We call this method MMWU-JL for short.\(^4\)

Unfortunately, to maintain a total regret $\tilde{O}(\sqrt{T})$, one must let $\sigma \approx T^{-1/2}$. Therefore, JL compresses the matrix exponential to dimension $\tilde{O}(T)$, and is only useful when $T \leq d$.

FTPL. Researchers also study the *follow-the-perturbed-leader (FTPL)* strategy [2, 14, 17, 22]. Most notably, Garber, Hazan and Ma [17] proposed to compute an (approximate) leading eigenvector of the matrix $\Sigma_{k-1} + r r^\top$ at iteration k, where r is a random vector whose norm is around \sqrt{dT}.

\(^3\)In fact, it is known that eigendecomposition has complexity $O(d^2)$ when all the eigenvalues are distinct, and could possibly go up to $O(d^3)$ when some eigenvalues are equal [29].

\(^4\)Through the paper, we use the \tilde{O} notation to hide polylogarithmic factors in T, d and $1/\varepsilon$ if applicable.
<table>
<thead>
<tr>
<th>Paper</th>
<th>Total Regret</th>
<th>Time Per Iteration</th>
<th>Minimum Total Time for ε Average Regreta</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMWU [7,9]</td>
<td>$\tilde{O}(\sqrt{T})$</td>
<td>at least $O(d^\omega)$</td>
<td>$\tilde{O}\left(\frac{d^\omega}{\varepsilon^2}\right)$</td>
</tr>
<tr>
<td>MMWU-JL [7,30] ($T \leq d$ only)</td>
<td>$\tilde{O}(\sqrt{T})$</td>
<td>$M^{\text{exp}} \times \tilde{O}(T)$</td>
<td>$\tilde{O}\left(\frac{1}{\varepsilon^2}\text{nnz}(\Sigma)\right)$</td>
</tr>
<tr>
<td>FTPL ($T \geq d$ only) [17]</td>
<td>$\tilde{O}(\sqrt{dT})$</td>
<td>$M^{\text{exp}} \times 1$</td>
<td>$\tilde{O}\left(\frac{d^{\omega}}{\varepsilon^2}\text{nnz}(\Sigma)\right)$</td>
</tr>
<tr>
<td>this paper</td>
<td>$\tilde{O}(\sqrt{T})$</td>
<td>$M^{\text{in}} \times \tilde{O}(1)$</td>
<td>$\tilde{O}\left(\frac{1}{\varepsilon^2}\text{nnz}(\Sigma)\right)$ and $\tilde{O}\left(\frac{1}{\varepsilon^2}\text{nnz}(\Sigma)^{3/4}\text{nnz}(A)^{1/4} + \frac{1}{\varepsilon^2}\text{nnz}(\Sigma)\right)$</td>
</tr>
<tr>
<td>block power method [17]</td>
<td>$\tilde{O}(\sqrt{T})$</td>
<td>$O(\text{nnz}(\Sigma))$</td>
<td>$\tilde{O}\left(\frac{1}{\varepsilon^2}\text{nnz}(\Sigma)\right)$</td>
</tr>
<tr>
<td>this paper</td>
<td>$\tilde{O}(\sqrt{T})$</td>
<td>$O(\text{nnz}(A))$</td>
<td>$\tilde{O}\left(\frac{1}{\varepsilon^2}\text{nnz}(A)\right)$</td>
</tr>
</tbody>
</table>

Table 1: Comparison of known methods for the online eigenvector problem. We denote by $\text{nnz}(M)$ the time needed to multiply M to a vector, by $\Sigma = A_1 + \cdots + A_T$, and by $\text{nnz}(A) = \max_{k \in [T]} \{\text{nnz}(A_k)\} \leq \text{nnz}(\Sigma)$.

- M^{exp} is the time to compute e^{-M} multiplied with a vector, where $M \in \mathbb{R}^{d \times d}$ satisfies $0 \preceq M \preceq \tilde{O}(T^{1/2}) \cdot I$.
- M^{ev} is the time to compute the leading eigenvector of matrix M to multiplicative accuracy $O(T^{-3/2} d^{1/2}) \in (0,1)$.
- M^{in} is the time to solve a linear system for matrix $M \in \mathbb{R}^{d \times d}$, where M is PSD and of condition number $\leq \tilde{O}(T^{1/2})$.
- If using iterative methods, the worst-case values $M^{\text{ev}}, M^{\text{exp}}, M^{\text{in}}$ are

 \[
 M^{\text{ev}} = \tilde{O}\left(\min\{T^{3/2} d^{-1/4} \text{nnz}(\Sigma), d^*\}\right) \geq M^{\text{exp}} = \tilde{O}\left(\min\{T^{1/2} \text{nnz}(\Sigma), d^*\}\right) \geq M^{\text{in}} = \tilde{O}\left(\min\{d, T^{1/4} \text{nnz}(\Sigma)\}, d^*\right),
 \]

 where d^* is the time needed to multiply two $d \times d$ matrices. If using stochastic iterative methods, M^{in} is at most $\tilde{O}\left(T^{1/4} \text{nnz}(\Sigma)^{3/4} \text{nnz}(A)^{1/4} + \frac{1}{\varepsilon^2}\text{nnz}(\Sigma)\right)$.

aThe total time complexity of the first T_ε rounds where T_ε is the earliest round to achieve an ε average regret.

Unfortunately, the total regret of FTPL is $\tilde{O}(\sqrt{dT})$, which is a factor \sqrt{d} worse than the optimum regret, and interesting only when $T \geq d$. This factor \sqrt{d} loss can indeed be realized in practice, see Figure 1. In theory, this $d^{1/2}$ factor loss is necessary at least for their proposed method [19].

1.2 Our Main Results

We propose a follow-the-compressed-leader (FTCL) strategy that, at a high level, compresses the MMWU strategy to dimension $m = 3$ as opposed to dimension $m = \Theta(T)$ in MMWU-JL. Our FTCL strategy has significant advantages over previous results because:

- FTCL has regret $\tilde{O}(\sqrt{T})$ which is optimal up to poly-log factors (as opposed to \sqrt{d} in FTPL).
- Each iteration of FTCL is dominated by solving a logarithmic number of linear systems.

Since solving linear systems is generally no slower than computing eigenvectors or matrix exponentials, the per-iteration complexity of FTCL is no slower than FTPL, and much faster than MMWU and MMWU-JL. We shall make this comparison more explicit in Section 3.

1.3 Our Side Result: Stochastic Online Eigenvector

We also study the special case of the online eigenvector problem where the adversary is stochastic, meaning that A_1, \ldots, A_T are chosen i.i.d. from a common distribution whose expectation equals some matrix B, independent of the player’s actions. For this problem,
- Garber et al. [17] showed a block power method gives a nearly-optimal total regret $O(\sqrt{T\log(dT)})$, and runs in $O(\text{nnz}(\Sigma_T))$ time per iteration. (We denote $\text{nnz}(M)$ the time to multiply M to a vector.)
- Shamir [32] showed Oja’s algorithm has a total regret $O(\sqrt{dT\log(T)})$, which is a factor \sqrt{d} worse than optimum.\(^5\)

In this paper, we show that Oja’s algorithm in fact only has a total regret $O(\sqrt{T\log d})$ for this stochastic setting, which is optimal up to a $\sqrt{\log d}$ factor. Most importantly, the k-th iteration of Oja’s runs in only $O(\text{nnz}(A_k))$ time.

Example. Since in low-rank or sparse cases it usually satisfies $\text{nnz}(\Sigma_T) = d^2$ and $\text{nnz}(A_k) = O(d)$, our result can be faster than block power method by a factor $O(d)$.

Our proof relies on a compression view of Oja’s algorithm which compresses MMWU to dimension $m = 1$. Our proof is one-paged, indicating that FTCL might be a better framework of designing online algorithms for matrices.

1.4 Our Results in a More Refined Language

Denoting by $\lambda \overset{\text{def}}{=} \frac{1}{\sqrt{T}}\lambda_{\text{max}}(A_1 + \cdots + A_T)$, we have $\lambda \leq 1$ according to the normalization $A_k \preceq I$. In general, the smaller λ is, the better a learning algorithm should behave. In the previous subsections, we have followed the tradition and discussed our results and prior works assuming the worst possibility of λ. This has indeed simplified notations.

If λ is much smaller than 1, our complexity bounds can be improved to quantities that depend on λ. We call this the λ-refined language. At a high level, for our FTCL, in both the adversarial and stochastic settings, the total regret improves from $O(\sqrt{T})$ to $O(\sqrt{\lambda T})$.

There is an information-theoretic lower bound of $\Omega(\sqrt{\lambda T})$ for the total regret in this λ-refined language, see Appendix J. This lower bound even holds for the simpler stochastic online eigenvector problem, even when the matrices A_k are of rank 1.

As for prior work, it has been recorded that (cf. Theorem 3.1 of [7]) the MMWU and MMWU-JL methods have total regret $O(\sqrt{\lambda T\log d})$. The block power method (for the stochastic setting) has total regret $\tilde{O}(\sqrt{\lambda T})$, by modifying the proof in [17]. To the best of our knowledge, FTPL has not been analyzed in the λ-refined language. We compare our results with prior work in Table 2 for this λ-refined language.

1.5 Other Related Works

The multiplicative weight update (MWU) method is a simple but extremely powerful algorithmic tool that has been repeatedly discovered in theory of computation, machine learning, optimization, and game theory (see for instance the survey [9] and the book [13]). Its natural matrix extension, matrix-multiplicative-weight-update (MMWU) [27], has been used towards efficient algorithms for solving semidefinite programs [3, 10, 30], balanced separators [28], Ramanujan sparsifiers [7, 23], and even in the proof of $\text{QIP} = \text{PSPACE}$ [20]. Some authors also refer to MMWU as the follow-the-regularized-leader strategy or FTRL for short, because MMWU can be analyzed from a mirror-descent view with the matrix entropy function as its regularizer [7].

\(^5\)Here is a simple description of Oja’s algorithm: beginning with a random Gaussian vector $u \in \mathbb{R}^d$, at each iteration k, choose u_k to be $(I + \eta A_{k-1}) \cdots (I + \eta A_1)u$ after normalization.

\(^6\)In the special case of A_k being rank-1, the $\tilde{O}(\sqrt{T})$ regret for Oja’s algorithm was recently shown by [4], using different techniques from us.
For the online eigenvector problem, if the feedback matrices A_k are only of rank-1, the $\tilde{O}(\sqrt{d}T)$ total regret of FTPL can be improved to $\tilde{O}(d^{1/4}T^{3/2})$. This is first shown by Dwork et al. [14] and independently by Kotlowski and Warmuth [22]. However, this $d^{1/4}$ factor for the rank-1 case and the $d^{1/2}$ factor for the high-rank case are tight at least for their proposed FTPL methods [19]. Abernethy et al. showed FTPL strategies can be analyzed using a FTRL framework [1].

Researchers also put efforts to understand high-rank variants of the online eigenvector problem. Nie et al. studied the high-rank variant using MMWU [26], but their per-iteration complexity is also high due to eigendecomposition. Some authors study a very different online model for computing the top k eigenvectors [11, 21]: they wish to output $O(k \cdot \text{poly}(1/\varepsilon))$ vectors instead of k but with a good PCA reconstruction error.

The stochastic online eigenvector problem is related but different from streaming PCA [4, 18]. In streaming PCA, we are given i.i.d. random matrices with an expectation B and asked to find a unit vector w with large $w^\top B w$ in the end, without worrying about the per-iteration gain. The two papers [4, 18] use different techniques from ours and do not imply our result on stochastic online eigenvector.

For the most efficient offline eigenvectors algorithms, we refer interested readers to our paper [5] (for PCA / SVD) and [6] (for CCA and generalized eigendecomposition).

1.6 Roadmap

We introduce notations in Section 2, and compare the per-iteration complexity of FTCL to prior work in Section 3. We discuss high-level intuitions and techniques in Section 4. We introduce a new trace inequality in Section 5, and prove our main FTCL result for an oblivious adversary in Section 6. We extend it to the adversarial setting in Section 7, and discuss how to implement FTCL fast in Section 8. Finally, in Section 9 we provide our FTCL result for a stochastic adversary.

Our results are stated directly in the λ-refined language.

2 Notations and Preliminaries

Define $\Sigma_k \overset{\text{def}}{=} \sum_{i=1}^k A_i$ for every $k = 0, 1, \ldots, T$. Since each A_k is positive semi-definite (PSD), we can find $P_k \in \mathbb{R}^{d \times d}$ such that $A_k = P_k P_k^\top$; we only use P_k for analysis purpose only. Given two matrices $A, B \in \mathbb{R}^{d \times d}$, we write $A \bullet B \overset{\text{def}}{=} \text{Tr}(A^\top B)$. We write $A \succeq B$ if A, B are symmetric matrices and $A - B$ is PSD. We write $[A]_{i,j}$ the (i,j)-th entry of A. We use $\|M\|_2$ to denote the spectral norm of a matrix M. We use $\text{nnz}(M)$ to denote time needed to multiply matrix $M \in \mathbb{R}^{d \times d}$ with an arbitrary vector in \mathbb{R}^d. In particular, $\text{nnz}(M)$ is at most d plus the number of non-zero elements in M. We denote $\text{nnz}(A) \overset{\text{def}}{=} \max_{k \in [T]} \{ \text{nnz}(A_k) \}$.

Suppose $x_1, \ldots, x_t \in \mathbb{R}$ are drawn i.i.d. from the standard Gaussian $\mathcal{N}(0, 1)$, then $\chi = \sum_{i=1}^t x_i^2$ has a chi-squared distribution of t-degree freedom. χ^{-1} is called inverse-chi-squared distribution of t-degree freedom. It is known that $E[\chi^{-1}] = \frac{1}{t-2}$ for $t \geq 3$.

3 Detailed Comparison to Prior Work

We compare the per-iteration complexity of our results more closely to prior work.

In the stochastic setting, Oja’s method runs in time $\text{nnz}(A_k)$ for iteration k, and therefore is clearly faster than the block power method which runs in time $\text{nnz}(\Sigma_k)$.

In the adversarial setting, it is clear that the per-iteration complexities of FTPL and FTCL are no greater than MMWU, because computing the leading eigenvector and the matrix inversion are
both faster than computing the full eigendecomposition. In the rest of this section, we compare MMWU-JL, FTPL and FTCL more closely. They respectively have per-iteration complexities

$$\widetilde{O}(T) \times M^{\text{exp}}, \ 1 \times M^{\text{ev}}, \ \text{and} \ \widetilde{O}(1) \times M^{\text{lin}}$$

where

- In MMWU-JL, we denote by M^{exp} the time needed for computing $\exp(\eta \Sigma_{k-1}/2)$ multiplied to a vector. Recall that $\eta = \widetilde{\Theta}(T^{-1/2})$.
- In FTPL, following the tradition, we denote by M^{ev} the time needed for computing the top eigenvector of $\Sigma_{k-1} + rr^\top$, where the norm of r is $O(\sqrt{dT})$.
- In FTCL, we denote by M^{lin} the time needed for solving a linear system with matrix $M = cI - \eta \Sigma_{k-1}$, where $M \geq \frac{1}{c}I$ and $\eta = \Theta(T^{-1/2})$.

For exact computations, one may generally derive that $M^{\text{exp}} \geq M^{\text{ev}} \geq M^{\text{lin}}$. However, for large-scale applications, one usually applies iterative methods for the three tasks. Iterative methods utilize matrix sparsity, and have running times that depend on matrix properties.

Worst-case Complexity. We compute that:

- M^{exp} in the worst case is $\widetilde{O}(\min\{T^{1/4} \text{nnz}(\Sigma_T), d^e\})$.

 The first is because if using Chebyshev approximation, one can compute $\exp(\eta \Sigma_{k-1}/2)$ applied to a vector in time at most $\widetilde{O}(\|\eta \Sigma_{k-1}\|_2^{1/2} \cdot \text{nnz}(\Sigma_{k-1}))$. The second is because one can compute the singular value decomposition of Σ_{k-1} in time $\widetilde{O}(d^e)$ and then compute the matrix $\exp(\eta \Sigma_{k-1}/2)$ directly.

- M^{ev} in the worst case is $\widetilde{O}(\min\{T^{3/4} d^{-1/4} \text{nnz}(\Sigma_T), d^e\})$.

