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Abstract 

To automatically evaluate the performance of children reading 

aloud or to follow a child’s reading in reading tutor applica-

tions, different types of reading disfluencies and mispronunci-

ations must be accounted for. In this work, we aim to detect 

most of these disfluencies in sentence and pseudoword read-

ing. Detecting incorrectly pronounced words, and quantifying 

the quality of word pronunciations, is arguably the hardest 

task. We approach the challenge as a two-step process. First, a 

segmentation using task-specific lattices is performed, while 

detecting repetitions and false starts and providing candidate 

segments for words. Then, candidates are classified as mis-

pronounced or not, using multiple features derived from like-

lihood ratios based on phone decoding and forced alignment, 

as well as additional meta-information about the word. Several 

classifiers were explored (linear fit, neural networks, support 

vector machines) and trained after a feature selection stage to 

avoid overfitting. Improved results are obtained using feature 

combination compared to using only the log likelihood ratio of 

the reference word (22% versus 27% miss rate at constant 5% 

false alarm rate). 

Index Terms: children’s speech, reading disfluencies, mis-

pronunciation detection  

1. Introduction 

Reading aloud by children who are still learning how to read 

can present several problems that reflect their different levels 

of fluency. This oral reading fluency depends on speed, accu-

racy, consistency of pace and expressiveness [1]. Disfluencies 

and reading mistakes can vary from reading syllable by sylla-

ble to severe mispronunciations of a word, and present a sig-

nificant challenge to automatic systems that aim to either 

evaluate a child’s reading or to monitor their reading attempts 

(such as in automatic reading tutors). 

 There are several known methods to detect disfluencies, 

such as based on hidden Markov models (HMMs), maximum 

entropy models, conditional random fields [2] and classifica-

tion and regression trees [3], though most of these past efforts 

focus on spontaneous speech. For read speech, there are dif-

ferences in the types of events found, since different speaking 

styles vary in the production of disfluencies [4]. Certain works 

have targeted the detection of disfluencies in children’s read-

ing: Black et al. [5] target mostly sounding-outs of a word that 

can be whispered and use a grammar structure allowing partial 

words and silence or noise between phones; Duchateau et al. 

[6] use a phoneme-level lattice to allow false starts and partial 

pronunciations and a second unit to allow repetitions and dele-

tions of words; Yilmaz et al. [7] added  to a flexible decoding 

scheme the most common substitutions, deletions and inser-

tions of phones in the language described by a phone confu-

sion matrix; Li et al. [8] employed a context-free grammar 

with sentence words concurrent with other common words. 

However, most works focus on individual word reading tasks 

(with some exceptions in [7], [8]), whereas our work will fo-

cus on sentence and pseudoword reading. Some studies use 

the output of disfluency detection to provide an overall read-

ing performance index that should be significantly correlated 

with the opinion of expert evaluators [6], [9], which is also the 

underlying objective of our research.  

This work targets the detection of the most common de-

viations to correct reading in the reading aloud task of primary 

school children (6-10 years old): mispronunciations, false 

starts, repetitions and intra-word pauses. We approach the task 

in two steps. In the first step, there is no concern about mis-

pronunciation and only word-relevant segments are retrieved, 

while allowing repetitions and syllable-based false starts to 

occur. Subsequently, candidate word segments are classified 

as incorrectly or correctly pronounced through the combina-

tion of several features derived from a phonetic recognition 

and the likelihood of reference words. This results in an auto-

matic annotation of reading tasks of sentences and 

pseudowords that can be parsed to evaluate a child’s reading 

performance. 

In Section 2, the dataset of children reading aloud will be 

presented. In Section 3, the first step of segmenting utterances 

into word-relevant segments while detecting repetitions and 

false starts is described. Finally, Section 4 details the task of 

classifying candidate word segments as mispronounced or not, 

using multiple features and classifiers.  



2. Dataset and reading disfluencies 

A subset of the LetsRead corpus of European Portuguese chil-

dren reading aloud [10] is used in this work. Utterances of 

sentences and pseudowords totalling 10.5 hours are consid-

ered. The training set used to train acoustic models, phonetic 

recognizer and classifiers has 9 hours and a set of 1.5 hours is 

used to test the system. The children are at primary school 

level (6-10 years old) and are approximately equally distribut-

ed over the grade levels. 

The fully transcribed dataset presents varied annotated 

events for pauses, disfluencies and mispronunciations. Incor-

rect words are distinguished in two levels: severe mispronun-

ciations or substitutions (SUB) and slight mispronunciations 

with usually a change in one phoneme only (PHO). From 

events that represent extra additions beyond word pronuncia-

tions, repetitions and false-starts represent 92% of them and 

are the ones targeted by the method described in Section 3. 

