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Abstract
Prediction of popularity has profound impact for
social media, since it offers opportunities to reveal
individual preference and public attention from
evolutionary social systems. Previous research,
although achieves promising results, neglects one
distinctive characteristic of social data, i.e., sequen-
tiality. For example, the popularity of online con-
tent is generated over time with sequential post
streams of social media. To investigate the sequen-
tial prediction of popularity, we propose a novel
prediction framework called Deep Temporal Con-
text Networks (DTCN) by incorporating both tem-
poral context and temporal attention into account.
Our DTCN contains three main components, from
embedding, learning to predicting. With a joint em-
bedding network, we obtain a unified deep repre-
sentation of multi-modal user-post data in a com-
mon embedding space. Then, based on the em-
bedded data sequence over time, temporal context
learning attempts to recurrently learn two adaptive
temporal contexts for sequential popularity. Fi-
nally, a novel temporal attention is designed to pre-
dict new popularity (the popularity of a new user-
post pair) with temporal coherence across multi-
ple time-scales. Experiments on our released im-
age dataset with about 600K Flickr photos demon-
strate that DTCN outperforms state-of-the-art deep
prediction algorithms, with an average of 21.51%
relative performance improvement in the popular-
ity prediction (Spearman Ranking Correlation).

1 Introduction
Social media is now globally ubiquitous and prevalent. Con-
sequently, understanding and predicting popularity in social
media (e.g., Twitter, Facebook, Youtube and Flickr) has at-
tracted great attention [Wu et al., 2016b; 2016a; Li et al.,
2015; He et al., 2014; Khosla et al., 2014; Pinto et al., 2013],
since it offers opportunities to reveal individual preference
and public attention from evolutionary social systems. Ac-
curate popularity prediction can help improve user experi-

ence, service effectiveness, and benefit a broad range of ap-
plications, such as content recommendation [Khosla et al.,
2014], online advertising [Li et al., 2015] and information
retrieval [Roy et al., 2013; Gan et al., 2016].

Previous research, although achieves promising results, ne-
glects one distinctive characteristic of social data, i.e., tem-
poral sequentiality. For example, the popularity generated by
photo sharing in Instagram on a weekday is observed to be at
the peak during hours at 2 a.m., 8-9 a.m. and 5 p.m. [Beese,
2016]. Existing predictive algorithms on social media popu-
larity are not considering the temporal order of data, mak-
ing them have limited success to sequential data scenarios
(e.g. news feed, tweet timeline, photo stream, etc.). Par-
ticularly, most of the existing works on popularity predic-
tion are based on the content of a post or the person who
published the post [Shamma et al., 2011; Gelli et al., 2015;
Cappallo et al., 2015]. Recently, although some researchers
have analyzed temporal characteristics of social popularity
(e.g., temporal fluctuations), the temporal interrelationship of
popularity data is not explicitly exploited [Shen et al., 2014;
Zhao et al., 2015; Wu et al., 2016a; 2016b; Martin et al.,
2016].

In this research, we take one step further to investigate
the problem as a temporal prediction task with sequential-
ity. Unlike previous work on using time information as la-
tent factors or variables [Shen et al., 2014; He et al., 2014;
Zhao et al., 2015], our purpose is to predict popularity from
both sequential and temporal views based on time series
data. Specifically, we incorporate a time-centered perspective
called ‘temporal context’ into popularity prediction, which
was inspired by social psychology for human behavioral pro-
cesses [McGrath and Kelly, 1992]. Utilizing temporal context
of popularity as a novel prior knowledge, we attempt to pre-
dict new popularity by exploiting consecutive temporal co-
herence of popularity at multiple time-scales.

