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Abstract

Inspired by the recent success of text-based question an-
swering, visual question answering (VQA) is proposed to
automatically answer natural language questions with the
reference to a given image. Compared with text-based QA,
VQA is more challenging because the reasoning process
on visual domain needs both effective semantic embedding
and fine-grained visual understanding. Existing approaches
predominantly infer answers from the abstract low-level vi-
sual features, while neglecting the modeling of high-level
image semantics and the rich spatial context of regions.
To solve the challenges, we propose a multi-level atten-
tion network for visual question answering that can simul-
taneously reduce the semantic gap by semantic attention
and benefit fine-grained spatial inference by visual atten-
tion. First, we generate semantic concepts from high-level
semantics in convolutional neural networks (CNN) and se-
lect those question-related concepts as semantic attention.
Second, we encode region-based middle-level outputs from
CNN into spatially-embedded representation by a bidirec-
tional recurrent neural network, and further pinpoint the
answer-related regions by multiple layer perceptron as vi-
sual attention. Third, we jointly optimize semantic atten-
tion, visual attention and question embedding by a softmax
classifier to infer the final answer. Extensive experiments
show the proposed approach outperforms the-state-of-arts
on two challenging VQA datasets.

1. Introduction
Visual question answering (VQA) has attracted exten-

sive attention recently, since VQA is considered approach-
ing towards the milestone of “AI-complete” that enables a
machine to reason across language and vision as humans
[38]. Compared with text-based QA system in natural lan-
guage processing (NLP), VQA takes one step further, which
is able to answer a natural language question by consider-
ing the correspondence between a question and a reference
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Figure 1. Overview of the multi-level attention network (MLAN).
The proposed attention model highlights both question-related se-
mantic concepts (i.e., “baseball,” “game,” “play”) and image re-
gions (i.e., those regions of “bat” and “glove”).

image. The capability of automatic VQA can significantly
promote the mutual understanding between language and
vision, and further benefit a variety of applications, such as
visually-impaired assistant devices, early education, service
robots, and so on.

The challenges of visual question answering are two-
fold: effective semantic embedding and fine-grained visual
understanding. Most early works transfer image caption-
ing framework [5, 19, 28, 35] to VQA tasks [10, 18, 24] by
the combination of convolutional neural networks (CNN)
[14] and recurrent neural network (RNN) [12]. Specifi-
cally, these works extract global image representation from
a pre-trained CNN model and extract question representa-
tion from a RNN model. They further feed the joint embed-
ding features across language and vision into either a de-
coder RNN to generate free-form answers or a softmax clas-
sifier to infer the best answer from a predefined answer set
(e.g., 1K answer categories in VQA dataset [2]). Although
promising results have been reported, further improvement
suffers from the following limitations. First, human lan-
guage question conveys strong high-level semantics with
explicit query intention, while real-world images with tens
of thousands of pixels are relatively low-level and abstract,



which pose grand challenges for deep image understand-
ing due to the well-known semantic gap. Second, visual
question answering requires fine-grained spatial inference
because some answers can be only inferred from highly-
localized image regions for “what” and “where” questions.

To deal with the challenges, the state-of-the-art ap-
proaches proceed the research on VQA along two indepen-
dent dimensions. First, some methods develop the high-
level semantic representation for images by introducing se-
mantic concepts, image captions or even external knowl-
edge base into the typical CNN-RNN framework [30, 31].
Second, others focus on using region-based features to
discover the most important regions to answer a question
[9, 13, 17, 20, 26, 33, 34]. However, previous research still
ignores using semantic attention to select the most discrim-
inative concepts for a natural language question and using
the explicit spatial encoding for image regions.

To simultaneously learn semantic and spatial representa-
tion from images, we unify the two dimensions into a holis-
tic learning framework. Specifically, we propose a novel
multi-level attention network (MLAN) for visual question
answering by highlighting both question-related semantic
concepts and local image regions in end-to-end training.
Figure 1 shows the advantages of the proposed MLAN
by an intuitive example. The proposed MLAN consists
of three major components. First, semantic attention at-
tends on high-level image representation by discovering the
semantically-close concepts to questions in the same vocab-
ulary set and joint embedding space. These concepts cor-
respond to highly-frequent words in question/answer pairs
and can represent high-level understanding for image con-
tent. Specifically, a CNN-based recognizer is trained for
each concept, and the distribution over the semantic output
layer in CNN constitutes the high-level representation of an
image. Second, spatial attention is proposed to infer the im-
age regions which can be attended by questions. Local re-
gion representations are first extracted from convolutional
layers in CNN and further fed into a bidirectional RNN
model by a pre-defined order. Such a design enables spa-
tial information of a region to be encoded from surround-
ing context. Attention scores for each region are further
obtained by a multiple layer perceptron (MLP) with the in-
put of both context-aware visual representation and ques-
tion representation. Third, joint learning incorporates at-
tended regions, attended concepts and question features by
element-wise multiplication, followed by a softmax layer to
predict the most possible answer from an answer set. We
summarize the main contributions as follows:
• We address the challenges of automatic visual ques-