 The first is so because, as proved in [17], if one applies Lanczos method, this is in time $\widetilde{O}(T^{3/4} d^{-1/4} \text{nnz}(\Sigma_T))$. (Recall that it only works when $T \geq d$). The second is because the leading eigenvector of a $d \times d$ matrix can be computed directly in time $O(d^e)$.

- M^{lin} in the worst case is $\widetilde{O}(\min\{T^{1/2}, d\} \text{nnz}(\Sigma_T), d^e)$.

 The first is because our matrix M has a condition number (i.e., $\lambda_{\text{max}}(M)/\lambda_{\text{min}}(M)$) at most $O(\eta T) = \widetilde{O}(T^{1/2})$. If using conjugate gradient [33], one can solve a linear system for M in time at most $\widetilde{O}(\min\{T^{1/2}, d\} \text{nnz}(\Sigma_T))$. The second is because the inverse of a $d \times d$ matrix can be computed directly in time $O(d^e)$ [12].

- M^{lin} can be improved to $\widetilde{O}(\min\{T^{1/2} \text{nnz}(\Sigma_T)^{3/4} \text{nnz}(A)^{1/4} + \text{nnz}(\Sigma_T), d^e\})$ if using stochastic iterative methods.

In sum, if using iterative methods, the worst case values of $M^{\text{lin}}, M^{\text{ev}}, M^{\text{exp}}$ are on the same magnitude. Since the per-iteration cost of FTCL is only $\widetilde{O}(M^{\text{lin}})$, this is no slower than $O(M^{\text{ev}})$ of FTPL, and much faster than $O(T \times M^{\text{exp}})$ of MMWU-JL.

Practical Complexity. There are many algorithms to compute leading eigenvectors, including Lanczos method, shift-and-invert, and the (slower) power method. The performance may depend on other properties of the matrix, including “how well-clustered the eigenvalues are.”

There are also numerous ways to compute matrix inversions, including conjugate gradient, accelerated coordinate descent, Chebyshev method, accelerated SVRG, and many others. Some of them also run faster when the eigenvalues form clusters [33].

7A multiplicative error δ means to find x such that $x^\top (\Sigma_{k-1} + rr^\top)x \geq (1 - \delta) \lambda_{\text{max}}(\Sigma_{k-1} + rr^\top)$.

In particular, for a random Gaussian matrix Σ_{k-1} (with dimension $100 \sim 5000$), using the default scientific package SciPy of Python, M^{ev} is roughly 3 times of M^{lin}.

Total Worst-Case Complexity. Since FTPL requires d times more iterations in order to achieve the same average regret as FTCL or MMWU, in the last column of Table 1, we also summarize the minimum total time complexity needed to achieve an ε average regret.

| Examples. If $\text{nnz}(\Sigma_T) = d^2$ and $\text{nnz}(A) = O(d)$, the total complexity needed to achieve an ε average regret: $\tilde{O}(d^2\varepsilon^{-2} + d^{1.75}\varepsilon^{-2.5})$ (by us) vs. $\tilde{O}(d^2\varepsilon^{-4.5})$ (by MMWU-JL) or $\tilde{O}(d^2\varepsilon^{-2})$ (by MMWU). |

| **λ-refined setting.** In the λ-refined setting, one can revise the complexity bounds accordingly. |

For the three methods FTCL, MMWU and MMWU-JL, the optimal learning rate η becomes $\tilde{O}((\lambda T)^{-1/2})$ in this setting, and they achieve an average ε regret in at most $T = \tilde{O}(\lambda/\varepsilon^2)$ iterations. The running time of MMWU therefore improves by a factor of λ.

As for MMWU-JL, the worst-case value M^{exp} is $\tilde{O}((\|\eta\Sigma_T\|_2^2 \cdot \text{nnz}(\Sigma))$ if using conjugate gradient, and this spectral norm $\|\eta\Sigma_T\|_2 \leq O(\|\eta\Sigma_T\|_2) \leq O(\eta\lambda T) = O(\lambda/\varepsilon)$. Moreover, the compressed dimension of MMWU-JL must be $\tilde{O}(\varepsilon^{-2})$ in order to achieve an ε average regret. This gives a per-iteration worst-case complexity $\tilde{O}(\lambda^{1/2}\varepsilon^{-5/2}\text{nnz}(\Sigma))$ and thus a total complexity of $\tilde{O}(\lambda^{1.5}\varepsilon^{-4.5}\text{nnz}(\Sigma))$.

As for our FTCL, the worst-case value M^{lin} depends on the condition number of the matrix $M = cI - \eta\Sigma_{k-1}$ we invert at each iteration. The condition number of M is at most $\|\eta\Sigma_T\|_2 \leq O(\lambda/\varepsilon)$, so the per-iteration worst-case complexity is $\tilde{O}(\lambda^{1/2}\varepsilon^{-1/2}\text{nnz}(\Sigma))$ if using conjugate gradient, and the total complexity is $\tilde{O}(\lambda^{1.5}\varepsilon^{-2.5}\text{nnz}(\Sigma))$. Alternatively, if one uses the accelerated SVRG method to compute this inversion, the per-iteration worst-case complexity is $\tilde{O}(\sqrt{T}\text{nnz}(\Sigma)^3/\text{nnz}(A)^2 + \text{nnz}(\Sigma)) = \tilde{O}(\varepsilon^{-0.5}\text{nnz}(\Sigma)^{3/2}\text{nnz}(A)^{1/2} + \text{nnz}(\Sigma))$.

4 High-Level Discussion of Our Techniques

Revisit MMWU. We first revisit the high-level idea behind the proof of MMWU. Recall $W_k = \exp(c_k I + \eta\Sigma_{k-1})$ where c_k is the unique constant such that $\text{Tr}W_k = 1$. The main proof step (see for instance [7, Theorem 3.1]) is to use the equality $\text{Tr}W_k = \text{Tr}W_{k+1} = 1$ to derive a relationship between $c_k - c_{k+1}$ and the gain value $W_k \cdot A_k$ at this iteration.

More specifically, using the Golden-Thompson inequality we have

$$\text{Tr}(e^{c_k I + \eta\Sigma_k}) \leq \text{Tr}(e^{c_k I + \eta\Sigma_{k-1} e^{\eta A_k}}) = \text{Tr}(W_k e^{\eta A_k}) \approx \text{Tr}(e^{c_k I + \eta\Sigma_{k-1}}) + \eta W_k \cdot A_k .$$

One can also use convexity to show

$$\text{Tr}(e^{c_{k+1} I + \eta\Sigma_k}) - \text{Tr}(e^{c_k I + \eta\Sigma_k}) \leq c_{k+1} - c_k .$$

Adding these two inequalities, and using the fact that $\text{Tr}W_k = \text{Tr}W_{k+1} = 1$, we immediately have $c_k - c_{k+1} \lesssim \eta W_k \cdot A_k$. In other words, the gain value $W_k \cdot A_k$ at iteration k, up to a factor η, is lower bounded by the decrement of c_k. On the other hand, it is easy to see $c_1 - c_{T+1} \geq \eta\lambda_{\text{max}}(\Sigma_T) - O(\log d)$ from $c_1 = -\log d$ and the definition of c_{T+1}. Together, we can derive that

$$\sum_{k=1}^T W_k \cdot A_k \gtrsim \lambda_{\text{max}}(\Sigma_T) .$$

In the rest of this section, we perform a thought experiment to “modify” the above MMWU analysis step-by-step. In the end, the intuition of our FTCL shall become clear to the reader.
Thinking Step 1. We wish to choose a random Gaussian vector \(u \in \mathbb{R}^d \) and “compress” MMWU to dimension 1 in the direction of \(u \). More specifically, we define \(W_k = \exp(c_k I + \eta \Sigma_{k-1}) \) but this time \(c_k \) is the unique constant such that \(\text{Tr}(W_k uu^\top) = \text{Tr}(u^\top W_k u) = 1 \). In such a case, we wish to say that

\[
\text{Tr}(e^{c_k I + \eta \Sigma_{k-1}} uu^\top) = \text{Tr}(e^{c_k I + \eta \Sigma_{k-1} + \eta A_k} uu^\top) = \text{Tr}(W_k^{1/2} uu^\top W_k^{1/2} e^{\eta A_k}) \approx \text{Tr}(W_k uu^\top) + \eta \text{Tr}(W_k uu^\top) = 1.
\]

If the above inequality were true, then we could define \(w_k = W_k^{1/2} u \) which is a unit vector (because \(\text{Tr}(W_k uu^\top) = 1 \)) and the gain \(w_k^\top A_k w_k = w_k^\top W_k^{1/2} \cdot A_k W_k^{1/2} \) would again be proportional to the change of this new potential function \(\text{Tr}(e^{c_k I + \eta \Sigma_{k-1} uu^\top}) \). This idea almost worked except that inequality (*) is false due to the non-commutativity of matrices.\(^8\)

Perhaps the most “immediate” idea to fix this issue is to use the randomness of \(uu^\top \) (or if we denote by \(B \) its Taylor series). For every \(A \), we can make almost independent from \(u \) if we replace \(uu^\top \) with \(QQ^\top \) where \(Q \) is a random \(d \times m \) matrix for some very large \(m \). That was the main idea behind MMWU-JL.\(^9\)

Thinking Step 2. Since Gaussian vectors are rotationally invariant, we switch wlog to the eigenbasis of \(\Sigma_{k-1} \) so \(W_k \) is a diagonal matrix. We make an important observation\(^10\)

\[
c_k \text{ depends only on } |u_1|, \ldots, |u_d|, \text{ but not on the } 2^d \text{ possible signs of } u_1, \ldots, u_d.
\]

For this reason, we can fix a diagonal matrix \(D \) and consider all random \(uu^\top \) which agree with \(D \) on its diagonal.\(^11\) All of such vectors \(u \) give the same normalization constant \(c_k \), and it satisfies \(\mathbb{E}[uu^\top|D] = D \). This implies that we can now study the conditional expected potential change

\[
\mathbb{E}\left[\text{Tr}(e^{c_k I + \eta \Sigma_{k-1}} uu^\top) - \text{Tr}(e^{c_k I + \eta \Sigma_{k-1}} uu^\top)|D \right] = \text{Tr}(e^{c_k I + \eta \Sigma_{k-1}} D) - \text{Tr}(e^{c_k I + \eta \Sigma_{k-1}} D),
\]

or if we denote by \(B = c_k I + \eta \Sigma_{k-1} \), we want to study the difference \(\text{Tr}(e^{B + \eta A_k} D) - \text{Tr}(e^{BD}) \) only in the special case that \(D \) and \(B \) are simultaneously diagonalizable.

Thinking Step 3. A usual way to bound \(\text{Tr}(e^{B + \eta A_k} D) - \text{Tr}(e^{BD}) \) is to define \(f(\eta) \stackrel{\text{def}}{=} \text{Tr}(e^{B + \eta A_k} D) \) and bound \(f(\eta) \) by its Taylor series \(f(0) + f'(0)\eta + f''(0)\eta^2 + \cdots \). The zero-order derivative \(f(0) \) is \(\text{Tr}(e^{BD}) \). The first-order derivative \(f'(0) = \text{Tr}(A_k e^{BD}) = e^{B/2} D e^{B/2} \cdot A_k \) behaves exactly in the way we hope, and this strongly relies on the commutativity between \(B \) and \(D \). Unfortunately, higher-order derivatives \(f^{(k)}(0) \) benefit less and less from the commutativity between \(B \) and \(D \) due to the existence of terms such as \(A_k e^{BD} e^{BD} A_k D \). For this reason, we need to (1) truncate the Taylor series and (2) use different analytic tools. This motivates us to use the following regime that can be viewed as a “low-degree” version of MMWU:

A Quick Detour. In a recent result, the authors of \(^7\) generalized MMWU to \(\ell_{1-1/q} \) regularized strategies. For every \(q \geq 2 \), they define \(X_k = (c_k I - \eta \Sigma_{k-1})^{-q} \) where \(c_k \) is the unique constant such

8A analogy for this effect can be found in the inequality \(\text{Tr}(e^A) \leq \text{Tr}(e^B) \) for every \(A \preceq B \). This inequality becomes false when multiplied with \(uu^\top \) and in general \(e^A \preceq e^B \) is false.

9In fact, \(c_k \) can be made almost independent from \(u \) if we replace \(uu^\top \) with \(QQ^\top \) where \(Q \) is a random \(d \times m \) matrix for some very large \(m \). That was the main idea behind MMWU-JL.

10This is because, \(\text{Tr}(e^{c_k I + \eta \Sigma_{k-1}} uu^\top) = \sum_{i=1}^d \langle u_i, e^{c_k I + \eta \lambda_i} \rangle \) where \(\lambda_i \) is the \(i \)-th eigenvalue of \(\Sigma_{k-1} \).

11That is, all random \(uu^\top \) such that \(\|u_i\|_2^2 = D_{i,i} \) for each \(i \in [d] \). For simplicity we also denote this event as \(D \).
that $c_k I - \eta \Sigma_{k-1} \succ 0$ and $\text{Tr} X_k = 1$. This is a generalization of MMWU because when $q \approx \log d$, the matrix X_k behaves nearly the same as W_k; in particular, it gives the same regret bound. The analysis behind this new strategy is to keep track of the potential change in $\text{Tr}((c_k I - \eta \Sigma_{k-1})^{-(q-1)})$ as opposed to $\text{Tr}(e^{\eta I + \Sigma_{k-1}})$, and then use the so-called Lieb-Thirring inequality (see Section 5) to replace the use of Golden-Thompson. (Note that c_k is chosen with respect to q but the potential is with respect to $q - 1$.)

Thinking Step 4. Let us now replace MMWU strategies in our Thinking Steps 1,2,3 with $\ell_{1 - 1/q}$ regularized strategies. Such strategies have two advantages: (1) they help us overcome the issue for higher-order terms in Thinking Step 3, and (2) solving linear systems is more efficient than computing matrices exponentials. We shall choose $q = \Theta(\log(dT))$ in the end.

Specifically, we prepare a random vector u and define the normalization constant c_k to be the unique one satisfying $\text{Tr}((c_k I - \eta \Sigma_{k-1})^{-q} uu^\top) = \text{Tr}(X_k uu^\top) = 1$. At iteration k, we let the player choose strategy $X_k^{1/2} u$ which is a unit vector.

If one goes through all the math carefully (using Woodbury formula), this time we are entitled to upper bound the trace difference of the form $\text{Tr}((B + \eta C)^{-q} D) - \text{Tr}(B^{-q} D)$ where D is simultaneously diagonalizable with B but not C. Similar to Thinking Step 3, we can define $f(\eta) \eqdef \text{Tr}((B + \eta C)^{-q} D)$ and bound this polynomial $f(\eta)$ using its Taylor expansion at point 0. Commutativity between B and D helps us compute $f'(0) = (q - 1) \text{Tr}(B^{-q} CD)$ but again we cannot bound higher-derivatives directly. Fortunately, this time $f(\eta)$ is a degree $q - 1$ polynomial so we can use Markov brothers’ inequality to give an upper bound on its higher-order terms. This is the place we lose a few extra polylogarithmic factors in the total regret.

Thinking Step 5. Somehow necessarily, even the second-order derivative $f''(0)$ can depend on terms such as $1/D_{ii}$ where $D_{ii} = |u_i|^2$ is the i-th diagonal entry of D. This quantity, over the Gaussian random choice of u_i, does not have a bounded mean. More generally, the inverse chi-squared distribution with degree t (recall Section 2) has a bounded mean only when $t \geq 3$. For this reason, instead of picking a single random vector $u \in \mathbb{R}^d$, we need to pick three random vectors $u_1, u_2, u_3 \in \mathbb{R}^d$ and replace all the occurrences of uu^\top with $\frac{1}{3}(u_1 u_1^\top + u_2 u_2^\top + u_3 u_3^\top)$ in the previous thinking steps. As a result, each D_{ii} becomes a chi-squared distribution of degree 3 so the issue goes away. This is why we claimed in the introduction that

we can compress MMWU to dimension 3.

Remark. By losing a polylog factor in regret, one can compress it further to dimension 2. This is because the mean of the inverse chi-squared distribution with degree 2, if truncated at some large value v, is only $\log(v)$. However, this “truncated mean” becomes $\Omega(\sqrt{v})$ for degree 1.