Based on the above idea, we propose two types of sequen-
tial temporal contexts for learning two different types of tem-
poral coherence of popularity: Neighboring Temporal Con-
text (NTC) and Periodic Temporal Context (PTC). On one
hand, we model NTC to learn the continuous trend or pat-
terns in short-term time series. For instance, before and after
Thanksgiving Day, the popularity of pumpkin picture rises



Figure 1: Overview of Deep Temporal Context Network (DTCN). (A) Multi-modal Joint Embedding converts user feature and visual feature
into an embedding space, i.e., mapping the two kinds of multi-modal information into a same latent space; (B) Temporal Context Learning
constructs two temporal contexts, and learns contextual information based on LSTM; (C) Multiple Time-scale Temporal Attention assists the
final prediction process based on temporal attention mechanism. (Best view in color)

and decays in only a few days. The NTC helps us reveal
the trend and variances. Such temporal coherence has also
been successfully applied to the citation estimation of scien-
tific articles [Shen et al., 2014]. On the other hand, we model
PTC to learn discontinuous temporal coherence in long-term
time series. Temporal coherence is often influenced by peri-
odic events or human activities. For example, according to
the survey in 2016 [Ellering, 2016], the best time periods to
make a post on Facebook are Saturday and Sunday around 12
a.m. to 1 p.m., with periodic peaking time from 9 a.m. to 3
p.m. And weekly peak time for Pinterest is on Saturday from
8 p.m. to 11 p.m. These findings motivate us to consider both
of the temporal and sequential characteristics for predicting
popularity more precisely.

In this paper, therefore, we propose a novel deep pre-
diction framework called Deep Temporal Context Networks
(DTCN) by exploring both temporal contexts and temporal
attention at different time-scales jointly (such as days of a
week, hours of a day). Figure 1 shows the overview of
our DTCN framework, which is a sequential prediction ar-
chitecture containing three main components: from embed-
ding, learning to predicting, along with the model trained as
an entire network by optimization learning. With a joint em-
bedding network, we map multi-modal data onto the same
embedding space to obtain a unified deep representation for
user-post sharing activities. Then, based on the embedded
data sequence, we design temporal context learning to re-
currently learn the dynamic popularity from adaptive tempo-
ral contexts (NTC and PTC) for popularity over time. Fi-
nally, we provide a multiple time-scale attention for comput-
ing multi-scale temporal coherence in predicting the popular-
ity of a new user-post pair. Unlike previous work on temporal
modeling for popularity prediction [Wu et al., 2016b; 2016a;
Li et al., 2015], our study attempts to provide a novel view

on temporal context modeling, which considers both of the
temporal and sequential coherence during prediction.

The main contributions of this study are: (i) To our best
knowledge, we are the first to consider both temporal and
sequential characteristics into sequential prediction of social
media popularity over time; (ii) we address the problem by
incorporating a temporal context perspective, and propos-
ing two types of novel temporal contexts including NTC and
PTC; (iii) we propose a novel deep prediction model DTCN
architecture jointly integrating embedding, temporal context
learning and predicting with temporal attention to optimize
the entire network, which outperforms state-of-the-art predic-
tive algorithms in sequential popularity prediction.

2 Related Work
Recently, time-aware popularity prediction receives much at-
tention. Both academia and industry have paid more ef-
fort on this research topic. Existing works about prediction
with temporal information can be concluded into two main
paradigms. The first paradigm focuses on predicting the pop-
ularity growth of a published post by analyzing its temporal
trend and pattern at early stage. Szabo and Huberman pro-
posed to predict popularity based on growth pattern charac-
teristics of online popularity at early stage [Szabo and Huber-
man, 2010]. Yang and Leskovec found the temporal patterns
reveal how the contents popularity grows and fades during the
post propagation [Yang and Leskovec, 2011]. Roy et al. pro-
posed to grasp sudden bursts of a post popularity with cross-
domain knowledge [Roy et al., 2013]. Kong et al. explored
the problem of detecting which hashtag would be bursting.
Most of these works provided dynamic comprehension on
popularity accumulation of online content, but their predic-
tion needs to rely on early stage popularity patterns of a pub-



lished post. Our method takes one step further on popularity
prediction before that the corresponding post was published.

The other paradigm is predicting popularity based on tem-
poral features or dynamic signals. Zhao et al. applied human
reaction time as temporal variables in self-exciting point pro-
cesses [Zhao et al., 2015]. Shen et al. proposed a reinforced
Poisson process to model the dynamic popularity based on
the arrival time of attention [Shen et al., 2014]. He et al.
designed a time-aware bipartite graph for popularity estima-
tion [He et al., 2014]. Wu et al. proposed to predict popu-
larity by context factorization and tensor decomposition al-
gorithms to unfold popularity dynamics [Wu et al., 2016b;
2016a]. These models all neglect the sequentiality of popu-
larity during prediction.