tion answering by jointly learning multi-level atten-
tion, which can simultaneously reduce the semantic
gap from vision to language and benefit fine-grained
inference in VQA tasks.

• We introduce a novel spatial encoding approach for vi-
sual attention, which extracts the context-aware visual
features from ordered image regions by a bidirectional
RNN model.
• We conduct experiments on two widely-used VQA

datasets [2, 37], and obtain significant performance
gains over both visual-only and semantic-only atten-
tion models.

2. Related Work
In this section, we first introduce the general CNN-RNN

framework on both image captioning and visual question
answering. Then, we summarize the most recent advances
from two different dimensions.
CNN-RNN. Inspired by the success of CNN-RNN frame-
work in image captioning task, most early works tend to
exploit variation of those models to visual question an-
swering task [2, 10, 18, 24]. They extract visual features
from images via pre-trained convolutional neural networks
(CNNs) and encode questions by recurrent neural networks
(RNNs). Ren et al. [24] took their inspiration from [28],
where the image was treated as the first token and fed into
RNNs together with descriptions to learn visual-semantic
embedding. Instead of seeing image once, Malinowski et
al. [18] passed the image into RNNs at each time when en-
coded the question, which is similar to the framework of
[5] in automatic image captioning task. Gao et al. [10]
adapted m-RNN models [19] to deal with VQA task in the
multi-lingual setting. Agrawal et al. [2] released a large and
human-annotated VQA dataset and evaluate several base-
line models and human-level performance on this dataset,
which accelerated advances in this task. Despite these early
approaches show promising performance in VQA task, it
tends to fail on novel instances and highly rely on questions
(do not change the answer across images) [1].
Visual Attention. Visual attention mechanism is brought
into VQA to address “where to look” problems. Question-
guided visual attention uses semantic representation of a
question as query to search for the regions in an image that
are related to the answer [9, 13, 17, 26, 34]. Two types of
soft attention mechanism are well explored in visual ques-
tion answering task. The first type concatenates the ques-
tion representation with each candidate region and then put
them into a multiple layer perceptron (MLP) to compute
the soft attention weights while the second type gets the at-
tention score by the dot product of the two ways of inputs
[33]. Yang et al. [34] propose a stacked attention model
which queries the image multiple times to infer the answer
progressively. Lu et al. [17] exploit a question-image co-
attention strategy to attend not only related regions in im-
ages but also important words in questions. Recently, Nam
et al. [20] proposed Dual Attention Networks, which refined
the visual and textual attention via multiple reasoning steps.



Figure 2. Overall framework of multi-level attention networks. Our framework consists of three components: (A) semantic attention, (B)
context-aware visual attention and (C) joint attention learning. Here, we denote by vq the representation of the question Q, by vimg, vc the
representation of image content on the visual and semantic level queried by the question, respectively. vr and pimg

c is the activation of the
last convolutional layer and the probability layer from the CNN.

Our work is different from co-attention and dual-attention
in that we attend to high-level concepts extracted from the
image, rather than words from questions. The major advan-
tage of using concepts over questions is that the concepts
are the semantic representation of content in the image, not
limited to words in the question. In [9], Fukui et al. incorpo-
rate a powerful feature fusion method into visual attention,
and achieve impressive results in VQA task. However, they
have to keep a much higher dimension after fusion at cost
of more computation and storage.
High-level Concepts. There is another branch also showing
a promising direction to address VQA problems. Instead
of low-level or middle-level visual features, they leverage
high-level concepts[7, 8, 29], image captions or even visual
story[16], external knowledge base [30, 31]. Each concept
corresponds to a word mined from the training image de-
scriptions and represents some kinds of attributes about the
content of the image. These concepts act as semantic units
between natural language and visual recognition, allow us
to exchange information between the two modalities [25].
However, the spatial information is completely lost in the
procedure of high-level concepts detection, which leads to
inferior performance on VQA task.