Thinking Step 6. Putting together previous steps, we obtain a FTCL strategy with total regret $O(\sqrt{T \log^2(dT)})$, which is worse than MMWU only by a factor $O(\log^{2.5}(dT))$. We call this method FTCL^{obl} and include its analysis in Section 6. However, FTCL^{obl} only works for an oblivious adversary (i.e., when A_1, \ldots, A_T are fixed a priori) and gives an expected regret. To turn it into a robust strategy against adversarial A_1, \ldots, A_T, and to make the regret bound work with high confidence, we need to re-sample u_1, u_2, u_3 every iteration. We call this method FTCL^{adv}. A careful but standard analysis with Azuma inequality helps us reduce FTCL^{adv} to FTCL^{obl}. We state this result in Section 7.

Running Time. As long as q is an even integer, the computation of $((c_k I - \eta \Sigma_{k-1})^{-1}$ applied to a vector” (or in other words, solving linear systems) becomes the bottleneck for each iteration.

\footnote{The name “$\ell_{1 - 1/q}$ strategies” comes from the following fact. Recall MMWU naturally arises as the follow-the-regularized-leader strategy, where the regularizer is the matrix entropy. If the entropy function is replaced with a negative $\ell_{1 - 1/q}$ norm, the resulting strategy becomes X_k. We encourage interested readers to see the introduction of [7] for more background, but we shall make this present paper self-contained.}
of FTCL^{obl} and FTCL^{adv}. However, as long as $q \geq \Omega(\log(dT))$, we show that the condition number of the matrix $c_k I - \eta \Sigma_{k-1}$ is at most $\eta T = \Theta(T^{1/2})$. Conjugate gradient solves each such linear system in worst-case time $O(\min\{T^{1/4}, d\} \times \text{nnz}(\Sigma_{k-1}))$.

Compress to 1-d in Stochastic Online Eigenvector. If the adversary is stochastic, we observe that Oja’s algorithm corresponds to a potential function $\text{Tr}((I + \eta A_k) \cdots (I + \eta A_1)(I + \eta \Lambda_k))$. Because the matrices are drawn from a common distribution, this potential behaves similar to the matrix exponential but compressed to dimension 1, namely $\text{Tr}(e^{\eta(A_1 + \cdots + A_k)u u^T})$.

In fact, just using linearity of expectation carefully, one can both upper and lower bound this potential. We state this result in Section 9 (and it can be proved in one page!)

5 A New Trace Inequality

Prior work on MMWU and its extensions rely heavily on one of the following trace inequalities [7]:

Golden-Thompson inequality: $\text{Tr}(e^{A + \eta B}) \leq \text{Tr}(e^A e^{\eta B})$

Lieb-Thirring inequality: $\text{Tr}((A + \eta B)^k) \leq \text{Tr}(A^{k/2}(I + \eta A^{-1/2}BA^{-1/2})^k A^{k/2})$.

Due to our compression framework in this paper, we need inequalities of type

$$\text{Tr}(e^{A + \eta B} D) \leq \text{Tr}(e^B e^{A/2} De^{A/2})$$

and

$$\text{Tr}((A + \eta B)^k D) \leq \text{Tr}((I + \eta A^{-1/2}BA^{-1/2})^k A^{k/2}DA^{k/2})$$

which look almost like “generalizations” of Golden-Thompson and Lieb-Thirring (by setting $D = I$). Unfortunately, such generalizations do not hold for an arbitrary D. For instance, if the first “generalization” holds for every PSD matrix D then it would imply $e^{A + \eta B} \preceq e^{A/2} e^{\eta B} e^{A/2}$, which is a false inequality due to matrix non-commutativity.

In this paper, we show that if D is commutative with A, then the “generalization” (5.1) holds for the zeroth and first order terms with respect to η. As for higher order terms, we can control it using Markov brothers’ inequality. (Proof in Appendix B.)

Lemma 5.1. For every symmetric matrices $A, B, D \in \mathbb{R}^{d \times d}$, every integer $k \geq 1$, every $\eta^* \geq 0$, and every $\eta \in [0, \eta^*/k^2]$, if A and D are commutative, then

$$(A + \eta B)^k \cdot D - A^k \cdot D \preceq k \eta B \cdot A^{k-1} D + \left(\frac{\eta k^2}{\eta^*}\right)^2 \max_{\eta' \in [0, \eta^*]} \left\{ (A + \eta' B)^k \cdot D - A^k \cdot D \right\}.$$

6 Oblivious Online Eigenvector + Expected Regret

In this section we first focus on a simpler oblivious setting. A_1, \ldots, A_T are T PSD matrices chosen by the adversary in advance, and they do not depend on the player’s actions in the T iterations. We are interested in upper bounding the total expected regret

$$\lambda_{\max}(\sum_{k=1}^T A_k) - \sum_{k=1}^T \mathbb{E}[w_k^T A_k w_k],$$

where the expectation is over player’s random choices $w_k \in \mathbb{R}^d$ (recall $\|w_k\|_2 = 1$).

In Section 7, we generalize this result to the full adversarial setting along with high-confidence regret.

Our algorithm FTCL^{obl} is presented in Algorithm 1. It is parameterized by an even integer $q \geq 2$ and a learning rate $\eta > 0$. It initializes with a rank-3 Wishart random matrix U. For every
Algorithm 1 \texttt{FTCL}^{obl}(T, q, \eta)\footnote{This c_k is unique because $\text{Tr}(X_\eta)U$ is a strictly decreasing function for $c_k > \eta \lambda_{\max}(\Sigma_{k-1})$.}

Input: T, number of iterations; $q \geq 2$, an even integer, \texttt{thesis-predicted choice $q = \Theta(\log(dT))$} \texttt{theory-predicted choice $\eta = \log^{-3}(dT)/\sqrt{\lambda_{\max}(\Sigma_T)}$} \texttt{theory-predicted choice $\eta = \log^{-3}(dT)/\sqrt{\lambda_{\max}(\Sigma_T)}$}

1: Choose $u_1, u_2, u_3 \in \mathbb{R}^d$ where the $3d$ coordinates are i.i.d. drawn from $\mathcal{N}(0, 1)$.
2: $U \leftarrow \frac{1}{3}(u_1 u_1^\top + u_2 u_2^\top + u_3 u_3^\top)$.
3: for $k \leftarrow 1$ to T do
4: $\Sigma_{k-1} = \sum_{i=1}^{k-1} A_i$
5: Denote by $X_k \leftarrow (c_k I - \eta \Sigma_{k-1})^{-q}$ where c_k is the unique constant satisfying that $c_k I - \eta \Sigma_{k-1} > 0$ and $\text{Tr}(X_k U) = 1$.
6: Compute $X_k^{1/2} U X_k^{1/2} = \sum_{j=1}^3 p_j \cdot y_j y_j^\top$ where y_1, y_2, y_3 are orthogonal unit vectors in \mathbb{R}^d.
7: Choose $w_k \leftarrow y_j$ with probability p_j. \texttt{it satisfies $p_1, p_2, p_3 \geq 0$ and $p_1 + p_2 + p_3 = 1$}.
8: Play strategy w_k and receive matrix A_k.
9: end for

$k \in [T+1]$, we denote by $X_k^{def} = (c_k I - \eta \Sigma_{k-1})^{-q}$ where $c_k > 0$ is the unique constant s.t. $c_k I - \eta \Sigma_{k-1} > 0$ and $\text{Tr}(X_k U) = 1$.

At iteration $k \in [T]$, the player plays a random unit vector w_k, among the three eigenvectors of $X_k^{1/2} U X_k^{1/2}$. It satisfies $\mathbb{E}[w_k w_k^\top] = X_k^{1/2} U X_k^{1/2}$.

We prove the following theorem in this paper for the total regret of $\texttt{FTCL}^{obl}(T, q, \eta)$.

Theorem 1. In the online eigenvector problem with an oblivious adversary, there exists absolute constant $C > 1$ such that if $q \geq 3 \log(2dT)$ and $\eta \in \left[0, \frac{1}{11T}\right]$, then $\texttt{FTCL}^{obl}(T, q, \eta)$ satisfies

$$\sum_{k=1}^{T} \mathbb{E} \left[w_k^\top A_k w_k \right] = \sum_{k=1}^{T} \mathbb{E} \left[A_k \bullet X_k^{1/2} U X_k^{1/2} \right] \geq (1 - C \cdot \eta q^5 \log(dT)) \lambda_{\max}(\Sigma_T) - \frac{4}{\eta} .$$

Corollary 6.1. If $q = 3 \log(2dT)$ and $\eta = \Theta\left(\frac{\log^{-3}(dT)}{\sqrt{\lambda_{\max}(\Sigma_T)}} \right)$

$$\sum_{k=1}^{T} \mathbb{E} \left[w_k^\top A_k w_k \right] \geq \lambda_{\max}(\Sigma_T) - O\left(\sqrt{\lambda_{\max}(\Sigma_T) \log^3(dT)} \right),$$

(\lambda\text{-refined language})

or choosing the same q but $\eta = \Theta(\log^{-3}(dT)/\sqrt{T})$ we have

$$\sum_{k=1}^{T} \mathbb{E} \left[w_k^\top A_k w_k \right] \geq \lambda_{\max}(\Sigma_T) - O\left(\sqrt{T \log^3(dT)} \right).$$

(general language)

As discussed in Section 4 our proof of Theorem 1 relies on a careful analysis on how the potential function $\text{Tr}(X_k^{1-1/q} U) = \text{Tr}((c_k I - \eta \Sigma_{k-1})^{-(q-1)} U)$ changes across iterations. We analyze this potential increase in two steps: in the first step we replace Σ_{k-1} with Σ_k, and in the second step we replace c_k with c_{k+1}. After appropriate telescoping, we can derive the result of Theorem 1.

We now discuss the details in the subsequent sections.

6.1 Well-Behaving Events

Due to concentration reasons, the potential increase could only be “reasonably” bounded for well-behaved matrices U. We now make this definition formal. Given some parameter $\delta > 0$ that we shall later choose to be $1/T^3$, we introduce the following event:
Definition 6.2. For every $k \in \{0, 1, \ldots, T\}$, define event

$$
E_k(U) \stackrel{def}{=} \left\{ \nu_1^\top U \nu_1 \geq \delta \text{ and } \forall i \in [d]: \nu_i^\top U \nu_i \leq 2 \log \frac{ed}{\delta} \right\}
$$

where ν_1, \ldots, ν_d are the eigenvectors of Σ_k with non-increasing eigenvalues. Let $E_{<j}(U) \stackrel{def}{=} \bigwedge_{k=0}^{j-1} E_k(U)$.

Intuitively, event $E_k(U)$ makes sure that the matrix U is “well-behaved” in the eigenbasis of Σ_k: (1) it has a non-negligible first coordinate $\nu_1^\top U \nu_1$, and (2) each coordinate $\nu_i^\top U \nu_i$ is no more than logarithmic. Using tail bounds for Gaussian distributions, it is not hard to show that this event occurs with probability at least $1 - \delta$ (see Appendix C):

Lemma 6.3. $\Pr_U[E_k(U)] \geq 1 - \delta$ for all $k = 0, 1, \ldots, T$.

Under event $E_{k-1}(U)$, the barrier c_k and the matrix X_k satisfy the following nice properties. (Their proofs are manipulations of matrix algebra and in Appendix C.)

Proposition 6.4. If $q \geq \max\{\log \frac{2}{\delta}, \log(3d \log \frac{ed}{\delta})\}$, then

- event $E_{k-1}(U)$ implies $\frac{1}{e} \leq c_k - \eta \lambda_{\max}(\Sigma_{k-1}) \leq e$.

In particular, $E_{k-1}(U)$ implies (recall $A_k = P_k P_k^\top$)

(a) $c_k I - \eta \Sigma_{k-1} \geq \frac{1}{e} I$
(b) $\text{Tr}(X_k^{1/(q-1)} U) \leq c_k \leq \eta \lambda_{\max}(\Sigma_{k-1}) + e$
(c) $\eta P_k^\top X_k^{1/q} P_k \leq e \eta I$.

6.2 First Potential Increase

The next lemma bounds the potential increase if we replace Σ_{k-1} with Σ_k:

Lemma 6.5. There exists constant $C > 1$ such that, if $q \geq \max\{\log \frac{2}{\delta}, \log(3d \log \frac{ed}{\delta})\}$ and $\eta \leq \frac{1}{\eta q}$,

$$
\mathbb{E} \left[\text{Tr}\left((c_k I - \eta \Sigma_k)^{-q-1} U \right) \right] \cdot 1_{E_{<k}(U)} - \text{Tr}\left((c_k I - \eta \Sigma_{k-1})^{-(q-1)} U \right) \cdot 1_{E_{<k}(U)} \right]
\leq (q - 1) \eta (1 + C \cdot \eta q^5 \log(d/\delta)) \mathbb{E} \left[A_k \cdot X_k^{1/2} U X_k^{1/2} \right] + (\eta T + e) T \delta.
$$

The proof of Lemma 6.5 is the main technical contribution of this paper, and deviates the most from classical analysis of MMWU. It makes use of our trace inequality in Section 5 and is the only place in our analysis that relies on $\text{rank}(U) \geq 3$. We include the details in Appendix D.

6.3 Second Potential Increase

The following lemma bounds the potential increase if we replace c_k with c_{k+1}. Its proof is included in Appendix E and is reasonably straightforward.

Lemma 6.6. For all $q \geq 2$ and $\eta > 0$,

$$
\mathbb{E} \left[\text{Tr}\left((c_{k+1} I - \eta \Sigma_k)^{-(q-1)} U \right) \right] \cdot 1_{E_{<k+1}(U)}] - \mathbb{E} \left[\text{Tr}\left((c_k I - \eta \Sigma_k)^{-(q-1)} U \right) \right] \cdot 1_{E_{<k}(U)}]
\leq -(q - 1)(\mathbb{E}[c_{k+1}] - \mathbb{E}[c_k]).
$$

Finally, we prove in Appendix F that Theorem 1 is a direct consequence of our two potential increase lemmas above.
Algorithm 2 FTCL$^{\text{adv}}(T,q,\eta)$

Input: T, number of iterations;
$q \geq 2$, an even integer, ⋄ theory-predicted choice $q = \Theta(\log(dT))$
η, the learning rate. ⋄ theory-predicted choice $\eta = \log^{-3}(dT)/\sqrt{\lambda_{\max}(\Sigma_T)}$

1: for $k \leftarrow 1$ to T do
2: Choose 3 vectors $w_1, w_2, w_3 \in \mathbb{R}^d$ where the $3d$ coordinates are i.i.d. drawn from $\mathcal{N}(0,1)$.
3: $U_k \leftarrow \frac{1}{3}(w_1 w_1^\top + w_2 w_2^\top + w_3 w_3^\top)$.
4: $\Sigma_{k-1} \leftarrow \sum_{i=1}^{k-1} A_i$.
5: Denote by $X_k \leftarrow (c_k I - \eta \Sigma_{k-1})^{-q}$ where c_k is the unique constant satisfying that
$c_k I - \eta \Sigma_{k-1} > 0$ and $\text{Tr}(X_k U_k) = 1$.
6: Compute $X_k^{1/2} U_k X_k^{1/2} = \sum_{j=1}^{3} p_j y_j y_j^\top$ where y_1, y_2, y_3 are orthogonal unit vectors in \mathbb{R}^d.
 ⋄ This is an eigendecomposition and it satisfies $p_1, p_2, p_3 \geq 0$ and $p_1 + p_2 + p_3 = 1$.
7: Choose $w_k \leftarrow y_j$ with probability p_j.
8: Play strategy w_k and receive matrix A_k.
9: end for

7 Adversarial Online Eigenvector + Regret in High-Confidence

In this section, we switch to the more challenging adversarial setting: in each iteration k, the adversary picks A_k after seeing the player’s strategies w_1, \ldots, w_{k-1}. In other words, A_k may depend on the randomness used in generating w_1, \ldots, w_{k-1} as well.