Summary. We focus on the investigation of sequential
temporal coherence of popularity over time before the cor-
responding sharing behavior happened. Being differed from
previous works on the predicting popularity with tempo-
ral information e.g., [Shen et al., 2014; He et al., 2014;
Zhao et al., 2015; Wu et al., 2016a; 2016b], we explore the
temporal context of popularity from sequential data and con-
sider both of sequential and temporal characteristics of popu-
larity during prediction. It is worth mentioning that our algo-
rithm is generic and applicable to the prediction of other se-
quential data scenarios in social media, e.g. news feed, tweet
timeline, photo stream, and so forth.

3 Social Media Popularity Prediction
Taking photo popularity prediction on Flickr as an exemplary
case, we define our problem and introduce the definitions of
several core concepts, including user-post sequence, temporal
context, and multiple time-scales.

Problem Definition: Given a new photo v of a user u, the
problem of predicting its popularity s is to estimate how many
attentions would be obtained after the post was published on
social media (e.g. views, likes or clicks etc.).

On Flickr, when browsing a personal photo stream or im-
age search results, users can view details of a photo content
with its metadata through clicking photo thumbnails. In our
prediction, since “viewing count” is a significant indicator of
how popular a photo is, we use it to describe the photo popu-
larity as follows:

Popularity Normalization. To suppress the large varia-
tions among different photos (e.g. view count of different
photos vary from zero to millions), we implement a log func-
tion to normalize the value of popularity, based on the previ-
ous work [Wu et al., 2016a; Khosla et al., 2014]. In brief, the
log-normalization function for popularity can be defined as:

s = log2
r

d
+ 1, (1)

where s is the normalized value, r is the view count of a
photo, and d is the number of days since the photo was posted.

Several core concepts in the paper are also defined as fol-
lows:

Definition 1: User-Post Sequence. A user-photo pair p⇔
〈u, v〉 is derived from the photo sharing behavior (e.g., post
publishing, photo sharing and video uploading), which made
by user u on photo v. Suppose we have n user-photo pairs and

the sharing time of each pair. Then the user-post sequence can
be denoted by S = {〈u1, v1〉 , 〈u2, v2〉 , ..., 〈un, vn〉} with its
sharing time order t1 ≤ t2 ≤ ... ≤ tn.

Definition 2: Temporal Context. Given the prediction
target p and its previous user-post sequence Pu before time
t, temporal context (as a prior knowledge) is a time series,
which was built on Pu and expressed by a triple sequence:
Cp = {〈u1, v1, tp1

〉 , 〈u2, v2, tp2
〉 , ..., 〈uk, vk, tpk

〉}, tp1
≤

tp2
≤ ... ≤ tpk

≤ t where k is the item count in the tem-
poral context.

Definition 3: Multiple Time-scales. For time order se-
quence, time-scale determines a time unit of the sequential
data. In our paper, without loss of generality, there are four
levels of time-scales, Tunit = {t1M , t1P , t1D, t1W }, which
means that minute of a hour, period of a day, day of a week
and week of a month. With regard to the period of a day,
we segment one day into six periods [Wu et al., 2016a],
i.e. “morning (8:00am-12:00am)”, “lunch time (12:00am-
14:00pm)”, “afternoon (14:00am-17:00pm)”, “dinner time
(17:00am-20:00pm)”, “evening (20:00am-24:00pm)” and
“night (0:00am-8:00am)”.

4 Deep Temporal Context Network
How can the temporal context at multiple time-scales be uti-
lized for popularity prediction? We address the problem as
a sequential prediction task, where the input is a user-photo
sequence (with time order) while the output is the popular-
ity of a “future” photo (a photo before its publication on so-
cial media). We propose a deep prediction framework called
DTCN containing three components: (1) Multi-modal Joint
Embedding (2) Temporal Context Learning and (3) Multiple
Time-scale Temporal Attention. With all the components, the
model is trained as an entire network by optimization algo-
rithm RMSprop [Tieleman and Hinton, 2012].

4.1 Multi-modal Joint Embedding
In the first stage of DTCN, Multi-modal Joint Embedding
(MJE) is to generate a unified deep representation of multi-
modal sequence data. While an individual popularity is
highly correlated with user-photo interactions [Cappallo et
al., 2015; Khosla et al., 2014; Qian et al., 2014], our em-
bedding model is not only designed to correctly understand
what appears in photos but also incorporate the knowledge of
who posts it.