3. Multi-level Attention Networks

To simultaneously exploit higher-level semantic infor-
mation and spatial information, we propose a novel multi-

level attention network. The overall framework is presented
in Figure 2. Our framework consists of three major com-
ponents. Component (A), which is defined as semantic at-
tention, aims at finding question-related concepts from the
image. Component (B), which is defined as context-aware
visual attention, aims at finding question related regions and
learning visual representation of these regions. Component
(C) is designed to incorporate information from different-
level layers in the CNN by joint attention learning. These
three components are joint optimized end-to-end, which
bridges the semantic gap between language and vision, and
learns fine-grained representation from image regions.

3.1. Semantic Attention

Semantic attention aims at finding important concepts
mining from the image to answer a question. For example in
Figure 1, although the concept detector has detected a set of
objects and actions from the image (e.g., “group,” “stand”),
only those concepts which are semantically close to the
question (i.e., “baseball,” “game”), should be highlighted by
semantic attention. One of the core challenges in combin-
ing visual and linguistic modality is that they have different
levels of abstraction, where language usually refers to gen-
eral categories, while hundreds of pixels in the image can
point to one instance [25]. Previous works on image/video
captioning [6, 22, 23, 35, 36] and visual question answer-
ing [30, 31] have shown that extracting explicit high-level



concepts from images/videos can bring benefits to the inter-
action of visual content and language at the semantic level.
Although an image can convey multiple semantics, not all
of them are helpful to answer a particular question. There-
fore, we propose to attend on concepts, which should be not
only relevant to images, but semantically close to questions.
We achieve these goals by two steps.

In the first step, we train a concept detector by deep con-
volutional neural networks, which can produce the proba-
bility of semantic concepts for an image. Similar to [30], we
first build a concept vocabulary, where each concept is de-
fined as a single word. The top highly-frequent words with
the number of C from the question-answer training pairs
are collected in the concept vocabulary after stop words re-
moval. Besides, a multi-label image dataset based on these
concepts is constructed based on COCO image captioning
dataset [15], which is used to train the concept detector. As
a result, A fixed-length vector pimg

c is created for each im-
age I by taking the activation of fc in the prediction layer
of a CNN, which represents the probability of each concept
occurring in the image. We denote the process of concept
detection as:

pimg
c = fc(I). (1)

In the second step, we train an attention network to mea-
sure the semantic relevance between each concept in the vo-
cabulary and the question. At first, we represent the ques-
tion by a recurrent neural network. Specifically, given the
question Q = [q1,q2, ...,qT ], where qt is the one hot vector
representation of word at position t, we embed these words
into a vector space through an embedding matrix W q

e . For
each time step t, we feed the embedding vector xt of word
qt to a Gate Recurrent Unit (GRU) layer, and pick the last
hidden state hT as the question representation, which is de-
noted as vq. We use the following equation to formulate the
question encoding model:

xt =W q
e qt , (2)

ht = GRU(xt ,ht−1), (3)
vq = hT . (4)

Besides, we use the same vocabulary and embedding
matrix for our concepts and questions, therefore they can
share the same semantic representation. Specifically, we
represent the concept c with a semantic vector sc by a two-
layer stacked embedding layer. The first layer is designed
to share the the same word embedding layer as the question
model, and the second layer is used to project the concept
vector into the same dimension with the question represen-
tation, which is given by:

sc =W c
e (W

q
e c), (5)

where c is the one hot vector representation of the con-
cepts, W q

e is the embedding weights shared with the ques-

tion model, W c
e is the second embedding matrix, which em-

beds the concepts into the same dimension representation
with the question. Next, we take the dot product of the pro-
jected concept vector sc with the question vector vq as an
operation, and pass the resultant value to a sigmoid activa-
tion layer to get the relevance score between the concept c
with question Q. Further, We formulate the semantic atten-
tion weights of the concept c as the multiplication of the
concept-image relevance pimg

c and the concept-question rel-
evance pq

c , which is given by:

pq
c = sigmoid(vq · sc), (6)