3. Segmentation and detection of extra 

events 

As a first step in disfluency detection, repetitions and false 

starts are targeted while getting a word-level segmentation. 

With the reference prompt as a starting point, there is no dis-

tinction if a word is mispronounced or not, expecting that a 

word will still be well aligned with its attempt. The word can-

didate segments can then be further analyzed for pronuncia-

tion accuracy in a subsequent step. Standard hidden Markov 

models were trained with the Kaldi toolkit [11] for this partic-

ular stage. The steps taken to get a segmentation for an utter-

ance are: 

1. Voice activity detection. Intra-word pauses, usually 

where a child pronounces a word syllable by syllable, 

are the most problematic when trying to force-align a 

word to its pronunciation attempt. Instead of allowing si-

lence after each phone or syllable, we decided to cut all 

significant non-speech segments (longer than 150 ms) 

from an utterance to minimize the impact of these cases, 

even if it leads to unnatural signal transitions. Non-

speech segments were found from frame sequences that 

had a high probability of being silence based on the pos-

terior probabilities output by a phonetic recognizer (de-

scribed in the following section). 

2. Decoding using task-specific lattices. Lattices specifical-

ly built from the utterance’s original prompt are used to 

decode the signal, allowing repetitions of words or se-

quence of words as well as syllable based false starts. 

The following subsection describes these lattices.   

3. Reintroduction of nonspeech segments. After decoding, 

the segmentation information is reconstructed with the 

nonspeech segments that were cut in the first step to 

make the full duration match the original utterance.  

3.1. Task lattices 

Task-specific finite state transducers (FST) for decoding are 

built based on the original prompt, either a sentence or an in-

dividual pseudoword. For each word of the prompt, a set of el-

ements are added to the lattice: an arc to go back after a word 

pronunciation allowing repetitions, and an arc that allows mul-

tiple false starts. This can be thought of as a forced alignment 

with some added freedom, or as a constrained decoding. Fig-

ure 1 shows an example of the lattice built for the sentence ele 

sunhava muito [ˈelə suɲˈavɐ mˈũjt̃u] (he dreamed a lot). False 

starts are represented by the suffix PRE, with multiple pro-

nunciations based on the number of syllables of the word. 

These pronunciations can be proper prefixes of the word end-

ing at syllable boundaries, which are common interruption 

points. For the given example: elePRE can only be [e]; 

sonhavaPRE can be [su] or [suɲˈa]; muitoPRE can only be 

[mũj]̃. 
 

 

Figure 1: Schematic of the decoding FST for the 

prompt “ele sunhava muito”. 

The original sentence is obtained by following the horizontal 

left-to-right arcs. With multiple non-consuming back transi-

tions (<eps>), repetitions of sequences of words such as ele 

sonhava ele sonhava muito are allowed. These are a very 

common occurrence in the data, representing corrections by 

restarting at a sentence or clause boundary. The best results 

were obtained when deletions/skips are not allowed, since 

there are few in the data where the given prompts are most of-

ten realized completely. For a live application, it is conceiva-

ble that they should be considered. Insertions are other events 

that are also not targeted. Using the current methods, a dele-

tion or insertion will often be aligned and then classified as a 

mispronunciation, so it is still detected that a problem occurs. 

3.2. Results 

Although the false starts allowed are up to the last syllable, in 

the transcribed data some are complete mispronunciations of a 

word. Those are possibly detected as repetitions with these lat-

tices and we decided to analyze the detection of both repeti-

tion and false start events as one class. To evaluate the sys-

tem’s performance in detecting these events, we consider that: 

extra detections (insertions) are false alarms; undetected 

events (deletions) are misses; events detected as belonging to a 

different word (substitution) are also misses. These specifica-

tions are similar to those used in NIST evaluations [12], 

though to calculate false alarm rates we divide the number of 

false alarms by the number of original words. Figure 2 pre-

sents the detection error tradeoff (DET) curve obtained by us-

ing a wide search beam during decoding and various word in-

sertion penalties and lattice rescoring weights.  

 

Figure 2: Detection error tradeoff (DET) for the detec-

tion of repetitions and false starts on the test set. 



The word error rate (WER) obtained by using the full text of 

the original prompts as hypothesis and manual transcription as 

reference is 9%, with the error corresponding to events of rep-

etitions, false starts, insertions and deletions. Using the 

weights from the best training result, the WER achieved in the 

test set is 2.45%, giving an 11.17% miss rate and 0.98% false 

alarm rate in the detection curve. The optimal point for mini-

mal test WER corresponds to 2.41% WER. 

The output of this stage provides time alignment infor-

mation of candidate word segments, which can then be classi-

fied as incorrectly pronounced or not.  