Suppose that a variety of photo sharing behaviors over time
can be naturally viewed as a user-photo sequence. The bi-
modal sequence data are the input data of our embedding net-
work. In order to parametrize the visual content and user in-
fluence from the data sequence, we design a two-stream Feed-
forward Neural Network (FNN), which has both of the user
analysis pipeline and the photo analysis pipeline respectively.
On one hand, the photo analysis pipeline starts with a pre-
trained ResNet [He et al., 2015] in 152 layers for generating
high-level visual representations of 2048 dimensions. On the
other hand, we adopted a group of features to measure user in-
fluence in the user analysis pipeline, such as the average value
of views, photo count, the number of contacts, mean number
of members in a user’s groups, and having a Pro Flickr ac-
count or not. In our embedding network, each of the pipelines



contains four layers with two hidden layers and shares the
same dimension number of hidden neural nodes of 256 and
32. In order to perform non-linear mapping of features from
the original space to a new latent space, the tanh activation
function is applied in each layer of the embedding networks.
Meanwhile, we apply a random dropout mechanism with pa-
rameter 0.5 in each hidden layer of the two pipelines, since
dropout strategies have been adopted to prevent over fitting
in neural network training phrase [Srivastava et al., 2014]. In
the end of the architecture, user and photo information xu and
xv generated from the last layers of the two-stream FNN are
embedded together by minimizing on embedding loss:

L(xu, xv) =
∑

xu∈U,xv∈V
||softmax(xu � xv − xu � xv)||22,

(2)
where U and V are the collections of all users and photos re-
spectively, and || · ||2 means L2 norm regularization for loss
function. The final output of the embedding network is a 64-
dimensional vector. By joint training with all the other com-
ponents of the DTCN framework, we obtain an embedding
representation of the user-photo sequence.

4.2 Temporal Context Learning
In the learning stage of DTCN, Temporal Context Learning
(TCL) is to learn sequential and temporal coherence from the
temporal context for prediction. Different from traditional
context learning, our temporal context is adaptive time series
and correlated with the time information of a prediction target
and its previous user-photo sequence.

The first step of TCL is constructing temporal contexts
as prior knowledge for each “future” popularity. To model
short or long-term fluctuations of popularity over time, we
propose two variable-length temporal contexts: Neighbor-
ing Temporal Context (NTC) and Periodic Temporal Context
(PTC). Suppose we already have the embedding data of pre-
vious user-photo sequence Pu for a prediction target p, the
data items are corresponding with the user-photo pairs in Pu.
Specifically, the temporal context Cp is a time series gener-
ated from the time information of Pu. Therefore, NTC is
consist of neighboring items of the prediction target from its
previous data sequence, which is applied to describe rapidly-
varying popularity fluctuations in a short-term time range;
PTC is built with discontinuous items from the previous data
sequence, which is applied to represent periodic popularity
patterns in a long-term time range. Here we design two dis-
crimination functions of NTC and PTC to determine whether
a certain item s ∈ Pu would be a possible element of the cor-
responding temporal context. The NTC discrimination func-
tion is defined as follows:

fNTC(tp, ts) = δ(
tp − ts
∆tunit

< l),∀s ∈ Pu, (3)

where tp and ts is the sharing time of p and s, and ∆tunit
is the duration of a time unit. Dirac delta function δ(·) is to
compute a discrimination signal, and we use l in discrimina-
tion function to control the signal condition lengths of time
span for temporal context computation. In addition to short-
term fluctuations, popularity also has periodic variances in

long-term. Therefore the discrimination function for PTC is:

fPTC(tp, ts) = δ(mod(
tp − ts
∆tunit

= 0)),∀s ∈ Pu (4)

where the modulo function mod(·) is to detect whether p
and s are in the same time blocks in different time-scales (e.g.
the same period in different days or the same day in different
weeks). In order to learn consecutive variance from both of
NTC and PTC, we maintain the time-scale tunit ∈ Tunit of
them to be same in context learning.