Mc = pimg
c pq

c , (7)

where the operator · represents the dot product of two vec-
tors, pq

c is the relevance score measuring the semantic sim-
ilarity between the question Q and the concept c, Mc is the
semantic attention weights over concepts. Finally, we repre-
sent the high-level semantic information of image I queried
by question Q by a weighted sum over all concepts repre-
sentation, which is given by:

vc =
C

∑
i=1

Mc(i)sc(i). (8)

3.2. Context-aware Visual Attention

Although semantic attention bridges the semantic gap
between the questions and images, it ignores the spatial in-
formation in images, which is important to represent the
spatial context for image regions, and thus is crucial in the
visual question answering task. Hence visual attention has
been widely used in recent VQA frameworks, due to its
success on fine-grained visual representation and visualiza-
tion. Compared with human attention, recent work [4] finds
current VQA attention models do not seem to be “looking
at” the consistent regions as human do. One of the possi-
ble problems in current attention model is that they usually
search for image regions one after another, by dividing the
whole image into several isolated units. Although promis-
ing results have been achieved, further improvements are
limited, because many concepts may interact with each
other through the action and position relations. For exam-
ple, we should be aware of the spatial relationship of the
cat and the toilet, if we want to really understand and an-
swer the question “what is the cat standing on.” In this case,
not only regions about “cat” but those regions at bottom of
the “cat” should be looked at and understood. In order to
address this issue, we propose a context-aware visual atten-
tion mechanism into our VQA framework.

Specifically, we first incorporate the context informa-
tion into the representation from each region by a bidirec-
tional GRU encoder, which is illustrated in figure 3. We
use the fine-tuned CNN model for concept detection from



Figure 3. An illustration of the context-aware visual representation
for image regions by bidirectional GRU. Regions in convolutional
feature maps are encoded into GRU with the order of left-to-right
and top-to-bottom.

the precious step to extract visual features for local re-
gions. We take the feature map of the last convolutional
layer in the CNN model as our visual representation, which
can preserve complete spatial information of each region.
We denote these visual representation on each region as
{vr,r = 1,2, ...,R}, where vr represents the feature vector
of the rth ordered region. We feed these feature vectors into
the bidirectional GRU and combine the output from the for-
ward and backward direction at each step to form a new
feature vector for each region, which is given by:

↔
vr = GRU f (vr)+GRUb(vr) (9)

where
↔
vr is the context-aware visual representation of image

region r. The new feature vectors contain not only the vi-
sual information of corresponding regions but also the con-
textual information from surrounding regions. We set the
dimension of the hidden state in each GRU to the same with
the question vector.

Second, we assign each region an attention score for
modeling the relation between the region and the ques-
tion. Different from semantic attention, which measures
the semantic similarity between the question and the con-
cept word by the dot-product of two vectors, we align the
question and each region by element-wise multiplication of
two vectors, and then fed them into a multiple layer per-
ceptron (MLP). Such a design enables the automatic learn-
ing of attention function by parameter optimization in MLP.
More specifically, we search for regions via multi-step rea-
soning as [34]. The main differences come from two-fold.
1) We use context-aware visual feature obtained in the last
step to represent local regions, rather than the independent
representation from each region in convolutional neural net-
works, which often lacks interactions between different re-
gions. 2) We use element-wise multiplication instead of
element-wise addition to align the question feature and vi-

sual feature for each region, which overcomes the scale in-
consistency problem in multi-modal feature pooling. The
comparison experiment in the section 4.4 demonstrates our
assumption. Specifically, we formulate our visual attention
process as:

h = tanh
(
(WQvq +bQ)⊗ (WI

↔
vr +bI)

)
, (10)

Mr = softmax(Wph+b), (11)

where we denote ⊗ as the multiplication between a matrix
and a vector, which is performed by element-wise multiply-
ing each column of the matrix by the vector. WQ and WI are
the corresponding embedding matrix. Wp is the parameter
in multiple perceptron layers, Mr is the attention weights of
image regions.

Similar with semantic attention, we pool these regions
with a weighted sum to get the visual representation of im-
age I queried by question Q, which is given by:

vimg =
R

∑
i=1

Mr(i)
↔
vr(i). (12)

In practice, we repeat the above process once as in [34],
using the addition of question feature and attended region
feature as guide. We ignore the details here for concision.