4. Mispronunciation classification 

We approach the challenge of classifying word pronunciations 

by defining multiple relevant features and combining them in 

multi-feature classifiers. A common metric to detect phonetic 

mispronunciations is goodness of pronunciation (GOP) [13], 

[14], which computes the likelihood of a phone realization to 

belong to the ideal phone that should have been pronounced. 

We compute derivations of GOP-like features on posterior 

probabilities, edit distances of recognized versus ideal phones 

and other details about the word. 

4.1. Features 

For all features that need to consider the reference pronuncia-

tion of a word, we allowed multiple acceptable pronunciations 

as well as co-articulation rules depending on neighboring 

words (if it was not silence). A neural network based on long-

temporal context [15] was trained, outputting posterior proba-

bilities of phones and nonspeech (73% phone error rate with a 

free-phone-loop model). To recognize the sequence of pro-

nounced phones, we apply a bigram language model derived 

from the training set. The considered features for a word can-

didate include:  

 A GOP-like accumulated log likelihood ratio (LLR) 

from a word spotting approach. A candidate word seg-

ment may not have the ideal boundary information, ei-

ther due to segmentation errors or manual transcription 

flexibility (e.g., including some silence inside the 

marked boundaries). We previously found success in us-

ing a word-spotting approach in the near vicinity of the 

alignment that finds the peak LLR between the models 

of ideal word and free phone loop [16], where the most 

likely boundaries are also discovered.  

 Minimum and average GOP (min-GOP and mean-

GOP). For a forced alignment of the sequence of phones 

of the ideal realization of a word, we consider the worst 

(minimum) likelihood of the aligned phones as a feature 

as well as the average likelihoods for all phones.  

 Maximum and accumulated probability of mismatched 

phones (maxBadPhnProb, accBadPhnProb). For each 

recognized phone that does not match the ideal phonetic 

sequence, we take the average posterior probability over 

its alignment, and take the maximum and the sum of 

those values. Hopefully, a mismatched phone with high 

probability from the recognizer means an increased con-

fidence that a word was mispronounced.   

 3 types of Levenshtein edit distances between recog-

nized and ideal phone sequences: full edit distance 

(Lev1); edit distance with lower weights for substitu-

tions among phonetic groups (Lev2); edit distance with 

substitution weights for the phone confusion of the pho-

netic recognizer (Lev3).  

 Difficulty of the word based on dubious and harder pro-

nunciation rules [10] with and without considering word 

length (Diff1 and Diff2) and OLD20 – the mean Le-

venshtein distance from a word to its 20 closest ortho-

graphic neighbors [17].  

 Number of frames of the segment (Nframes), number of 

phones of the closest allowable pronunciation (Nphones) 

and number of graphemes (Ngraph). 
 

We also included additional features by exploring normal-

izations and interactions of LLR with the other features by di-

vision or multiplication, represented, e.g., LLR/Nframes or 

LLR*Lev. 

4.2. Classification Models 

Since our defined target indicates whether a word is mispro-

nounced or not, we consider the task a problem of binary clas-

sification. If only one feature is analyzed, we can simply de-

fine a threshold for a hard decision (yes or no) or analyze the 

performance of selecting different thresholds. To combine the 

information of several features, we explore approaches that ei-

ther transform the features to a new linear output or make a 

binary decision:  

 Linear discriminant (Linear), by optimizing a linear re-

gression of the features while minimizing the sum of 

squared errors (SSE). 

 Neural networks (NN) with one hidden layer (variable 

optimum number of neurons) and one linear output 

trained with scaled conjugate gradient backpropagation 

and optimizing cross-entropy.  

 Support vector machines (SVM) with 2nd order polyno-

mial kernel and C parameter of 0.1. 
 

All models were built and analyzed on the training set us-

ing 5-fold cross-validation (CV-train). For predictions on the 

test set (Test), a model trained over the entire train set is used. 

For models that depend on random initialization (NN weights 

and SVM automatic heuristic kernel scale), the best perform-

ing one over 10 runs on the training data was selected. Hyper-

parameters were empirically chosen. To avoid over-fitting to 

the training set, we also employ stepwise feature selection 

[18]. Since some features may not provide significant im-

provement, a feature is selected if the loss in SSE from its in-

clusion in a linear regression model is statistically significant 

(in this case, a p-value of an F-statistic test lower than 0.05). 

4.3. Results 

Two sources of segment boundary information before feature 

extraction will be analyzed: manual annotation and the auto-

matic annotation described in the previous section. Further-

more, two other analyses are considered: having only severe 

mispronunciations as the mispronounced/positive class (SUB) 

or having severe mispronunciations and slight mispronuncia-

tions as the positive class (SUB+PHO). 