To learn consecutive coherence from temporal contexts,
we provide a two-stream recurrent neural network based
on LSTM [Hochreiter and Schmidhuber, 1997] with Mean
Squared Error (MSE) loss function as the optimization objec-
tive. Our network not only considers contextual information
but also utilizes temporal information to learn the temporal
context for both short-term and long-term temporal coher-
ence. Taking the embedding data sequence as the input of
LSTM, TCL is able to learn and read the surrounding tempo-
ral context for each prediction target by controlling recurrent
state updates of the network.

4.3 Multiple Time-scale Temporal Attention
Multiple Time-scale Temporal Attention (MTTA) is proposed
to consider the dynamic impact of each contextual item into
prediction. Intuitively, we incorporate the attention mech-
anism to be infer the temporal attention across multiple
timescales between previous instances and new instances for
new popularity prediction. Different from traditional atten-
tion, multiple timescale coherent among data need to be learnt
from both of weights of relative hidden states and multiple
scales of time-series.

Considering all data items of temporal context, the tempo-
ral context vector ci is the input of LSTM at the step i. It can
be computed by a weighted sum of hidden state hi:

ci =

|Cp|∑
j=1

αijhj , (5)

where the αij is attention weight. It is calculated by compar-
ing current prediction target p and the data item of previous
temporal context at position j:

αij =
exp(e−1ij )∑|Cp|
k=1 exp(e−1ik )

, eij = 1− t̄p · t̄s
||t̄p||2||t̄s||2

, (6)

where t̄ denotes multi-scale time vector. Note that unlike in
the traditional attention mechanism, we use attention score
eij to leverage the temporal consistency between t̄p and t̄s.
Its calculation relies on time vector t̄ = (t1M , t1P , t1D, t1W )
with multiple time-scale information instead of hidden state
vector h for temporal attention. To compute the temporal
consistency, we apply cosine distance function as a simple
metric, while it can be alternated by other distance functions.

5 Experiments
In this section, we demonstrate the effectiveness of the pro-
posed framework on Flickr dataset as follows: (1) we com-
pare performances between our proposed method and current



state-of-the-art algorithms for popularity prediction on differ-
ent data scales respectively. (2) we provide the experiment re-
sults of using single temporal context on DTCN and demon-
strate the performance results with different context types,
considering temporal unit and time-scales.

5.1 Experimental Setup
Temporal Popularity Image Collection (TPIC17)1.
TPIC17 is an image popularity dataset with multi-faceted
information, such as user profile, photo metadata, and visual
content. To construct the sequential prediction dataset and
protect the privacy of photo sharing behaviors, we extracted
time information of the adopted time-scales from the original
timestamps of photo sharing. It contains 680K photos in
total, and the sharing time of photos are over three years
from Flickr. In order to use the temporal information from
the dataset, we extracted time information from the metadata.
To obtain multiple data settings with different dataset size,
we individually sampled three sub datasets (100K, 200K and
400K) from the 680K dataset to evaluate algorithms.

Moving Partition Validation. In order to evaluate sequen-
tial prediction task, we have a 5-round moving partition strat-
egy on the segment of training and testing data for validation.
We organized the entire data in time order and divided it into
14 parts in total. The moving partition strategy is using data
from a moving time window recurrently. In our experiments,
we use the data in time window as input for each round. In
our experiments, the length of time window are 10, which
means the partition ratio of training versus testing data is 9:1.

Evaluation Metrics. We evaluated the prediction perfor-
mance of our approach and the baselines on a correlation
metric Spearman Ranking Correlation (SRC) and a precision
metric Mean Absolute Error (MAE). SRC is to measure the
ranking correlation between ground-truth popularity set P
and predicted popularity set P̂ , varying from 0 to 1. If there
are k samples, the SRC can be expressed as:

rs =
1

k − 1

k∑
i=1

(
Pi − P̄
σP

)(
P̂i − ¯̂

P

σP̂

)
, (7)

where P̄ and σP are mean and variance of the correspond-
ing popularity set. Furthermore, we also use Mean Absolute
Error (MAE) to calculate the averaged prediction error:

MAE =
1

k

n∑
i=1

| P̂i − Pi | . (8)

5.2 Compared Methods
In order to compare with state-of-the-art models, we imple-
mented the following approaches which can be applied into
popularity prediction task as baselines.