3.3. Joint Attention Learning

We use questions as query to search for image informa-
tion on different levels. In the low-level visual feature, we
focus on question-related regions by visual attention, while
in the high-level semantic feature, we focus on question-
related concepts by semantic attention. The two-level atten-
tion is combined by fusion of their attended representation.
Particularly, we first add question vector into attended im-
age features extracted from different layers, then we use a
element-wise multiplication to combine the two types of at-
tentions together. Finally, we feed the joint feature into a
softmax layer to predict the probability of predefined candi-
date answer set A. The candidate with the highest probabil-
ity is determined as the final answer, which is given by:

u = (vq + vimg)◦ (vq + vc), (13)
pa = softmax(Wu+b), (14)

where we denote ◦ as the element-wise multiplication be-
tween two vectors. vq, vimg,vc are the representation of
question Q, the attended visual representation of Image I,
and attended semantic representation of concept C, respec-
tively. u is the joint representation from question, image
and concepts, which are extracted from the image. W and
b is the parameter of the last full connected layer, pa is the
output of the softmax layer, i.e. the distribution of probabil-
ity of answer candidates. The candidate with the maximum
probability is picked out as the predicted answer.



4. Experiment
4.1. Dataset

We evaluate our model on two large-scale VQA datasets,
i.e., VQA and Visual7W dataset, due to large amount of
training instances and the diversity of question types.

VQA is a large-scale visual question answering dataset
which contains 204,721 images from the COCO dataset
and a newly created abstract scene dataset which contains
50,000 scene images. We evaluate our model on this dataset
for only real images. For each image in VQA dataset, three
questions are annotated, and each question has 10 answers
from 10 different annotators. We report our results on two
different tasks, which are open-ended and multiple-choice
tasks. In open-ended task, we select the answer with the
highest activation from all possible outputs, and in multiple-
choice task, we pick the answer that has the highest activa-
tion from the given choices. We collect the most frequent
3000 answers in training data as candidate answer set. We
evaluate the proposed the approach not only on validation
dataset, but on a test server, which is provided for blind
evaluation in the test set for fair comparison [2].

Visual7W is a more recent VQA dataset built by [37],
which is a subset of Visual Genome [3] (the largest visual
QA dataset to date with 1.7 million QA pairs). Visual7W
contains 327,939 question-answer pairs on 47,300 COCO
images. Each question-answer pair is associated with 4
human-generated multiple-choices, and only one of them
is the correct answer. There are two major highlights on
Visual7W. First, Visual7W provides dense annotations on
object-level groundings for establishing an explicit link be-
tween QA pairs and image regions. Second, Visual7W al-
lows pointing questions with visual answers, where the cor-
rect answer is one of four image regions. We evaluate our
model only in multiple-choices setting on this dataset.

4.2. Evaluation Metrics

Visual QA is formulated as multi-class classification
problem on both datasets. We follow the evaluation metrics
as the baseline approaches on the two datasets. For VQA
dataset, [2] set an evaluation server publicly for blind eval-
uation on the test set. The test set is divided into four splits:
test-dev, test-standard, test-challenge and test-reserve, each
of which contains about 20K images. We evaluate our ab-
lation model for experiment analysis on the test-dev set,
and evaluate our best model on both the test-dev and test-
standard set. For open-ended task, [2] use a voting mecha-
nism to score the accuracy of a predicted answer:

acc(ans) = min{#humans that said ans
3

,1},

where ans is the answer predicted by visual QA models.
For Visual7W dataset, we use the evaluation code released

Table 1. Ablation model on test-dev set. The first three models
only utilize semantic attention, while the middle three models only
perform visual attention. MLAN denotes our full model which
applies attention on multi-level representation of images.

Ablation Model Accuracy
Att-CNN + LSTM [30] 55.57
Q + Concept 56.62
Q + Semantic Attention 59.28
SAN [34] 58.68
Q + Visual Attention 62.29
Q + context-aware Visual Attention 62.50
MLAN (Ours) 63.69

by [37], supposing the model is correct on a question if it
selects the correct answer candidate. Accuracy is used to
measure the performance.

4.3. Experiment Setting

We show our experimental settings, hyper-parameters
and training process here. For question model, we use the
natural language toolkit NLTK1 to tokenize questions, cast
all words into lowercase, and only keep those words ap-
pearing at least twice in the train-val set. We don’t make
any additional preprocessing to those words, e.g. remov-
ing stop words, stemming. Finally, we get a question vo-
cabulary with 9853 words in VQA dataset. As mentioned
in section 3.1, a single layer GRU is used to encode the
question, which has 620-dimension word vectors and 2400-
dimension hidden states. We take the last hidden state of
the GRU layer as the question representation, so that the
dimension of question feature vector is 2400.