To compare the performance of different classifiers, we 

must first consider these two aspects: the number of positive 

samples of mispronunciations is much lower than the number 

of negative samples for correct words; a false alarm is a more 

severe occurrence than a miss when evaluating children read-

ing. We found that an F2-score could be a suitable metric for 



this analysis, similar to an F1-score (harmonic mean of preci-

sion and recall) but with higher weight for misses [19], often 

giving its maximum around 5% false-alarm for our evaluation, 
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where TP are true positives, FN are false negatives and FP are 

false positives. 

Table 2 presents F2-scores for the classification of the 

SUB+PHO class of some of the best individual features and 

combination models, with LLR being the best individual fea-

ture. There are only slight differences in F2-score among the 

multi-feature classifiers and all of them gained from feature 

combination compared with only the best feature.  

Table 1: F2-scores for the classification of SUB+PHO 

class vs. correct words. 

 CV-train Test 

Classification Model Manual Auto Manual Auto 

LLR 0.687 0.675 0.645 0.639 

min-GOP 0.523 0.524 0.498 0.502 

Lev3 0.495 0.504 0.489 0.480 

LLR/Nphones 0.651 0.634 0.610 0.605 

LLR*Lev3 0.641 0.635 0.611 0.597 

LLR*OLD20 0.677 0.666 0.643 0.638 

Linear-all 0.710 0.692 0.668 0.652 

Linear-stepwise 0.714 0.695 0.670 0.656 

NN-all 0.707 0.692 0.669 0.656 

NN-stepwise 0.711 0.690 0.669 0.654 

SVM-all 0.700 0.683 0.676 0.658 

SVM-stepwise 0.709 0.694 0.672 0.658 

 

From the features selected from stepwise selection, three were 

consistently chosen (e.g., for all folds of CV-train with auto-

matic labels): LLR, LLR*Lev3, min-GOP. Other features that 

appear often (for more than 1 fold) are: OLD20, mean-GOP, 

Nphones. The multi-feature model chosen for further analysis 

is the linear combination after stepwise selection (Linear-

step). Table 3 summarizes results for a 5% false alarm rate, 

where it can be seen that using manual transcription was 

slightly better than automatic segmentation and that the com-

bination of features was even more helpful for the SUB class. 

With automatic segmentation, an improvement from 23% to 

21% miss rate is achieved with multiple features for the SUB 

class, with similar gains for SUB+PHO. 

Table 2: Miss rates for a 5% false alarm rate 

  SUB SUB+PHO 

Labels Model CV-train Test CV-train Test 

Manual 
LLR 20.78 20.78 27.37 33.51 

Linear-step. 17.02 16.88 23.60 34.03 

Auto 
LLR 23.12 23.38 28.89 35.84 

Linear-step. 20.86 21.43 26.28 34.81 

 

Figure 3 shows the DET curves for the best individual feature 

(LLR) and for the linear combination after feature selection, 

for the cross-validation over the training set. Feature combina-

tion appears to be more helpful for 5-10% false alarm rates.  

 

Figure 3: Detection error tradeoff curve for the classi-

fication of SUB class vs. correct words using the best 

feature (LLR) and a multi-feature model (Linear-step). 

The LLR metric, obtained through a word-spotting approach, 

although being the best performing feature, can miss mispro-

nunciations where the child added something at the start or 

end of a word (e.g., plural). Other than that, there are two main 

issues to tackle to improve results. The first is that the output 

of the phonetic recognizer is prone to errors, otherwise the 

match of the recognized phones to reference pronunciation 

would suffice. The second issue is the subjective manual an-

notation of correct words and mispronunciations, where many 

cases are dubious and some special occurrences are very chal-

lenging for an automatic system. Most of the false alarm cases 

for which a very high certainty of mispronunciation was as-

signed and the manual annotator could hear that the word was 

in fact correctly pronounced, can be connected to these fac-

tors: whispering/non-vocalization where silence is recognized, 

often occurring in the last word of the sentence or before inha-

lations; and noise events simultaneous with a word that also 

lead to either nonspeech or different phones to be recognized.  

5. Conclusions 

A two-step system was implemented to automatically detect 

common mispronunciations and disfluencies in children read-

ing. While a low word error rate was obtained with automatic 

segmentation, the performance of mispronunciation classifica-

tion suffers slightly when compared to using manual annota-

tion, though the difference is smaller for lower false alarm 

rates. The combination of features with varying information 

lead to improved classification results, compared to using only 

one log likelihood ratio metric.  

We attempted to diminish the issue of phonetic recogni-

tion accuracy by considering phonetic confusion of the recog-

nizer to calculate edit distance, but this issue could not be 

solved completely. For future work, to deal with varying read-

ing speeds, the phone insertion penalty for phonetic recogni-

tion could be adjusted case by case. We also wish to explore 

feature interactions or transformations more fully. 
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