Baseline 1 & 2: Convolutional Neural Networks (CNN-
AlexNet [Krizhevsky et al., 2012] and CNN-VGG [Rus-
sakovsky et al., 2015]). CNNs have been proved a powerful
tool in the field of image understanding for photo popularity

1We released the data set in https://github.com/social-media-
prediction/flickr-data-prediction-2017

Table 1: Prediction performances on TPIC17-100K, 200K, and
400K datasets (metric: Spearman Ranking Correlation).

Dataset 100K 200K 400K
Metric SRC

CNN-AlexNet 0.2450 0.2435 0.1423
CNN-VGG 0.2281 0.2445 0.1064

SVR 0.2647 0.2367 0.2289
SVR(T) 0.2741 0.2984 0.2643

MLP 0.4135 0.5282 0.5559
MLP(T) 0.4436 0.5068 0.5084
LSTM 0.4629 0.5837 0.5885

CLSTM 0.4966 0.5730 0.6072
DTCN 0.5990 0.6175 0.6692

prediction [Cappallo et al., 2015]. Consequently, we apply
CNN-AlexNet and CNN-VGG as the baselines for CNNs,
and fine tuned the 8-layer AlexNet and 19-layer VGG as a
regression task that is optimized with our image dataset to
predict photo popularity. Different from other methods, the
input of CNNs baseline is original image file only.

Baseline 3: Support Vector Regression (SVR) [Khosla
et al., 2014]. Khosla et.al. implement SVR algorithm in pop-
ularity prediction task, which utilized user information and
visual content together as feature vectors by using linear ker-
nel. Simultaneously, we add temporal information into SVR
as another baseline method that denotes as SVR(T).

Baseline 4: Multiple Layer Perceptron (MLP) [Zhang
et al., 1998]. MLP is a typical feedforward neural network
trained with back propagation, which has the general ability
and does not require any assumption about the distribution of
training data to solve real-world problems. Meanwhile, we
also implement a variant MLP(T) by adding temporal infor-
mation to the input vector of MLP.

Baseline 5: Long Short-Term Memory (LSTM)
[Hochreiter and Schmidhuber, 1997]. LSTM is a recur-
rent neural network (RNN) architecture, which is capable of
dealing with sequential information for popularity prediction.

Baseline 6: Contextual LSTM (CLSTM) [Ghosh et al.,
2016]. Since the contextual deep learning is a relatively new
research direction, there are only few existing research works
to compare with. To the best of our knowledge, the most
closely related work is CLSTM, which also considered con-
textual information in training and predicting phrase. There-
fore, we used Contextual LSTM as a representative of Con-
textual Recurrent Neural Network (CRNN). Different from
traditional LSTM, CLSTM takes the contextual information
into account during the training and predicting process, and
it has been proved feasible in NLP tasks. The parameters
of Recurrent Layers (e.g. LSTM) and hidden neural nodes
shared the same settings over proposed prediction framework
(DTCN), LSTM and CLSTM. The numbers of output dimen-
sions are 64 with the “hard sigmoid” activation function.

5.3 Prediction Performance
The prediction performances of our proposed method and the
compared models are shown in Table 1 and Figure 2. Over-
all, our approach DTCN achieves the best prediction perfor-
mance on three data size settings with highest SRC of 0.6692



Figure 2: MAE (Mean Absolute Error) comparison of different al-
gorithms on 100K, 200K and 400K datasets.

and minimum MAE 1.2341. DTCN outperforms state-of-the-
art deep prediction algorithms (MLP, MLP(T), LSTM and
CLSTM), with an average of 21.51% relative performance
improvement on SRC. Using raw data from images directly
without user metadata and temporal information, both CNN-
AlexNet and CNN-VGG receive the worse results compared
to other deep learning baseline algorithms. As multiple layer
networks, MLPs obtains higher effectiveness than SVRs on
prediction, while both of them are using user and visual fea-
tures. From SVR and MLP to SVR(T) and MLP(T), there
are neck-to-neck results across different sizes of datasets.
Thus involving temporal information as non-sequential fea-
ture only has limited power for prediction, the behind rea-
son might be ignorance of the sequential coherence of tempo-
ral information. With consideration of sequential coherence
in the modeling of prediction, LSTM and CLSTM achieve
good performances on SRC, i.e., 0.4629 and 0.6072, which
are better than MLP and lower than DTCN. Overall, the re-
sults of sequential prediction (i.e. RNNs) are much superior
than the results of non-sequential prediction (e.g. SVR, MLP
or CNNs) on predicting social media popularity. The pre-
diction accuracies of different methods are shown in Figure
2. From the histogram of MAE, our model also achieves the
minimal prediction error 1.2341. From CNNs to DCTN, it
can be seen that the error drops from about 2.1 to 1.2, and
DTCN has stable improvements on TPIC17-100K, TPIC17-
200K, and TPIC17-400K dataset. That means our approach
provides a more accurate model for popularity prediction.