In such a case, denoting by \mathcal{D} the same rank-3 Wishart distribution we generate U from in FTCL$^{\text{obl}}$, we consider a variant of FTCL$^{\text{obl}}$ where a new random U_k is generated from \mathcal{D} per iteration. In other words, instead of choosing $U \sim \mathcal{D}$ only once at the beginning, we choose U_1, \ldots, U_T i.i.d. from \mathcal{D}. Then, the normalization constant c_k is defined to satisfy $\text{Tr}((c_k I - \eta \Sigma_{k-1})^{-q} U_k) = 1$. We call this algorithm FTCL$^{\text{adv}}$ and present it in Algorithm 2 for completeness’ sake.

Our next theorem shows that, algorithm FTCL$^{\text{adv}}$ gives the same regret bound as Theorem 1 even in the adversarial setting; in addition, it elevates the regret bound to a high-confidence level.

Theorem 2. In the online eigenvector problem with an adversarial adversary, there exists constant $C > 1$ such that for every $p \in (0,1)$, $q \geq 3 \log(2dT)$ and $\eta \in [0, \frac{1}{11q^2}]$, our FTCL$^{\text{adv}}(T,q,\eta)$ satisfies

\[w.p. \geq 1 - p : \quad \sum_{k=1}^{T} w_k^\top A_k w_k \geq \left(1 - C \cdot \eta(q^5 \log(dT) + \log(1/p))\right) \lambda_{\max}(\Sigma_T) - \frac{5}{\eta}. \]

Corollary 7.1. Let $q = 3 \log(2dT)$ and $\eta = \Theta\left(\frac{\log^3(dT) + \log^{1/2}(1/p)}{\sqrt{\lambda_{\max}(\Sigma_T)^{-1}}}\right)$, then with prob. $\geq 1 - p$:

\[\sum_{k=1}^{T} w_k^\top A_k w_k \geq \lambda_{\max}(\Sigma_T) - \sqrt{\lambda_{\max}(\Sigma_T)} \cdot O\left(\log^3(dT) + \sqrt{\log(1/p)}\right), \] (λ-refined language)

or choosing the same q but $\eta = \Theta\left(\frac{\log^3(dT) + \log^{1/2}(1/p)}{\sqrt{T}}\right)$ we have with prob. $\geq 1 - p$:

\[\sum_{k=1}^{T} w_k^\top A_k w_k \geq \lambda_{\max}(\Sigma_T) - \sqrt{T} \cdot O\left(\log^3(dT) + \sqrt{\log(1/p)}\right). \] (general language)

Proof of Theorem 2 relies on a reduction to the oblivious setting, and is included in Appendix G.
8 Efficient Implementation of FTCL

Recall that our regret theorems were based on the assumption that in each iteration \(k\), the three vectors
\[
v_j \overset{\text{def}}{=} X_k^{1/2} u_j = (c_k I - \eta \Sigma_{k-1})^{-\eta/2} u_j \quad \text{for } j \in [3]
\] can be computed exactly. Once \(v_1, v_2, v_3\) are given, we can compute the \(3 \times 3\) matrix \((u_i^T X_k u_j)_{i,j} \in [8]\) explicitly, from which we can derive in \(O(d)\) time the rank-3 eigendecomposition \(X_k^{1/2} U X_k^{1/2} = \sum_{j=1}^3 p_j \cdot v_j^T v_j\).

Therefore, it suffices to compute \(v_1, v_2, v_3\) efficiently. To achieve this goal, we need to
(a) allow \(v_1, v_2, v_3\) to be computed approximately,
(b) find the normalization constant \(c_k\) efficiently, and
(c) compute \((c_k I - \eta \Sigma_{k-1})^{-1} b\) efficiently for any \(b \in \mathbb{R}^d\).

At a high level, issue (a) is simple because if \(v_j'\) satisfies \(\|v_j - v_j'\|_2 \leq \varepsilon / \text{poly}(d, T)\) and we use \(v_j'\) instead of \(v_j\), then the final regret is affected by less than \(\varepsilon\); issue (b) can be dealt with as long as we perform a careful binary search to find \(c_k\), similar to prior work [7]; issue (c) can be done as long as we have a good control on the condition number of the matrix \(c_k I - \eta \Sigma_{k-1}\).

We discuss the details in Appendix II and state below our final running-time theorem:

Theorem 3. If \(q > 3 \log(2dT/p)\), with probability at least \(1 - p\), for all \(k \in [T]\), the \(k\)-th iteration of FTCL\(\text{obl}\) and FTCL\(\text{adv}\) runs in \(O(d)\) plus the time to solve \(O(1)\) linear systems for matrices \(cI - \eta \Sigma_{k-1}\). Here, \(c > 0\) is some constant satisfying \(c I - \eta \Sigma_{k-1} \succ \frac{1}{\varepsilon} I\).

Corollary 8.1. Since the condition number of matrix \(cI - \eta \Sigma_{k-1}\) is at most \(\eta \lambda_{\max}(\Sigma_T) + 1\), each linear system can be solved in worst-case time \(\tilde{O}\left(\max\{\sqrt{\eta \lambda_{\max}(\Sigma_T) + 1, d}\} \cdot \text{nnz}(\Sigma_T)\right)\) if implemented by conjugate gradient, or time \(\tilde{O}(\text{nnz}(\Sigma_T) + \sqrt{\eta T} \cdot \text{nnz}(\Sigma_T) 3/4 \cdot \text{nnz}(A)^{1/4})\) by the stochastic SVRG method.

9 Stochastic Online Eigenvector

Consider the special case when the matrices \(A_1, \ldots, A_T\) are generated i.i.d. from a common distribution whose expectation equals \(B\). This is known as the stochastic online eigenvector problem, and we wish to minimize the regret
\[
\sum_{k=1}^T w_k^T A_k w_k - T \cdot \lambda_{\max}(B)
\]

We revisit Oja’s algorithm: beginning with a random Gaussian vector \(u \in \mathbb{R}^d\), at each iteration \(k\), let \(w_k\) be \((I + \eta A_{k-1}) \cdots (I + \eta A_1) u\) after normalization. It is clear that \(w_k\) can be computed from \(w_{k-1}\) in time \(\text{nnz}(A)\).

We include in Appendix I a one-paced proof of the following theorem:

Theorem 4. There exists \(C > 1\) such that, for every \(p \in (0, 1)\), if \(\eta \in \left[0, \sqrt{p/(60T \lambda_{\max}(B))}\right]\) in Oja’s algorithm, we have with probability at least \(1 - p\):
\[
\sum_{k=1}^T w_k^T A_k w_k \geq (1 - 2\eta) T \cdot \lambda_{\max}(B) - C \cdot \frac{\log(d+\log(1/p))}{\eta}
\]

\(^{14}\text{In principle, one can also ask to minimize regret where } T \cdot B \text{ is replaced with } A_1 + \cdots + A_T. \text{ However, due to simple concentration results, there is no big difference between the two different notions.}^{[17]}\)
Corollary 9.1. Choosing $\eta = \sqrt{\frac{p}{60T}} \lambda_{\text{max}}(B)$, we have with prob. $\geq 1 - p$:

$$\sum_{k=1}^{T} w_k^T A_k w_k \geq T \cdot \lambda_{\text{max}}(B) - O\left(\frac{\sqrt{T} \cdot \lambda_{\text{max}}(B)}{\sqrt{p}} \cdot \log(d + \log(1/p))\right).$$

(\lambda\text{-refined language})

Choosing $\eta = \sqrt{\frac{p}{60T}}$, we have with prob. $\geq 1 - p$:

$$\sum_{k=1}^{T} w_k^T A_k w_k \geq T \cdot \lambda_{\text{max}}(B) - O\left(\frac{\sqrt{T}}{\sqrt{p}} \cdot \log(d + \log(1/p))\right).$$

(general language)

The proof of Theorem 4 uses a potential function analysis which is similar to the matrix exponential potential used in MMWU, but compressed to dimension 1.

10 Conclusions

We give a new learning algorithm FTCL for the online eigenvector problem. It matches the optimum regret obtained by MMWU, but runs much faster. It matches the fast per-iteration running time of FTPL, but has a much smaller regret. In the stochastic setting, our side result on Oja’s algorithm also outperforms previous results. We believe our novel idea of “follow the compressed leader” may find other applications in the future.

Acknowledgement

We thank Yin Tat Lee for discussing the problem regarding how to compress MMWU to constant dimension in 2015. We thank Elad Hazan for suggesting us the problem and for several insightful discussions. We thank Dan Garber and Tengyu Ma for clarifying some results of prior work [17].
APPENDIX

<table>
<thead>
<tr>
<th>Paper</th>
<th>Total Regret</th>
<th>Time Per Iteration</th>
<th>Minimum Total Time for ε Average Regret</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMWU [7,9]</td>
<td>$\tilde{O}(\sqrt{\lambda T})$</td>
<td>at least $O(d^\varepsilon)$</td>
<td>$\tilde{O}(\frac{\lambda T}{\varepsilon^2})$</td>
</tr>
<tr>
<td>MMWU-JL [7, 30]</td>
<td>$\tilde{O}(\sqrt{\lambda T})$</td>
<td>$M^{\text{exp}} \times \tilde{O}(T/\lambda)$</td>
<td>$\tilde{O}(\frac{\lambda T}{\varepsilon^3} \text{nnz}(\Sigma))$</td>
</tr>
<tr>
<td>this paper</td>
<td>$\tilde{O}(\sqrt{\lambda T})$</td>
<td>$M^{\text{in}} \times \tilde{O}(1)$</td>
<td>Theorem 3: $\tilde{O}(\frac{\lambda T}{\varepsilon^2} \text{nnz}(\Sigma))$ and $\tilde{O}(\frac{\lambda T^3}{\varepsilon^4} \text{nnz}(\Sigma))$</td>
</tr>
</tbody>
</table>

Table 2: Comparison of known methods for the online eigenvector problem in the block power method [17].

We denote by $\Sigma = A_1 + \cdots + A_T$, by $\text{nnz}(A) = \max_{k \in [T]} \{ \text{nnz}(A_k) \}$, and by $\lambda = \frac{1}{T}\lambda_{\text{max}}(\Sigma) \in [0, 1]$.

- M^{exp} is the time to compute e^{-M} multiplied with a vector, where $M \in \mathbb{R}^{d \times d}$ satisfies $0 \preceq M \preceq \tilde{O}((\lambda T)^{1/2}) \cdot I$.
- M^{in} is the time to solve a linear system for matrix $M \in \mathbb{R}^{d \times d}$, where M is PSD and of condition number at most $\tilde{O}((\lambda T)^{1/2})$.
- If using iterative methods, the worst-case values M^{exp} and M^{in} are

$$M^{\text{exp}} = \tilde{O}(\min\{(\lambda T)^{1/2} \text{nnz}(\Sigma), d^\varepsilon\}) \geq M^{\text{in}} = \tilde{O}(\min\{\min\{d, (\lambda T)^{1/2}\} \text{nnz}(\Sigma), d^\varepsilon\})$$,

where d^ε is the time needed to multiply two $d \times d$ matrices. If using stochastic iterative methods, M^{in} is at most $\tilde{O}((T/\lambda)^{1/2} \text{nnz}(\Sigma)^{1/2} \text{nnz}(A)^{1/2} + \text{nnz}(\Sigma))$. (See discussions in Section 3.)

A Evaluation Setup

Recall that our FTCL has nearly-optimal $\tilde{O}(\sqrt{T})$ total regret, just like MMWU or MMWU-JL. However, the previous developed FTPL method has a total regret $\tilde{O}(\sqrt{dT})$ and this could be far from optimal. In this section, we generate synthetic data to verify that FTPL can indeed have poor regret performance.

We generate three sequences of synthetic matrices A_k:

1. **random.** We pick a random covariance matrix Σ from Wishart distribution. In each iteration k, we pick a random vector $v_k \sim \mathcal{N}(0, \Sigma)$ and let $A_k = v_k v_k^\top$. Note that matrices A_k are i.i.d.
2. **diagonal.** In iteration k where $k = \frac{sd}{T} + r$ for $s \in \mathbb{N}$ and $r \in [d/2]$, we whose $A_k = \frac{1}{2} I + E_r$, where E_r a matrix with all entries zero except the (r, r) entry being 1. In dataset diagonal, the eigen basis is fixed, and each vector e_i in the standard basis takes turn to be the leading eigenvector.
3. **diagonal+rotation.** In iteration k where $k = \frac{sd}{T} + r$, we whose $A_k = P^\top(\frac{1}{2} I + E_r)P$, where P_s is a “rotation matrix” whose entries are

$$[P_s]_{i,j} = \begin{cases} \cos(\frac{4\pi sd}{T}) & \text{if } i = j; \\ \sin(\frac{4\pi sd}{T}) & \text{if } i = j - 1 \\ -\sin(\frac{4\pi sd}{T}) & \text{if } i = j + 1 \\ 0 & \text{otherwise.} \end{cases}$$

This dataset diagonal+rotation is just dataset diagonal plus a rotation in each step, so the eigen basis of the matrix gradually changes.

We pick dimension \(d = 100 \) and \(T = 10000 \), and have implemented FTPL, FTCL and MMWU. (We did not implement MMWU-JL because MMWU has better regret than MMWU-JL.) For each of the three algorithms, we search through 100 different parameters for the learning rate, and report the best total regret.

As illustrated in Figure 1, we can see that when the matrices are random, three algorithms behave similarly. However, even in the simple data where each diagonal entries keep turns to be large, our algorithm has a notable advantage over FTPL. When the eigen basis starts to change, FTPL behaves significantly worse than FTCL and MMWU.

\[\text{B Proof of Lemma 5.1} \]

We first recall Markov brother’s inequality. For a polynomial \(f : \mathbb{R} \to \mathbb{R} \), we use \(f^{(k)} \) to denote the \(k \)-th order derivative of \(f \) at point \(x \). We have:

Theorem B.1 (Markov brother’s inequality). If polynomial \(f \) is of degree \(n \), then \(\forall k \in \mathbb{N}^* \) and \(\forall a > 0 \):

\[
\max_{x \in [0,a]} |f^{(k)}(x)| \leq \left(\frac{2}{a} \right)^i \frac{n^2(n^2-1^2)(n^2-2^2)\cdots(n^2-(k-1)^2)}{(2k-1)!!} \max_{x \in [0,a]} |f(x)|. \tag{B.1}
\]

Lemma 5.1. For every symmetric matrices \(A, B, D \in \mathbb{R}^{d \times d} \), every integer \(k \geq 1 \), every \(\eta^* \geq 0 \), and every \(\eta \in [0, \eta^*/k^2] \), if \(A \) and \(D \) are commutative, then

\[
(A + \eta B)^k \cdot D - A^k \cdot D \leq k\eta B \cdot A^{k-1} D + \left(\frac{\eta k^2}{\eta^*} \right)^2 \max_{\eta' \in [0, \eta^*]} \left\{ \| (A + \eta' B)^k \cdot D - A^k \cdot D \| \right\}.
\]

Proof. Consider a degree-\(k \) polynomial

\[
f(\eta) \overset{\text{def}}{=} (A + \eta B)^k \cdot D - A^k \cdot D = \sum_{i=1}^k \eta^i \sum_{j_0, j_1 \in \mathbb{Z}_{\geq 0}} A^{j_0} B A^{j_1} \cdots B A^{j_{k-i}} D
\]

Its first order derivative

\[
f'(0) = \sum_{j_0, j_1 \in \mathbb{Z}_{\geq 0}} A^{j_0} B A^{j_1} \cdot D = \sum_{j_0, j_1 \in \mathbb{Z}_{\geq 0}} A^{(k-1)/2} B A^{(k-1)/2} \cdot D = k B \cdot A^{(k-1)/2} D A^{(k-1)/2}.
\]

Above, the first equality is due to the commutativity between \(A \) and \(D \). Letting \(f^* \overset{\text{def}}{=} \max_{\eta' \in [0, \eta^*]} |f(\eta')| \), we can apply Markov brothers’ inequality \((B.1)\) and obtain for every \(i \geq 2 \),

\[
|f^{(i)}(0)| \leq \left(\frac{2}{\eta^*} \right)^i \frac{k^2(k^2 - 1) \cdots (k^2 - (i-1)^2)}{1 \cdot 3 \cdot 5 \cdots (2i-1)} \max_{\eta' \in [0, \eta^*]} |f(\eta')| \leq \frac{k^{2i}}{(\eta^*)^i} f^*. \tag{B.2}
\]

Therefore, as long as \(\eta \leq \frac{\eta^*}{k^2} \), we have

\[
f(\eta) = f(0) + f'(0) \cdot \eta + \sum_{i=2}^k \eta^i \cdot \frac{f^{(i)}(0)}{i!} \leq f(0) + f'(0) \cdot \eta + \sum_{i=2}^k \left(\frac{\eta k^2}{\eta^*} \right)^i \cdot \frac{f^*}{i!} \leq f(0) + f'(0) \cdot \eta + \left(\frac{\eta k^2}{\eta^*} \right)^2 f^*.
\]

Since \(f(0) = 0 \) we complete the proof. \(\square\)
C Proof for Section 6.1

C.1 Proof of Lemma 6.3

Lemma 6.3. For every \(k = 0, 1, \ldots, T \), we have \(\Pr(U[\mathcal{E}_k(U)]) \geq 1 - \delta \).