For concepts model, we select the most frequent 256
words appearing in question-answer training pairs as our
concept vocabulary after removing stop words. We detect
concepts from images by taking the activation of the last
layer of ResNet model [11] fine-tuned on our multi-label
dataset derived from MSCOCO dataset. There are two ma-
jor differences in our concept detector from [30]. We use
a more powerful classification model, i.e. ResNet with 152
layers pre-trained on ImageNet, instead of VGGNet with 19
layers [27]. Besides, we use the most common loss func-
tion “SigmoidCrossEntropyLoss” in multi-label classifica-
tion task to fine-tune the network. For each concept, we get
the same embedding vector with the same question word,
i.e. 2400 dimensions. We project question vector and con-
cept vector to the 512-dimension space, and then perform
attention on concepts.

For image model, we extract visual features from the last
convolutional layer (i.e. “res5c”) from the same ResNet-152
model with the concept detection. Each feature vector has
a dimension of 2048 and corresponds to a 32× 32 pixels

1http://www.nltk.org/



Table 2. Comparison results on VQA dataset. We divide compared approaches into five categories based on different attention mecha-
nisms. Category I does not use any attention. Category II uses only visual attention. Category III extracts high-level concepts for image
representation. Category IV applies attention on both images and questions. Category V includes different variations of our approach.

Approach
test-dev test-standard

Open Ended MC Open Ended MC
Yes/No Number Other All All Yes/No Number Other All All

I
LSTM Q + I [2] 78.9 35.2 36.4 53.7 57.2 79.0 35.6 36.8 54.1 57.8
deeper + norm [2] 80.5 36.8 43.1 57.8 62.7 80.6 36.5 43.7 58.2 63.1
DPPnet [21] 80.7 37.2 41.7 57.2 - 80.3 36.9 42.2 57.4 -

II

SAN [34] 79.3 36.6 46.1 58.7 - - - - 58.9 -
FDA [13] 81.1 36.2 45.8 59.2 - - - - 59.5 -
DMN+[32] 80.5 36.8 48.3 60.3 - - - - 60.4 -
MCB+Att. [9] 82.2 37.7 54.8 64.2 68.6 - - - - -
MCB + Att. + GloVe [9] 82.5 37.6 55.6 64.7 69.1 - - - - -
MCB + Att. + GloVe + VG [9] 82.3 37.2 57.4 65.4 69.9 - - - - -

III
AC [31] 79.8 36.8 43.1 57.5 - 79.7 36.0 43.4 57.6 -
ACK [31] 81.0 38.4 45.2 59.2 - 81.1 37.1 45.8 59.4 -

IV
HieCoAtt [17] 79.7 38.7 51.7 61.8 65.8 - - - 62.1 66.1
DAN [20] 83.0 39.1 53.9 64.3 69.1 82.8 39.1 54.0 64.2 69.0

V
MLAN (ResNet) 82.9 39.2 52.8 63.7 68.9 - - - - -
MLAN (ResNet, train+val) 83.8 40.2 53.7 64.6 69.8 83.7 40.9 53.7 64.8 69.9
MLAN (ResNet, train+val +VG) 81.8 41.2 56.7 65.3 70.0 81.3 41.9 56.5 65.2 70.0

region of the input image. As with attention on semantic
level, we embed the 2048-dimension feature vector to 2400-
dimension by bidirectional GRU, project image and this
context-aware representation into the same 512-dimension
space, and then perform attention on visual representation.

In our experiments, we use stochastic gradient descent
with momentum 0.9 as the solver. The batch size is fixed to
100. We set the base learning rate to 0.05. After 15 epochs,
we drop the learning rate to one of ten of the previous one
every 5 epochs. In addition, gradient clipping technology
and dropout are exploited in training. For visual7W dataset,
we use the exactly same parameter setting and training op-
tions with the VQA dataset. We evaluate our model only
in multiple-choices setting, and split the dataset into train,
validation and test following [37].