Proof. Let \(\nu_1, \ldots, \nu_d \) be the eigenvectors of \(\Sigma_k \) with non-increasing eigenvalues. Because Gaussian random vectors are rotationally invariant, we can view each \(u_1, u_2, u_3 \) as drawn in the basis of \(\nu_1, \ldots, \nu_d \), so each \(\nu_i^\top u_j \) is drawn i.i.d. from \(N(0, 1) \) for every \(i \in [d], j \in [3] \).

Since \(\nu_1^\top U \nu_1 = \frac{1}{3}((\nu_1^\top u_1)^2 + (\nu_1^\top u_2)^2 + (\nu_1^\top u_3)^2) \), we immediately know that \(3\nu_1^\top U \nu_1 \) is distributed according to chi-square distribution \(\chi^2(3) \). The probability density function of \(\chi^2(3) \) is
\[
f(x) = \frac{e^{-x/2}\sqrt{x}}{2\pi^{3/2}} \quad \text{(for } x \in [0, \infty) \text{)}
\]
and therefore
\[
\Pr[\nu_1^\top U \nu_1 \leq \delta/2] \leq \int_{0}^{\delta/2} \frac{e^{-x/2}\sqrt{x}}{2\pi} dx \leq \int_{0}^{35/2} \frac{e^{-x/2}\sqrt{x}}{2\pi} dx = \frac{1}{2} \sqrt{\frac{3}{\pi}} \delta^{3/2} \leq \frac{\delta}{2}.
\]

As for the second condition, for every \(t \geq 0 \) and \(i \in [d] \),
\[
\Pr[\nu_i^\top U \nu_i \geq t/3] \leq \int_{t}^{\infty} \frac{e^{-x/2}\sqrt{x}}{2\pi} dx = 1 - \text{Erf} \left(\frac{\sqrt{t}}{\sqrt{2}} \right) + \frac{2}{\sqrt{\pi}} e^{-t/2} \sqrt{t} \leq e^{-t/2} + \frac{\delta}{d} e^{-t/2} \sqrt{t},
\]
where \(\text{Erf}(x) \) is the Gauss error function. Picking \(t = 4 \log \frac{ed}{\delta} \), we have
\[
e^{-t/2} + \frac{\delta}{d} e^{-t/2} \sqrt{t} \leq \delta^2 e^{-d/2} + \frac{\delta^2}{\pi} e^{d/2} \cdot 2 \sqrt{\frac{ed}{\delta}} < \frac{\delta}{d}.
\]
Therefore, we have \(\Pr[\forall i \in [d]: \nu_i^\top U \nu_i \geq 2 \log \frac{ed}{\delta}] \leq \frac{\delta}{2} \) and we conclude by union bound
\(\Pr_U[\mathcal{E}_k(U)] \leq \frac{\delta}{2} + \frac{\delta}{d} = \delta \). \(\square \)

C.2 Proof of Proposition 6.4

Proposition 6.4. If \(q \geq \max\{\log \frac{3}{\delta}, \log(3d \log \frac{ed}{\delta})\} \), then
\[
event \mathcal{E}_{k-1}(U) \text{ implies } \frac{1}{e} \geq c_k - \eta \lambda_{\text{max}}(\Sigma_{k-1}) \geq \frac{1}{e}.
\]

In particular, \(\mathcal{E}_{k-1}(U) \) implies (recall \(A_k = P_k P_k^\top \))
\[
(a): \ c_k I - \eta \Sigma_{k-1} \geq \frac{1}{e} \quad (b): \ \text{Tr}(X_k^{-1/q} U) \leq c_k \leq \eta \lambda_{\text{max}}(\Sigma_{k-1}) + e \quad (c): \ \eta P_k^\top X_k^{1/q} P_k \preceq e \eta I.
\]

Proof. Let \(\nu_1, \ldots, \nu_d \) be the eigenvectors of \(\Sigma_{k-1} \) with non-increasing eigenvalues \(\lambda_1, \ldots, \lambda_d \). Then,
\[
\sum_{i=1}^{d} \nu_i^\top U \nu_i = \text{Tr}(X_k U) = 1. \quad \text{However, event } \mathcal{E}_k(U) \text{ tells us } \nu_i^\top U \nu_i \geq \frac{\delta}{2} \text{ which implies } (c_k - \eta \lambda_1)^q \geq \frac{\delta}{2}. \quad \text{Under our choice of } q, \text{ we have } c_k - \eta \lambda_1 \geq \frac{1}{e} \text{ which proves the first inequality in } (C.1).
\]

On the other hand, letting \(c = \eta \lambda_{\text{max}}(\Sigma_{k-1}) + e \), our choice of \(q \) implies
\[
\text{Tr}((cI - \eta \Sigma_{k-1})^{-q} U) = \sum_{i=1}^{d} \frac{\nu_i^\top U \nu_i}{(c - \eta \lambda_i)^q} \leq \sum_{i=1}^{d} \frac{2 \log(ed/\delta)}{e^q} \leq 1.
\]

Since the left hand side of the above inequality is a decreasing function in \(c \), and since \(\text{Tr}((c_1 I - \eta \Sigma_{k-1})^{-q} U) = 1 \), we must have \(c_k \leq c \) which proves the second inequality in \((C.1) \).

Finally, (a) is a simple corollary of the first inequality of \((C.1) \). As for (b), it simply comes from the following upper bound
\[
\text{Tr}(X_k^{-1/q} U) = \sum_{i=1}^{d} \frac{\nu_i^\top U \nu_i}{(c_k - \eta \lambda_i)^q-1} \leq c_k \sum_{i=1}^{d} \frac{\nu_i^\top U \nu_i}{(c_k - \eta \lambda_i)^q} = c_k \text{Tr}(X_k U) = c_k.
\]
As for (c), it follows from \(P_k^T P_k \preceq I \) so \(\eta P_k^T X_k^{1/q} P_k \preceq \eta P_k^T (eI) P_k \preceq e\eta I. \)

\[\blacksquare \]

D Proof for Section 6.2

Lemma 6.5. There is constant \(C > 1 \) such that, if \(q \geq \max\{\log \frac{2}{\delta}, \log(3d \log \frac{ed}{\delta})\} \) and \(\eta \leq \frac{1}{11q^5} \),

\[
\begin{align*}
\mathbb{E} \left[\text{Tr} \left((c_k I - \eta \Sigma_k)^{-(q-1)} U \right) \cdot 1_{\mathcal{E}_{k-1}}(U) - \text{Tr} \left((c_k I - \eta \Sigma_{k-1})^{-(q-1)} U \right) \cdot 1_{\mathcal{E}_{k-1}}(U) \right] \\
\leq (q - 1)\eta (1 + C \cdot q^5 \log(d/\delta)) \mathbb{E} \left[A_k \cdot X_k^{1/2} UX_k^{1/2} \right] + (\eta T + e) T \delta.
\end{align*}
\]

Remark D.1. We have slightly abused notations here. In principle, the quantity \(\text{Tr} \left((c_k I - \eta \Sigma_k)^{-(q-1)} U \right) \) can be unbounded if \(c_k I - \eta \Sigma_k \) is not invertible. However, as we shall see in the proof of Lemma 6.5, this necessarily implies \(1_{\mathcal{E}_{k-1}}(U) = 0 \) because of Proposition 6.4. Therefore, we define \(\text{Tr} \left((c_k I - \eta \Sigma_k)^{-(q-1)} U \right) \cdot 1_{\mathcal{E}_{k-1}}(U) \) to be zero if this happens.

Proof of Lemma 6.5. Let \(u_1, \ldots, u_d \) be the eigenvectors of \(\Sigma_{k-1} \) with non-increasing eigenvalues. In this proof, let us assume without loss of generality that all vectors and matrices are written in their eigenbasis (so \(\Sigma_{k-1} \) and \(X_k \) are both diagonal matrices).

Since Gaussian random vectors are rotationally invariant, we assume that \(u_1, u_2, u_3 \) are generated according to the following procedure: first, the absolute values of their 3d coordinates \(u_1, u_2, u_3 \) are determined; then, their signs are determined.

Denoting by \(D = \text{diag} \{ U_{11}, \ldots, U_{dd} \} \) the diagonal part of \(U \), we immediately notice that \(D \) is determined completely at the first step of the above procedure. This has two important consequences that we shall rely crucially in the proof:

- **fixing the randomness of \(D \), it satisfies** \(\mathbb{E}_U[U|D] = D \)**15**
- **\(c_k \) is completely determined by \(D \)**.16

In addition, since the event \(\mathcal{E}_{k-1}(U) \) only depends on the diagonal entry of \(U \), slightly abusing notation, we also use \(\mathcal{E}_{k-1}(D) \) to denote this event on diagonal matrices \(D \). We also use \(D_i \) to represent the \(i \)-th diagonal entry of \(D \). Our proof now has three parts:

Part I: Potential Increase for \(D \)

For every PSD matrix \(D \), denoting by \(A_k = P_k P_k^T \),

\[
\begin{align*}
\text{Tr} \left((c_k I - \eta \Sigma_k)^{-(q-1)} D \right) - \text{Tr} \left((c_k I - \eta \Sigma_{k-1})^{-(q-1)} D \right) \\
\equiv \text{Tr} \left(\left(X_k^{1/q} - \eta P_k P_k^T \right)^{-(q-1)} D \right) - \text{Tr} \left(X_k^{1-1/q} D \right) \\
\geq \text{Tr} \left(\left(X_k^{1/q} + \eta X_k^{1/q} P_k (I - \eta P_k^T X_k^{1/q} P_k)^{-1} P_k^T X_k^{1/q} \right)^{q-1} \right) - \text{Tr} \left(X_k^{1-1/q} D \right) \quad (D.1)
\end{align*}
\]

Above, \(\equiv \) follows from the definition of \(X_k \) and \(\geq \) uses the Woodbury formula for matrix inversion.

Now, unlike the classical proof for MMWU, our matrix \(D \) here is not identity so we cannot rely on the Lieb-Thirring trace inequality to bound the right hand side of (D.1) like it was used in [7]. We can instead consult our new trace inequality Lemma 5.1 because \(D \) and \(X_k \) are both diagonal matrices so they are commutative. Recall that Lemma 5.1 requires a crude upper bound on the first trace quantity on the term “\((A + \eta B)^k \cdot D - A^k \cdot D \)”, and we shall provide this crude upper bound in Lemma D.2.

15 More specifically, since the off-diagonal entries of \(U \) can still randomly flip signs in the second step of the random procedure, their expectations are all equal to zero.

16 This is because \(c_k \) is defined as the constant satisfying \(1 = \text{Tr}((c_k I - \eta \Sigma_{k-1}) U) = \text{Tr}((c_k I - \eta \Sigma_{k-1}) D). \)
Formally, choosing $\eta^* \overset{\text{def}}{=} \frac{1}{11q}$, we that for every D satisfying $E_{k-1}(D)$,
\[
\Tr((c_k I - \eta \Sigma_k)^{-(q-1)} D) - \Tr((c_k I - \eta \Sigma_k)_{k-1}^{-(q-1)} D)
\]
\[
\overset{\circ}{\leq} (q-1)\eta X_k^{1/q} P_k (I - \eta P_k^T X_k^{1/2} P_k)^{-1} P_k^T X_k^{1/q} \cdot X_k^{(q-2)/q} D
\]
\[
+ \left(\frac{(q-1)^2}{\eta^*}\right) \cdot 4(q-1)\eta^* \|D\|_2 P_k P_k^T \cdot X_k
\]
\[
\overset{\circ}{\leq} (q-1)\eta P_k P_k^T \cdot X_k D + O(\eta^2 q^6) \cdot \|D\|_2 \cdot P_k P_k^T \cdot X_k
\]
\[
\overset{\circ}{\leq} (q-1)\eta P_k P_k^T \cdot X_k D + O(\eta^2 q^6 \log(d/\delta)) P_k P_k^T \cdot X_k.
\]
(D.2)

Above, \circ follows from Lemma 5.1 (with $\eta \leq \eta^*/q^2$) together with Lemma D.2 (for $\eta = \eta^*$); \circ follows from $I - \eta P_k^T X_k^{1/q} P_k \succeq (1 - e\eta) I$ (see Proposition 6.4), the fact that $\Tr(AC) \leq \Tr(BC)$ for $A \preceq B$ and C symmetric, and the choice of η^*; \circ follows from our assumption $\eta \leq \frac{1}{6}$ as well as $\|D\|_2 \leq 2 \log \frac{2d}{\delta}$ which comes from the definition of event $E_{k-1}(D)$.

Part II: Potential Increase for All U That Agrees With D. For every fixed D that satisfies $E_{k-1}(D)$, taking expectation over all matrices U that agrees with D\footnote{Note when D satisfies $E_{k-1}(D)$ we have $c_k I - \eta \Sigma_k \succeq \frac{1}{2} I$ according to Proposition 6.4. This implies, as long as $\eta \leq e^{-1}$, it satisfies $c_k I - \eta \Sigma_k > 0$ so $\Tr((c_k I - \eta \Sigma_k)^{-(q-1)} U) > 0.$}
\[
\mathbb{E} \left[\Tr\left((c_k I - \eta \Sigma_k)^{-q-1}(U) - \Tr\left((c_k I - \eta \Sigma_k)_{k-1}^{-q-1}(U) \cdot 1_{E_{k-1}(U)} \right) | D \right] \right.
\]
\[
\overset{\circ}{\leq} \mathbb{E} \left[\Tr\left((c_k I - \eta \Sigma_k)^{-q-1}(U) - \Tr\left((c_k I - \eta \Sigma_k)_{k-1}^{-q-1}(U) \right) + \Tr\left((c_k I - \eta \Sigma_k)^{-q-1}(U) \cdot (1 - 1_{E_{k-1}(U)}) \right) | D \right] \right.
\]
\[
= \mathbb{E} \left[\Tr\left((c_k I - \eta \Sigma_k)^{-q-1}(U) - \Tr\left((c_k I - \eta \Sigma_k)_{k-1}^{-q-1}(U) \right) \right) + (\eta T + e) \cdot \Pr\left[1_{E_{k-1}(U)} | D \right] \right.
\]
\[
\overset{\circ}{\leq} (q-1)\eta P_k P_k^T \cdot X_k D + O(\eta^2 q^6 \log(d/\delta)) P_k P_k^T \cdot X_k + (\eta T + e) T\delta
\]
\[
\overset{\circ}{=} (q-1)\eta \mathbb{E} \left[P_k P_k^T \cdot X_k U | D \right] + O(\eta^2 q^6 \log(d/\delta)) P_k P_k^T \cdot X_k + (\eta T + e) T\delta.
\]
(D.3)

Above, \circ is because indicator functions are never greater than 1; \circ uses $\mathbb{E} \left[X_k^{1/q} U \right] \leq \eta \lambda_{\text{max}}(\Sigma_k) + e \leq \eta T + e$ which follows from Proposition 6.4; \circ follows from (D.2) as well as Lemma 6.3; and \circ follows from the observation $\mathbb{E}_U [U | D] = D$ together with the fact that X_k only depends on D.

Part III: Potential Increase for All U. We now claim for all possible diagonal D, it satisfies
\[
\mathbb{E} \left[\Tr\left((c_k I - \eta \Sigma_k)^{-q-1}(U) - \Tr\left((c_k I - \eta \Sigma_k)_{k-1}^{-q-1}(U) \cdot 1_{E_{k-1}(U)} \right) \right] \right.
\]
\[
\leq (q-1)\eta \mathbb{E} \left[P_k P_k^T \cdot X_k U | D \right] + O(\eta^2 q^6 \log(d/\delta)) P_k P_k^T \cdot X_k + (\eta T + e) T\delta.
\]
(D.4)

This is because, if D satisfies $E_{k-1}(D)$ then (D.4) comes from (D.3); or if D does not satisfy $E_{k-1}(D)$ then the left hand side of (D.4) is zero (see Remark D.1) but the right hand side is non-negative.

Taking expectation with respect to the randomness of D in (D.4), and using Lemma D.3 which upper bounds $\mathbb{E}_D \left[P_k P_k^T \cdot X_k U \right]$ by $\mathbb{E}_D \left[P_k P_k^T \cdot X_k U \right] = \mathbb{E}_U \left[P_k P_k^T \cdot X_k U \right]$ we get the desired inequality.
D.1 Missing Auxiliary Lemmas

In this subsection we prove the following two auxiliary lemmas. The first one shall be used to bound the higher-order terms in Lemma 5.1.

Lemma D.2. For every \(q \geq 2 \) and every \(\eta \in \left[0, \frac{1}{4e(q-1)} \right] \), event \(E_{k-1}(D) \) implies that

\[
\left| \operatorname{Tr} \left(\left(X_k^{1/q} + \eta X_k^{1/q} P_k (I - \eta P_k^T X_k^{1/q} P_k)^{-1} P_k^T X_k^{1/q} \right)^{q-1} D \right) - \operatorname{Tr} \left(X_k^{1/q} D \right) \right| \leq 4\eta(q-1)\|D\|_2 \operatorname{Tr}(X_k P_k P_k^T) .
\]

The second one upper bounds the expectation of the right hand side of Lemma D.2. We highlight that the proof of Lemma D.3 is the only place in this paper that we have assumed \(k(U) = 3 \).

Lemma D.3. We have \(\mathbb{E}_D[\operatorname{Tr}(P_k P_k^T X_k)] \leq 9 \cdot \mathbb{E}_D[\operatorname{Tr}(P_k P_k^T D)] \).

Note that we can assume without loss of generality that \(\Sigma_{k-1}, X_k \) and \(D \) are all diagonal matrices, which has been argued in the proof of Lemma 6.5. Therefore, all the proofs in this subsection will be given under this assumption.

To prove Lemma D.2 we need the following lemma:

Lemma D.4 (Monotonicity of Diagonal entries). Let \(A, D \in \mathbb{R}^{d \times d} \) be two diagonal positive definite matrices,\(^{18}\) let \(B \in \mathbb{R}^{d \times d} \) be PSD, then for every \(q \in \mathbb{N}^* \) such that \(q\|A^{-1/2}BA^{-1/2}\|_2 < 1 \):

\[
0 \leq \operatorname{Tr}((A + B)^q D) - \operatorname{Tr}(A^q D) \leq \frac{\|D\|_2}{1 - q\|A^{-1/2}BA^{-1/2}\|_2} \operatorname{Tr}(A^{q-1}B) .
\]

Proof of Lemma D.4. For every \(i \in [D] \), let \(P \) be a matrix with all zero entries except \(P_{i,i} = 1 \). Then we have:

\[
[(A + B)^q]_{i,i} = \operatorname{Tr}(P^q (A + B)^q P) \geq \operatorname{Tr}((P(A + B)P)^q) = [(A + B^q)]_{i,i} \geq [A^q]_{i,i} .
\]

Where the first inequality is due to the Lieb-Thirring inequality, and the last equality is because \(A \) is diagonal. Since \(D \) is a diagonal PSD matrix, we can conclude that\(^{19}\)

\[
\operatorname{Tr}((A + B)^q D) - \operatorname{Tr}(A^q D) = \sum_{i=1}^d |D|_{i,i} [(A + B)^q - A^q]_{i,i} \geq 0 .
\]

and

\[
\operatorname{Tr}((A + B)^q D) - \operatorname{Tr}(A^q D) \leq \max_{i \in [d]} |D|_{i,i} \sum_{i=1}^d [(A + B)^q - A^q]_{i,i} = \|D\|_2 \operatorname{Tr}((A + B)^q - A^q) . \tag{D.5}
\]

We focus on the term \((A + B)^q\). We can re-write it as \((A + B)^q = (A^{1/2} (I + A^{-1/2}BA^{-1/2}) A^{1/2})^q\). Then by Lieb-Thirring again, we have:

\[
\operatorname{Tr}((A + B)^q) \leq \operatorname{Tr} \left(A^{q/2} \left(I + A^{-1/2}BA^{-1/2} \right)^q A^{q/2} \right) \\
\leq \operatorname{Tr} \left(A^{q/2} \left(I + \frac{1}{1 - q\|A^{-1/2}BA^{-1/2}\|_2} A^{-1/2}BA^{-1/2} \right) A^{q/2} \right) \\
\leq \operatorname{Tr}(A^q) + \frac{q}{1 - q\|A^{-1/2}BA^{-1/2}\|_2} \operatorname{Tr}(A^{q-1}B) . \tag{D.6}
\]

\(^{18}\)In fact, we have only required them to be simultaneously diagonalizable.

\(^{19}\)The authors would like to thank Elliott Lieb who has helped us obtain the inequality of the next line.
Where the second inequality uses \((I + X)^q \preceq I + \frac{q}{1 - q\|X\|_2^2}X\) for every PSD matrix \(X\) with \(q\|X\|_2 < 1\). Putting together \((D.5)\) and \((D.6)\) we obtain:

\[
\text{Tr}((A + B)^qD) - \text{Tr}(A^qD) \leq \frac{q\|D\|_2}{1 - q\|A^{-1/2}BA^{-1/2}\|_2} \text{Tr}(A^{q-1}B).
\]

\(\square\)

Proof of Lemma D.2. Under event \(E_{k-1}(D)\), we know \(I - \eta P_k^T X_{k}^{1/q} P_k \succeq (1 - \eta)I\) (see Proposition 6.4) and thus

\[
0 \leq \eta X_{k}^{1/q} P_k (I - \eta P_k^T X_{k}^{1/q} P_k)^{-1} P_k^T X_{k}^{1/q} \leq \frac{\eta}{1 - \eta} I.
\]

We now apply Lemma D.4 with \(A = X_{k}^{1/q}, B = \eta X_{k}^{1/q} P_k (I - \eta P_k^T X_{k}^{1/q} P_k)^{-1} P_k^T X_{k}^{1/q}\), and \(q = q - 1\). We can do so because \(A\) and \(D\) are both diagonal and \(\frac{(q-1)\eta}{1 - \eta} < 1\) under our assumption of \(\eta\). The conclusion of Lemma D.4 tells us that:

\[
\left| \text{Tr} \left((X_k^{1/q} + \eta X_k^{1/q} P_k (I - \eta P_k^T X_k^{1/q} P_k)^{-1} P_k^T X_k^{1/q})^{-1} D \right) - \text{Tr} \left(X_k^{q-1} D \right) \right|
\leq \frac{q - 1}{1 - \frac{(q-1)\eta}{1 - \eta}} \|D\|_2 \text{Tr}(A^{q-2}B) \leq \left(2(q - 1)\|D\|_2\right) \left(\frac{\eta}{1 - \eta} \text{Tr}(X_k P_k P_k^T) \right)
\leq 4\eta(q - 1)\|D\|_2 \text{Tr}(X_k P_k P_k^T).
\]

Above, the second and third inequalities have respectively used \(\frac{(q-1)\eta}{1 - \eta} < \frac{1}{2}\) and \(\frac{1}{1 - \eta} \leq 2\), which are both true by our assumption on \(\eta\).

\(\square\)

Proof of Lemma D.3. Let \(\lambda_1 \geq \cdots \geq \lambda_d \geq 0\) be the eigenvalues of \(\Sigma_{k-1}\) and \(\nu_1, \ldots, \nu_d\) be the corresponding eigenvectors. Let \(D_1, \ldots, D_d\) be the diagonals of \(D\). Recall that \(\Sigma_{k-1}, X_k, D\) are all diagonal matrices. Define function \(f: \mathbb{R}^d \to \mathbb{R}\)

\[
f(r_1, \ldots, r_d) \overset{\text{def}}{=} \sum_{i=1}^d \left[\frac{P_k P_k^T_{i,i}}{(c_k - \lambda_i)^q} \right] r_i \quad \text{(recall that } c_k \text{ depends on } (D_1, \ldots, D_d)\).
\]

We shall prove that for some \(\gamma \in (0,1)\) that shall be chosen later, it satisfies for every \(i \in [d]\),

\[
\mathbb{E}[f(\gamma, \ldots, \gamma, D_i, \ldots, D_d)] \geq \mathbb{E}[f(\gamma, \ldots, \gamma, D_{i+1}, \ldots, D_d)]
\]

where recall that both expectations are only over the randomness of \(D_1, \ldots, D_{d-1}\). Let \(D\overset{\text{def}}{=} (D_1, \ldots, D_i, D_{i+2}, \ldots, D_d)\). Then, it is sufficient to prove that for every fixed possibility of \(D\), the following inequality holds:

\[
\mathbb{E}_{D_i}[f(\gamma, \ldots, \gamma, D_i, \ldots, D_d) \mid D_{-i}] \geq \mathbb{E}_{D_i}[f(\gamma, \ldots, \gamma, D_{i+1}, \ldots, D_d) \mid D_{-i}].
\]

Therefore, in the remaining proofs, we shall consider \(D_i\) as the only random variable, and thus \(c_k\) only depends on \(D_i\). For a fixed value \(s \geq 1\) that we shall choose later, we can let \(c\) be the (unique) value of \(c_k\) when \(D_i = s\gamma\).

Letting \(g(x) \overset{\text{def}}{=} \frac{x}{(c_k - \lambda_i)^q}\), we make three quick observations:

1. \(g(\gamma) = \frac{\gamma}{(c_k - \lambda_i)^q}\) is a monotone decreasing function of \(D_i\).

 This is so because \(c_k\) is a monotone increasing function of \(D_i\).

2. \(g(D_i) = \frac{D_i}{(c_k - \lambda_i)^q}\) is a monotone decreasing function of \(D_i\).

 This is because \(g(D_i) = 1 - \sum_{j \neq i} \frac{D_j}{(c_k - \lambda_j)^q} = 1\) but \(c_k\) is a monotone increasing function of \(D_i\).
3. When \(D_i \leq s^\gamma \), we have \(g(\gamma) \leq \frac{s^\gamma}{D_i} \).

This is because \(g(\gamma) = \frac{\gamma}{D_i} \left(1 - \sum_{j \neq i} \frac{D_j}{(c - \lambda_j)^q} \right) \leq \frac{\gamma}{D_i} \left(1 - \sum_{j \neq i} \frac{D_j}{(c - \lambda_j)^q} \right) = \frac{s^\gamma}{D_i} \), where the first inequality is because \(c_k \leq c \) when \(D_i \leq s^\gamma \) (by the monotone increasing of \(c_k \) with respect to \(D_i \)), and the second equality is according to the definition of \(c \).

Combining the above three observations, we have:

\[
\mathbb{E}[g(D_i)] \geq \Pr[D_i \geq s^\gamma] \mathbb{E}[g(D_i) \mid D_i \geq s^\gamma] \geq \Pr[D_i \geq s^\gamma] \frac{s^\gamma}{(c - \lambda_i)^q}
\]

\[
\mathbb{E}[g(\gamma)] \leq \Pr[D_i \geq s^\gamma] \mathbb{E}[g(\gamma) \mid D_i \geq s^\gamma] + \mathbb{E} \left[\frac{1}{D_i} \right] \frac{s^\gamma^2}{(c - \lambda_i)^q} \leq s^\gamma \left(\frac{1}{s} + \mathbb{E} \left[\frac{\gamma}{D_i} \right] \right).
\]

Recall that each \(D_i = \frac{1}{3}((\nu_i, u_1)^2 + (\nu_i, u_2)^2 + (\nu_i, u_3)^2) \) where \(u_1, u_2, u_3 \) are three normal Gaussian random vectors. Therefore, each 3D \(i \) has a chi-square distribution of degree 3, which implies \(\mathbb{E}[\frac{1}{D_i}] = 3 \) and \(\Pr[D_i \geq \frac{1}{3}] > \frac{2}{3} \). In sum, if we take \(\gamma = \frac{1}{3} \) and \(s = 3 \), we have:

\[
\frac{\mathbb{E}[g(D_i)]}{D_i} \geq \mathbb{E}[g(\gamma)] .
\]

Finally, this implies

\[
\mathbb{E}[f(\gamma, \ldots, \gamma, D_i, \ldots, D_d) - f(\gamma, \ldots, \gamma, D_{i+1}, \ldots, D_d) \mid D_{i+1}] = [P_k P_k^T]_{i,i} \mathbb{E}[g(D_i) - g(\gamma) \mid D_{i+1}] \geq 0 .
\]

so we have

\[
\mathbb{E}[f(\gamma, \ldots, \gamma, D_i, \ldots, D_d)] = \mathbb{E}[f(\gamma, \ldots, \gamma, D_{i+1}, \ldots, D_d)] .
\]

In particular,

\[
\mathbb{E} \left[\text{Tr} (P_k P_k^T X_k D) \right] = \mathbb{E}[f(D_1, \ldots, D_d)] \geq \mathbb{E}[f(\gamma, \ldots, \gamma)] = \gamma \mathbb{E} \left[\text{Tr} (P_k P_k^T X_k) \right] .
\]

Proof for Section 6.3

Lemma 6.6. For all \(q \geq 2 \) and \(\eta > 0 \),

\[
\mathbb{E} \left[\text{Tr} \left((c_{k+1} I - \eta \Sigma_k)^{-(q-1)} U \right) \cdot 1_{\xi_{< (k+1)}}(U) \right] - \mathbb{E} \left[\text{Tr} \left((c_k I - \eta \Sigma_k)^{-(q-1)} U \right) \cdot 1_{\xi_{< k}}(U) \right]
\]

\[
\leq -(q - 1)(\mathbb{E}[c_{k+1}] - \mathbb{E}[c_k])
\]

Proof. Recall that \(c_{k+1} \geq c_k \) because all matrices \(A_k \) are PSD. Denoting by \(\nu_1, \ldots, \nu_d \) the eigenvectors of \(\Sigma_k \) with non-increasing eigenvalues \(\lambda_1 \geq \cdots \geq \lambda_d \),\(^{20}\) we have for every \(U \),

\[
\text{Tr} \left((c_{k+1} I - \eta \Sigma_k)^{-(q-1)} U \right) - \text{Tr} \left((c_k I - \eta \Sigma_k)^{-(q-1)} U \right)
\]

\[
= \sum_{i=1}^{d} \frac{\nu_i^T U \nu_i}{(c_{k+1} - \eta \lambda_i)^{q-1}} - \sum_{i=1}^{d} \frac{\nu_i^T U \nu_i}{(c_k - \eta \lambda_i)^{q-1}}
\]

\[
\leq -(q - 1)(c_{k+1} - c_k) \cdot \sum_{i=1}^{d} \frac{\nu_i^T U \nu_i}{(c_{k+1} - \eta \lambda_i)^{q-1}}
\]

\[
= -(q - 1)(c_{k+1} - c_k) \cdot \text{Tr} \left((c_{k+1} I - \eta \Sigma_k)^{-(q-1)} U \right) = -(q - 1)(c_{k+1} - c_k) \text{Tr}(X_{k+1} U)
\]

\[
= -(q - 1)(c_{k+1} - c_k) .
\]

\(^{20}\)This is different from the proof of Lemma 6.5 where we defined them to be eigenvectors of \(\Sigma_{k-1} \).
Above, inequality Θ is derived from inequality \[
\frac{1}{(c+x)^y} - \frac{1}{x^y} \leq -\frac{(q-1)c}{(c+x)^y} \quad \text{(for every } c \geq 0, x > 0)\]
which follows from the convexity of function $f(x) = \frac{1}{x^y}$.