4.4. Ablation model

To analyze the contribution of each components in our
model and demonstrate how the multi-level attention works
better than single-level attention, we ablate the full model
and demonstrate the effectiveness of each component.
• Att-CNN + LSTM [30]: the attribute representation as

the first input of LSTM, then following the question
• Q + Concept: a simple version of semantic attention,

taking the output of concept detector as the attention
weights, independent on the question
• Q + Semantic Attention: the first component of our

model, taking the relation of concepts with both image
and question into the attention weights
• SAN [34]: a visual attention model similar with our

second components

• Q + Visual Attention: our visual attention model with-
out context-aware visual representation
• Q + context-aware Visual Attention: the second com-

ponents of our model, removing semantic attention
from the full model
• Q + Multi-level Attention: our full model, fusing at-

tention on different level image representation
We report the performance of our ablation models on test-
dev set of VQA dataset in Table 1. These models are trained
on the training dataset and half of validation set, as in [34].
Further analysis will be given in next section.

4.5. Result and Analysis

We will explain how each component works in our
model by ablation experiment shown in Table 1. It is ob-
served that our multi-level attention model outperforms all
single-level attention model significantly, i.e. attention on
semantic-level concepts and attention on the region-based
visual feature.

The first three rows in Table 1 compare our semantic
attention model with those models using high-level con-
cepts but without attention mechanism. We get 2.7% per-
formance gain when we attend to concepts related to both
images and questions. This demonstrates attention on high-
level concepts is effective and could find more important
semantic information from image and remove noisy infor-
mation irrelevant with the question.

The middle three rows in Table 1 proves our two con-
tributions on visual attention mechanism. We use element-
wise multiplication to replace addition in SAN[34] model
and get better performance, which supports our assump-



Figure 4. qualitative results from visual question answering with attention visualization. Both image regions related to the question and
high-level concepts are highlighted. Examples in the first row shows correct attended image regions lead to the true answer, while the
second row shows those cases where answer can be found directly from attended concepts.

tion that element-wise multiplication is a better multimodal
fusion approach than addition in visual question answer-
ing task. The second contribution is that we incorporate
contextual information from surrounding regions into tar-
get regions, which benefits the spatial inference in images.
The promotion is marginal than we think. We conjecture
that there might be two reasons. First, our current con-
text encoding scheme suffers from long-term dependency
problems by bidirectional GRU and is not symmetric for
surrounding regions in horizontal and vertical direction be-
cause bidirectional GRU can only model a sequence rather
than a 2D spatial map. Second, most images from COCO
only contain a few objects, therefore, the interaction among
objects is not so common as the natural scenario. We will
verify this in our future work.

The last row in Table 1 joins different-level attention into
one unifying framework and achieves significant improve-
ment compared with any single-level attention model. This
demonstrates attention mechanism at different level image
features are complementary and could benefit each other.

We compare our model with the state of art methods
on two large datasets. The results are showed in Table 2

Table 3. Results on Visual7W dataset. We report the indepen-
dent and average accuracy on six question types, including “what,
where, when, who, why and how.”

Method Wht. Whr. Whn. Who Why How Avg

LSTM-Att [37] 51.5 57.0 75.0 59.5 55.5 49.8 54.3
MCB+Att. [9] 60.3 70.4 79.5 69.2 58.2 51.1 62.2
MLAN (Ours) 60.5 71.2 79.6 69.4 58.0 50.8 62.4

on VQA dataset and Table 3 on Visual7W dataset respec-
tively. For a fair comparison, we report the results using
the single model with several setting. [9] achieve a com-
parable performance with ours when they add glove tricks
and additional training data. However, their method uses
a much higher dimension fusion method (16,000 dim v.s.
2400 dim), and drop almost over 1% if they use comparable
dimensional features. Their model has to make a trade-off
between effectiveness and efficiency. [17] and [20] are two
methods also exploiting both visual attention and textual at-
tention, the difference is that they perform textual attention
on questions rather than high-level concepts in our model.
We achieve better results than both of them because we ex-
ploit more concepts from the image than the question itself.

5. Conclusion

We propose a novel Multi-level Attention Network to
join visual attention and semantic attention into an end-end
framework to address automatic visual question answering.
Visual attention enables fine-grained visual understanding
queried by questions while semantic attention narrows the
domain gap between questions and images. Our model
makes use of the complementarity of attention mechanism
on different level representation. Extensive experiments on
two large dataset demonstrate we not only outperforms any
single-level attention model, but also achieves top results
via a simple but effective framework. Future work includes
further exploring on spatial encoding with context informa-
tion, attention on sentence-level representation and better
fusion methods to join different level attention.
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