Next, we observe that for every U that does not satisfy $E_{<k}(U)$, the very right hand side of (E.1) is still non-negative. Therefore, we conclude that for all U,
\[
\text{Tr}\left((c_{k+1}I - \eta \Sigma_k)^{-(q-1)} U \right) \cdot I_{E_{<k}(U)} - \text{Tr}\left((c_{k+1}I - \eta \Sigma_k)^{-(q-1)} U \right) \cdot I_{E_{<k}(U)} \leq -(q-1)(c_{k+1} - c_k) .
\]

Finally, since $I_{E_{<k+1}}(U) \leq I_{E_{<k}}(U)$ and $\text{Tr}\left((c_{k+1}I - \eta \Sigma_k)^{-(q-1)} U \right) \cdot I_{E_{<k+1}}(U) \geq 0$, we have
\[
\text{Tr}\left((c_{k+1}I - \eta \Sigma_k)^{-(q-1)} U \right) \cdot I_{E_{<k+1}}(U) - \text{Tr}\left((c_{k+1}I - \eta \Sigma_k)^{-(q-1)} U \right) \cdot I_{E_{<k}}(U) \leq -(q-1)(c_{k+1} - c_k)
\]
and taking expectation we finish the proof of Lemma 6.6.

\[\square\]

F Proof of Theorem 1: Oblivious Online Eigenvector

Theorem 1. In the online eigenvector problem with an oblivious adversary, there exists absolute constant $C > 1$ such that if $q \geq 2 \log(2dT)$ and $\eta \in \left[\frac{1}{10p}, 1\right]$, then $\text{FTCL}^{\text{obl}}(T, q, \eta)$ satisfies
\[
\sum_{k=1}^{T} E \left[u_k^T A_k w_k \right] = \sum_{k=1}^{T} E \left[A_k \cdot X_k^{1/2} U X_k^{1/2} \right] \leq (1 - C \cdot \eta q^5 \log(dT)) \lambda_{\text{max}}(\Sigma_T) - 4 \eta .
\]

Proof of Theorem 1. Combining Lemma 6.5 and Lemma 6.6 we have
\[
E \left[\text{Tr}\left(X_{k+1}^{1-1/q} U \right) \cdot I_{E_{<k+1}}(U) \right] - E \left[\text{Tr}\left(X_k^{1-1/q} U \right) \cdot I_{E_{<k}}(U) \right] \\
\leq -(q-1)(E[c_{k+1}] - E[c_k]) + (q-1)\eta(1 + O(\eta q^5 \log(d/\delta))) \cdot E \left[A_k \cdot X_k^{1/2} U X_k^{1/2} \right] + (\eta T + e) T \eta .
\]

Telescoping it for all $k = 1, \ldots, T$, we have
\[
E \left[\text{Tr}\left(X_{T+1}^{1-1/q} U \right) \cdot I_{E_{<T+1}}(U) \right] - E \left[\text{Tr}\left(X_1^{1-1/q} U \right) \cdot I_{E_{<1}}(U) \right] \\
\leq -(q-1)(E[c_{T+1}] - E[c_1]) + (q-1)\eta(1 + O(\eta q^5 \log(d/\delta))) \cdot E \left[\sum_{k=1}^{T} A_k \cdot X_k^{1/2} U X_k^{1/2} \right] + (\eta T + e) T^2 \eta .
\]

We make four quick observations:

- Regardless of the randomness of U, we have $\text{Tr}\left(X_{T+1}^{1-1/q} U \right) \cdot I_{E_{<T+1}}(U) \geq 0$.
- Regardless of the randomness of U, we have $c_{T+1} \geq \eta \lambda_{\text{max}}(\Sigma_T)$.
- We have $E[c_1] \leq e$. To derive that, we use $\frac{1}{c_1} \text{Tr} U = \text{Tr}(X_1 U) = 1$ which implies $c_1 = (\text{Tr} U)^{1/q}$. Notice that $\text{Tr} U = \frac{1}{d} \sum_{i,j \in [d]} (u_{j,i})^2$ so $3 \text{Tr} U$ is distributed according to chi-squared distribution $\chi^2(3d)$ whose PDF is $p(x) = \frac{2^{3d} e^{-x/2} x^{3d-1}}{\Gamma(3d/2)}$. We thus have
\[
E[c_1] = \int_0^\infty x^{1/q} p(x) dx = \frac{2^{1/q} \Gamma \left(\frac{3d}{2} + \frac{1}{q} \right)}{\Gamma \left(\frac{3d}{2} \right)} \leq 2^{1/q} \cdot \left(\frac{3d}{2} \right)^{1/q} = (3d)^{1/q} = e .
\]

Above, the first inequality uses $\frac{\Gamma(x+a)}{\Gamma(x)} \leq x^a$ for $a \in (0, 1)$ and $x > 0$ (cf. Wendell [34]), and the second inequality uses our assumption on q.
- $E \left[\text{Tr}\left(X_1^{1-1/q} U \right) \cdot I_{E_{<1}}(U) \right] \leq e$. This is because $\text{Tr}(X_1^{1-1/q} U) = \frac{1}{c_1} \text{Tr} U = c_1$ and $E[c_1] \leq e$.

24
Substituting the four observations above into the telescoping sum (F.1), we have
\[(q - 1)\eta \lambda_{\max}(\Sigma T) \leq e + (q - 1)e + (q - 1)\eta(1 + O(\eta q^5 \log(d/\delta))) \cdot \mathbb{E} \left[\sum_{k=1}^{T} \mathbf{A}_k \cdot X_k^{1/2} U X_k^{1/2} \right] + (\eta T + e)T^2 \delta \]

Using the inequality \((\eta T + e)T^2 \delta \leq (1 + e)T^3 \delta\), we conclude that if we choose \(\delta = \frac{1}{1+e}T^{-3}\), then
\[(q - 1)\eta \lambda_{\max}(\Sigma T) \leq (q - 1)\eta (1 + O(\eta q^5 \log(dT))) \cdot \mathbb{E} \left[\sum_{k=1}^{T} \mathbf{A}_k \cdot X_k^{1/2} U X_k^{1/2} \right] + 4(q - 1)\]

Dividing both sides by \((q - 1)\eta\), and recalling that \(\mathbb{E}[w_k w_k^\top] = X_k^{1/2} U X_k^{1/2}\), we arrive at the desired inequality.

\[\square\]

G Proof of Theorem 2: Adversarial Online Eigenvector

Theorem 2. In the online eigenvector problem with an adversarial adversary, there exists constant \(C > 1\) such that for every \(p \in (0, 1)\), \(q \geq 3 \log(2dT)\) and \(\eta \in [0, \frac{1}{11q^2}]\), our \(\text{FTCL}^{adv}(T, q, \eta)\) satisfies
\[w.p. \geq 1 - p: \sum_{k=1}^{T} w_k^\top \mathbf{A}_k w_k \geq \left(1 - C \cdot \eta (q^5 \log(dT) + \log(1/p))\right) \lambda_{\max}(\Sigma T) - \frac{5}{\eta} .\]

Proof of Theorem 2. Before beginning our proof, let us emphasize that in this adversarial setting,

- \(\mathbf{A}_k\) and \(\Sigma_k\) can depend on the randomness of \(\mathbf{U}_1, \ldots, \mathbf{U}_{k-1}\).
- \(\mathbf{X}_k\) and \(c_k\) depend on the randomness of \(\mathbf{U}_k\) and \(\Sigma_{k-1}\) (and thus also on \(\mathbf{U}_1, \ldots, \mathbf{U}_{k-2}\)).

Consider (for analysis purpose only) another random matrix \(\tilde{\mathbf{U}}\) drawn from distribution \(\mathcal{D}\), independent of the randomness of \(\mathbf{U}_1, \ldots, \mathbf{U}_T\). Define \(\tilde{c}_k\) to be the unique constant satisfying \(\tilde{c}_k \mathbf{I} - \eta \Sigma_{k-1} \succ 0\) and \(\text{Tr}(\tilde{c}_k \mathbf{I} - \eta \Sigma_{k-1}^{-q} \mathbf{U}) = 1\), and define \(\tilde{\mathbf{X}}_k = (\tilde{c}_k \mathbf{I} - \eta \Sigma_{k-1})^{-q}\).

Now, if we fix the randomness of \(\mathbf{U}_1, \ldots, \mathbf{U}_{k-1}\), the matrices \(\Sigma_{k-1}\) and \(\mathbf{A}_k\) become fixed. The fact that \(\mathbf{U}_k\) and \(\tilde{\mathbf{U}}\) are both drawn from the same distribution \(\mathcal{D}\) (and the fact that \(\mathbf{X}_k\) and \(\tilde{\mathbf{X}}_k\) are computed from \(\mathbf{U}_k\) and \(\tilde{\mathbf{U}}\) in the same way) implies
\[
\mathbb{E}_{\mathbf{U}_k} \left[\mathbf{A}_k \cdot X_k^{1/2} U X_k^{1/2} \mid \mathbf{U}_1, \ldots, \mathbf{U}_{k-1} \right] = \mathbb{E}_{\tilde{\mathbf{U}}} \left[\mathbf{A}_k \cdot \tilde{\mathbf{X}}_k^{1/2} \tilde{\mathbf{U}} \tilde{\mathbf{X}}_k^{1/2} \mid \mathbf{U}_1, \ldots, \mathbf{U}_{k-1} \right] \quad (G.1)
\]

Now, consider random variables \(Z_k = w_k^\top \mathbf{A}_k w_k\). We have that \(Z_k\) is \(\mathcal{F}_k\)-measurable for \(\mathcal{F}_k\) generated by \(\mathbf{U}_1, \ldots, \mathbf{U}_k, w_1, \ldots, w_k\). According to the martingale concentration [Lemma G.1] we have
\[
\Pr \left[\sum_{k=1}^{T} Z_k \leq (1 - \mu) \sum_{k=1}^{T} \mathbb{E}[Z_k \mid \mathcal{F}_{k-1}] - \frac{\log \frac{1}{p}}{\mu} \right] \leq p .
\]

At the same time, we have
\[
\mathbb{E}[Z_k \mid \mathcal{F}_{k-1}] = \mathbb{E}_{w_k, \mathbf{U}_k} \left[\mathbf{A}_k \cdot w_k w_k^\top \mid \mathbf{U}_1, \ldots, \mathbf{U}_{k-1} \right] = \mathbb{E}_{\mathbf{U}_k} \left[\mathbf{A}_k \cdot X_k^{1/2} U X_k^{1/2} \mid \mathbf{U}_1, \ldots, \mathbf{U}_{k-1} \right] = \mathbb{E}_{\tilde{\mathbf{U}}} \left[\mathbf{A}_k \cdot \tilde{\mathbf{X}}_k^{1/2} \tilde{\mathbf{U}} \tilde{\mathbf{X}}_k^{1/2} \mid \mathbf{U}_1, \ldots, \mathbf{U}_{k-1} \right],
\]
where the last inequality comes from (G.1). In sum, with probability at least \(1 - p\) (over the
randomness of $U_1, \ldots, U_T, w_1, \ldots, w_T$, we have
\[
\sum_{k=1}^T w_k^T A_k w_k \geq (1 - \mu) \mathbb{E} \left[\sum_{k=1}^T A_k \bullet X_k^{1/2} U X_k^{1/2} \bigg| U_1, \ldots, U_{T-1} \right] - \frac{\log \frac{1}{p}}{\mu}.
\]
Applying Theorem 1, we have (more specifically, fixing each possible sequence U_1, \ldots, U_T, we have a fixed sequence of A_1, \ldots, A_T and can apply Theorem 1):
\[
\sum_{k=1}^T w_k^T A_k w_k \geq (1 - \mu)(1 - O(\eta^5 \log(dT))) \lambda_{\max}(\Sigma_T) - \frac{4}{\eta} \frac{\log \frac{1}{p}}{\mu}.
\]
Choosing $\mu = \eta \cdot \log(1/p)$, we finish the proof of Theorem 2. \hfill \square

G.1 A Concentration Inequality for Martingales

We show the following (simple) martingale concentration lemma that we believe is classical but have not found anywhere else.

Lemma G.1 (Concentration). Let $\{Z_t\}_{t=1}^T$ be a random process with respect to a filter $\{0, \Omega\} = F_0 \subset F_1 \subset \cdots \subset F_T$ and each $Z_t \in [0,1]$ is F_t-measurable. For every $p, \mu \in (0,1)$,
\[
\Pr \left[\sum_{t=1}^T Z_t \leq (1 - \mu) \sum_{t=1}^T \mathbb{E}[Z_t \mid F_{t-1}] - \frac{\log \frac{1}{p}}{\mu} \right] \leq p.
\]

We emphasize here that $\mathbb{E}[Z_t \mid F_{t-1}]$ is F_{t-1}-measurable and thus not a constant.

Proof of Lemma G.1 Like in classical concentration proofs, we have
\[
\begin{align*}
\Pr \left[\sum_{t=1}^T Z_t \leq (1 - \mu) \sum_{t=1}^T \mathbb{E}[Z_t \mid F_{t-1}] - \frac{\log \frac{1}{p}}{\mu} \right] &= \Pr \left[\sum_{t=1}^T ((1 - \mu) \mathbb{E}[Z_t \mid F_{t-1}] - Z_t) \geq \frac{\log \frac{1}{p}}{\mu} \right] \\
&= \Pr \left[\exp \left\{ \mu \left(\sum_{t=1}^T ((1 - \mu) \mathbb{E}[Z_t \mid F_{t-1}] - Z_t) \right) \right\} \geq \frac{1}{p} \right] \\
&\leq p \mathbb{E} \left[\exp \left\{ \mu \left(\sum_{t=1}^T ((1 - \mu) \mathbb{E}[Z_t \mid F_{t-1}] - Z_t) \right) \right\} \right]. \quad (G.2)
\end{align*}
\]
Denote by $Y_t = \mu(1 - \mu) \mathbb{E}[Z_t \mid F_{t-1}] - \mu Z_t$, we know that each $Y_t \in [-1,1]$ is F_t-measurable.
\[
\mathbb{E} \left[\exp \left\{ \sum_{t=1}^T Y_t \right\} \right] = \mathbb{E} \left[\mathbb{E} \left[\exp \left\{ \sum_{t=1}^T Y_t \right\} \mid F_{T-1} \right] \right]
= \mathbb{E} \left[\exp \left\{ \sum_{t=1}^{T-1} Y_t \right\} \mathbb{E} \left[e^{Y_T} \mid F_{T-1} \right] \right]
\leq \mathbb{E} \left[\exp \left\{ \sum_{t=1}^{T-1} Y_t \right\} \mathbb{E} \left[1 + Y_T + Y_T^2 \mid F_{T-1} \right] \right].
\]
Now, we focus on the term $Y_T + Y_T^2$:
\[
Y_T + Y_T^2 \leq \mu(1 - \mu) \mathbb{E}[Z_T \mid F_{T-1}] - \mu Z_T + \mu^2(1 - \mu)^2 \mathbb{E}[Z_T \mid F_{T-1}]^2 + \mu^2 Z_T^2
\leq \mu(1 - \mu) \mathbb{E}[Z_T \mid F_{T-1}] - \mu Z_T + \mu^2(\mathbb{E}[Z_T \mid F_{T-1}] + \mu Z_T).
\]
(The first inequality has used $(a-b)^2 \leq a^2 + b^2$ when $a, b \geq 0$, and the second has used $Z_t \in [0,1]$.)

Taking the conditional expectation, we obtain $\mathbb{E}[Y_T + Y_T^2 \mid F_{T-1}] \leq 0$ and this implies
\[
\mathbb{E} \left[\exp \left\{ \sum_{t=1}^T Y_t \right\} \right] \leq \mathbb{E} \left[\exp \left\{ \sum_{t=1}^{T-1} Y_t \right\} \right] \leq \cdots \leq e^0 = 1.
\]
Plugging this into (G.2) completes the proof of Lemma G.1. \hfill \square
Proof of Theorem 3

Theorem 3. If \(q \geq 3 \log(2dT/p) \), with probability at least \(1 - p \), for all \(k \in [T] \), the \(k \)-th iteration of FTCL\(^{obl} \) and FTCL\(^{adv} \) runs in \(O(d) \) plus the time to solve \(O(1) \) linear systems for matrices \(cI - \eta \Sigma_{k-1} \). Here, \(c > 0 \) is some constant satisfying \(cI - \eta \Sigma_{k-1} \succeq \frac{1}{\epsilon} I \).

Resolution to Issue (a). We first point out that the final regret blows up by an additive value \(\tilde{\epsilon} \) as long as the eigendecomposition \(\sum_{j=1}^{3} p_j \cdot y_j y_j^\top \) is computed to satisfy\(^{21}\)
\[
\left\| \sum_{j=1}^{3} X_k^{1/2} u_j u_j^\top X_k^{1/2} - \sum_{j=1}^{3} p_j \cdot y_j y_j^\top \right\|_2 \leq \frac{\tilde{\epsilon}}{\text{poly}(d, T)}.
\]
Moreover, this can be done in time \(O(d) \) as long as we can compute the three vectors \(\{X_k^{1/2} u_j\}_{j \in [3]} \) to an additive \(\tilde{\epsilon}/\text{poly}(d, T) \) error in Euclidean norm. This can be done by applying \((c_k I - \eta \Sigma_{k-1})^{-1} \) a number \(q/2 \) times to vector \(u_j \), each again to an error \(\tilde{\epsilon}/\text{poly}(d, T) \). In sum, we can repeatedly apply Lemma H.1 and the final running time only logarithmically depends on \(\tilde{\epsilon}/\text{poly}(d, T) \).

Resolution to Issue (c). We choose \(\delta = p/T \) and revisit the event \(\mathcal{E}_k(U) \) defined in Def. 6.2 According to Lemma 6.3 and union bound, it satisfies with probability at least \(1 - p \), all the \(T \) events \(\mathcal{E}_0(U_1), \ldots, \mathcal{E}_T(U_T) \) are satisfied. If we apply Proposition 6.4, we immediately have that
\[
q \geq 3 \log(2dT/p) \implies \forall k \in [T]: (\eta \lambda_{\max}(\Sigma_{k-1}) + e) I \succeq c_k I \succeq c_k I - \eta \Sigma_{k-1} \succeq \frac{1}{\epsilon} I.
\]
This implies, throughout the algorithm, whenever we want to compute \((c_k I - \eta \Sigma_{k-1})^{-1} \), the matrix under inversion has a bounded condition number. We have the following lemma which relies on classical results from convex optimization:

Lemma H.1. Given any \(b \in \mathbb{R}^d \), the computation of \(a \in \mathbb{R}^d \) satisfying \(\|a - (c_k I - \eta \Sigma_{k-1})^{-1} b\|_2 \leq \tilde{\epsilon}\|b\|_2 \) can be done in running time

- \(\tilde{O}(\sqrt{\eta \lambda_{\max}(\Sigma_{k-1}) + I} \cdot \text{nnz}(\Sigma_{k-1}) \cdot \log \epsilon^{-1}) \) if conjugate gradient or accelerated gradient descent is used;
- \(\tilde{O}((\text{nnz}(\Sigma_{k-1}) + \sqrt{\eta k} \cdot \max_i \{\text{nnz}(\Sigma_{k-1})^{3/4} \text{nnz}(A_i)^{1/4}\}) \log \epsilon^{-1}) \) if accelerated SVRG is used.

Proof. This inverse operation is the same as minimizing a convex function \(f(x) \overset{\text{def}}{=} \frac{1}{2} x^\top (c_k I - \eta \Sigma_{k-1}) x - b^\top x \). The condition number of Hessian matrix \(\nabla^2 f(x) \) is at most \(O(\eta \lambda_{\max}(\Sigma_{k-1}) + 1) \) according to \((H.1) \), so one can apply conjugate gradient \([33] \) or Nesterov’s accelerated gradient descent \([25] \) to minimize this objective.

As for the SVRG type of result, one can write \(f(x) = \frac{1}{k-1} \sum_{i=1}^{k-1} f_i(x) \) where \(f_i(x) = x^\top (c_k I - \eta(k-1) A_i) x - b^\top x \). Each computation of \(\nabla f(x) \) requires time \(O(\text{nnz}(\Sigma_{k-1})) \) and that of \(\nabla f_i(x) \) requires time \(O(\text{nnz}(A_i)) \). Since \(\|\nabla^2 f_i(x)\|_2 \leq \eta k \) for each \(i \), one can apply the SVRG method \([8, 31] \) to minimize \(f(x) \) which gives running time \(\tilde{O}(\text{nnz}(\Sigma_{k-1}) + (\eta k)^2 \max_i \{\text{nnz}(A_i)\}) \). Then, using the Catalyst/APP A acceleration scheme \([15, 24] \), the above running time can be improved to \(\tilde{O}(\text{nnz}(\Sigma_{k-1}) + \sqrt{\eta k} \cdot \max_i \{\text{nnz}(\Sigma_{k-1})^{3/4} \text{nnz}(A_i)^{1/4}\} \). \]

\(^{21}\)We refrain from doing this precisely here because because MMWU analysis is generally “robust against noise”. The authors of \([7] \) have shown that the potential \(\text{Tr}(X_k^{-1/q}) \) is robust against noise and a completely analogous (but lengthy) proof of theirs applies to this paper.
Resolution to Issue (b). In each iteration, we need to compute some constant c_k such that $\text{Tr}(X^{1/2}UX^{1/2}) = 1$. This can be done via a “binary search” procedure which was used widely for shift-and-invert based methods [16]:

1. Begin with $c = \eta k + e$ which is a safe upper bound on c_k according to (H.1)
2. Repeatedly compute some value \tilde{c} which is a 9/10 approximation of $\sigma \overset{\text{def}}{=} c - \eta \lambda_{\text{max}}(\Sigma_{k-1})$.
 (This requires $O(1)$ iterations of power method applied to $(cI - \eta \Sigma_{k-1})^{-1}$ [16].)
3. If $\tilde{c} \leq \frac{1}{e} \cdot \frac{9}{10}$ (which implies $\sigma \leq \frac{1}{e}$), we end the procedure; otherwise we update $c \leftarrow c - \tilde{c}/2$ and go to Step 2.

It is a simple exercise (with details given in [16]) to show that when the procedure ends, it satisfies $\frac{1}{2e} \leq c - \eta \Sigma_{k-1} \leq \frac{1}{e}$ so c is a lower bound on c_k. At this point, it suffices to perform a binary search between $[c, \eta k + e]$ to find c_k. Note that, according to resolution to issue (a), it suffices to compute c_k to an additive error of $\tilde{\varepsilon}/\text{poly}(d, T)$.

In sum, the above binary search procedure requires only a logarithmic number of oracle calls to $(cI - \eta \Sigma_{k-1})^{-1}$, and each time we do so it satisfies $c \leq \eta k + e$ and $(\eta k + e)I \geq cI - \eta \Sigma_{k-1} \geq \frac{1}{2e}I$. For this reason, the same computational complexity in Lemma H.1 applies.

The three resolutions above, combined together, imply that the running time statements in Theorem 3 hold.

I Proof of Theorem 4: Stochastic Online Eigenvector

| Theorem 4 | There exists $C > 1$ such that, for every $p \in (0, 1)$, if $\eta \in \left[0, \sqrt{p/(60T\lambda_{\text{max}}(B))}\right]$ in Oja's algorithm, we have with probability at least $1 - p$: $\sum_{k=1}^{T} w_k^T A_k u_k \geq (1 - 2\eta)T \cdot \lambda_{\text{max}}(B) - C \cdot \frac{\log(d + \log(1/p))}{\eta}$.

Proof of Theorem 4 Define $\Phi_k \overset{\text{def}}{=} (I + \eta A_k) \cdots (I + \eta A_1) uu^T (I + \eta A_1) \cdots (I + \eta A_k)$ and $\Psi_k \overset{\text{def}}{=} (I + \eta A_k) \cdots (I + \eta A_T) \nu_1 \nu_1^T (I + \eta A_T) \cdots (I + \eta A_k)$. Let ν_1 and λ_1 respectively denote the largest eigenvector and eigenvalue of B. We first make three simple calculations:

\[\text{Tr}(\Phi_T) = \text{Tr}((I + \eta A_T) \Phi_{T-1} (I + \eta A_T)) = \text{Tr}(\Phi_{T-1}) + 2\eta^2 \text{Tr}(A_T \Phi_{T-1} A_T)^T \overset{\text{H.1}}{\leq} \text{Tr}(\Phi_{T-1}) \cdot (1 + (2\eta + \eta^2)\text{Tr}(A_T w_T w_T^T)) \leq \text{Tr}(\Phi_{T-1}) \cdot e^{2\eta + \eta^2} \text{Tr}(A_T w_T w_T^T) \]

\[\leq \cdots \leq \Vert u \Vert_2^2 \cdot e^{(2\eta + \eta^2)\sum_{k=1}^{T} w_k^T A_k u_k} \text{(I.1)} \]

\[\mathbb{E}[\nu_1^T \Phi_T \nu_1] = \mathbb{E} \left[\text{Tr}(\nu_1^T (I + \eta A_T) \Phi_{T-1} (I + \eta A_T)) \right] \geq \mathbb{E} \left[\text{Tr}(\nu_1^T (I + 2\eta A_T) \Phi_{T-1} + \eta^2 \nu_1^T A_T \Phi_{T-1} A_T \nu_1) \right] \geq \mathbb{E} \left[\text{Tr}(\nu_1 \nu_1^T (I + 2\eta B) \Phi_{T-1} + \eta^2 \nu_1^T A_T \Phi_{T-1} A_T \nu_1) \right] \geq \cdots \geq e^{(2\eta \lambda_1 - 2\eta^2 \lambda_1^2)T} \text{ (I.2)} \]

\[\mathbb{E}[(\nu_1^T \Phi_T \nu_1)^2] = \mathbb{E} \left[\text{Tr}(\Psi_1^2) \right] \geq \mathbb{E} \left[\text{Tr}((I + \eta A_1)^2 \Psi_2 (I + \eta A_1)^2 \Psi_2) \right] \leq \mathbb{E} \left[\text{Tr}((I + \eta A_1)^4 \Psi_2^2) \right] \geq \mathbb{E} \left[\text{Tr}((I + (4\eta + 11\eta^2) A_1) \Psi_2^2) \right] \leq \mathbb{E} \left[\text{Tr}((I + (4\eta + 11\eta^2) A_1) \Psi_2^2) \right] \leq \cdots \leq e^{(4\eta \lambda_1 + 11\eta^2 \lambda_1)T} \text{ (I.3)} \]

Above, (I) uses $\text{Tr}(A_T \Phi_{T-1} A_T) = \text{Tr}(A_T^2 \Phi_{T-1}) \leq \text{Tr}(A_T \Phi_{T-1})$ as well as $w_T w_T^T = \Phi_{T-1}/\text{Tr}(\Phi_{T-1})$,
uses $1 + x \leq e^x$, \(\exists \) uses $1 + 2x \geq e^{2x} - 2x^2$ for $x \in [0, 1]$, \(\forall \) uses $\mathbb{E}[\nu_1^T \Phi_0 \nu_1] = 1$, \(\subseteq \) uses the Lieb-Thirring inequality $\text{Tr}(ABAB) \leq \text{Tr}(A^2B^2)$\(^{22}\) \(\in \) uses $(I + \eta A_1)^4 \preceq I + (4\eta + 11\eta^2)A_1$.

Now, we can combine (I.2) and (I.3) and apply Chebyshev’s inequality: for every $p \in (0, 1)$

$$\mathbb{P}[\nu_1^T \Phi_T \nu_1 \geq e^{(2\eta^2\lambda_1^2 + 2\eta^2\lambda_2^2)T} - \frac{1}{p} \sqrt{e^{(4\eta^2\lambda_1^2 + 11\eta^2\lambda_1^4)T} - (e^{(2\eta^2\lambda_1^2 - 2\eta^2\lambda_2^2)T})^2} \leq p]$$

In other words, as long as $\lambda_1 \eta^2 T \leq p/60$, we have with probability at least $1 - p$,

$$\text{Tr}(\Phi_T) \geq \nu_1^T \Phi_T \nu_1 \geq e^{(2\eta^2\lambda_1^2 - 2\eta^2\lambda_2^2)T} \cdot (1 - p^{-1/2} \sqrt{e^{15\eta^2\lambda_1^4 T} - 1}) \geq \frac{1}{2} e^{(2\eta^2\lambda_1^2 - 2\eta^2\lambda_2^2)T} \cdot (I.4)$$

At the same time, using tail bound for chi-squared distribution, it is easy to derive that with probability at least $1 - p$ we have $\|u\|^2_2 \leq d + O(\sqrt{d \log(1/p)}) \leq O(d + \log(1/p))$\(^{23}\) Combining this with (I.1) and (I.4) we have

$$(2\eta + \eta^2) \sum_{k=1}^T w_k^T A_k w_k \geq 2\eta T \lambda_1 - 2\eta^2 \lambda_2^2 T - O(\log(d + \log(1/p)))$$

which after dividing both sides by $2\eta + \eta^2$ finishes the proof of Theorem 4. \(\square \)

J A Simple Lower Bound for the λ-Refined Language

We sketch the proof that for the stochastic online eigenvector problem, for every $\lambda \in (0, 1)$, there exists a constant $C > 0$, a PSD matrix B satisfying $B \preceq \lambda I$, and a distribution D of (even rank-1) matrices with spectral norm at most 1 and expectation equal to B, such that for every learning algorithm Learner, the total regret must be at least $C \cdot \sqrt{T}$.

Such a lower bound naturally translates to the harder adversarial or oblivious settings. We prove this lower bound by reducing the problem to an information-theoretic lower bound that has appeared in our separate paper \[4\].

The lower bound in \[4\] states that, for every $1 \geq \lambda \geq \lambda_2 \geq 0$, there exists a PSD matrix B with the largest two eigenvalues being λ and λ_2, and a distribution D of rank-1 matrices with spectral norm at most 1 and expectation equal to D. Furthermore, for any algorithm Alg that takes T samples from D and outputs a unit vector $v \in \mathbb{R}^d$, it must satisfy

$$\mathbb{E}[1 - \langle v, \nu_1 \rangle^2] \geq \Omega\left(\frac{\lambda}{(\lambda - \lambda_2)^2 T}\right) \text{ for every } T \geq \Omega(\lambda/(\lambda - \lambda_2)^2)$$

where ν_1 is the first eigenvector of B, and the expectation is over the randomness of Alg and the T samples from D. After rewriting, we have

$$\mathbb{E}[v^T B v] \leq \mathbb{E}[\lambda \langle v, \nu_1 \rangle^2 + \lambda_2 (1 - \langle v, \nu_1 \rangle^2)] = \mathbb{E}[\lambda - (\lambda - \lambda_2)(1 - \langle v, \nu_1 \rangle^2)] \leq \lambda - \Omega\left(\frac{\lambda}{(\lambda - \lambda_2)^2} T\right).$$

If we choose λ_2 such that $T = \Theta(\lambda/(\lambda - \lambda_2)^2)$, then the above inequality becomes

$$\mathbb{E}[v^T B v] \leq \lambda - \Omega(\sqrt{T}).$$

Finally, for any algorithm Learner for the stochastic online eigenvector problem, suppose Learner takes T samples A_1, \ldots, A_T from D and outputs unit vectors v_1, \ldots, v_T, we can define a corre-

\(^{22}\)In fact, we do not need the full power of Lieb-Thirring here because one of the two matrices is rank-1.

\(^{23}\)Chi-square distribution satisfies $\mathbb{P}[\|u\|^2_2 \geq (1 + \alpha) \cdot d] \leq ((1 + \alpha) \cdot e^{-\alpha d/2}) \cdot \alpha$. Choosing $\alpha = \Theta(d^{-1/2} \log^{1/2}(1/p))$ makes this probability p.

29
sponding algorithm Alg that outputs $v = v_k$ each with probability $1/T$. In this way, we have
\[
\mathbb{E}\left[\sum_{k=1}^{T} v_k^\top A_k v_k \right] = \mathbb{E}\left[\sum_{k=1}^{T} v_k^\top B v_k \right] = T \mathbb{E}\left[v^\top B v \right] \leq \lambda T - \Omega(\sqrt{\lambda T}) .
\]
In other words, the total regret of Learner must be at least $\Omega(\sqrt{\lambda T})$.

References

[31] Shai Shalev-Shwartz. SDCA without Duality, Regularization, and Individual Convexity. In ICML, 2016.