5.4 Temporal Context Analysis
Here we analyze different types of temporal context in terms
of using only one of them in our prediction model on TPIC17-
100K. There can be different variants of distinct temporal
context type settings TCtunit -tr, based on the type of time
unit tunit and the temporal range of context tr chosen. Gen-
erally, short-term settings are applied for NTC types, which
ranges from 0.5 day to 1 week in our experiment. Simul-
taneously, PTC types are applied to explore long-term pat-
terns for popularity evolving, which ranges from 3 days to
1 month. The time unit tunit control the time-scale of NTC
and PTC. For instance, TC1P -1D of NTC means to construct

Table 2: Prediction performances of context type NTC and PTC
(metric: Spearman Ranking Correlation).

NTC PTC
Context Type SRC Context Type SRC
TC1P -0.5D 0.5607 TC1P -3D 0.4975
TC1P -1D 0.5875 TC1P -5D 0.5745
TC1D-3D 0.5549 TC1D-3W 0.5365
TC1D-7D 0.5784 TC1D-4W 0.5485

NTC from the data in previous 1 day range using the time-
scale on period of day. Another case is TC1D-3W of PTC,
which means the range of PTC for prediction target is in the
same weekday of previous 3 weeks.

The results of using different types of NTC and PTC in our
model are shown in Table 2, where the highest SRC is 0.5875
when using TC1P -1D of NTC. Overall, the results using
NTC settings are better than PTC settings, which reveals that
there are obvious short-term patterns in the 100K dataset of
Flickr. Next, we analyze the improvements of performance in
terms of NTC and PTC, respectively. Compared with the per-
formance of DTCN on same data in Table 1, the performances
of using a single temporal context (NTC or PTC) in Table 2
drop down from 0.5990 to 0.5875 and 0.5745. This finding il-
lustrates that prediction using both of NTC and PTC on same
data performs more accurately than using one of them only,
and our method can incorporate them together effectively.

6 Conclusions and Future Work
This paper proposes to learn consecutive temporal coherence
of temporal context for predicting social media popularity
over time, which comprises of three components. Firstly,
we design a joint embedding network for multi-modal fea-
ture representation. Then, we propose and utilize two types
of temporal context alignment to learn sequential popularity
in short-term and long-term popularity fluctuations. Further-
more, we provide a temporal attention mechanism for pre-
dicting popularity at multiple time-scales. To evaluate our
approach, we constructed a publicly available dataset with
user-photo sequence data. Experimental results show that
our prediction network achieves promising performances and
outperforms the state-of-the-art deep prediction algorithms
by 5.79%–44.86% relative improvements on TPIC17. The
technique serves a deep prediction framework for sequential
popularity prediction, and our paper along with the released
dataset further helps promote the research.

There are several possible directions for future investiga-
tions on social popularity prediction. One is considering the
social network structure (and inherent social network analy-
sis techniques) to improve the popularity prediction. Another
open question is to exploit impact of most influential users in
the social network.

Acknowledgements
This work was supported in part by the National Key Re-
search and Development Program of China under Grant
2016YFB0800403 and the National Nature Science Founda-
tion of China (61525206, 61571424).



References
[Beese, 2016] Jennifer Beese. 5 insightful instagram stats

that you should know. http://sproutsocial.com/insights/5-
instagram-stats/, 2016. [Online].

[Cappallo et al., 2015] Spencer Cappallo, Thomas Mensink,
and Cees GM Snoek. Latent factors of visual popularity
prediction. In Proc. of ICMR, 2015.

[Ellering, 2016] Nathan Ellering. What 16 studies
say about the best times to post on social media.
http://coschedule.com/blog/best-times-to-post-on-social-
media/, 2016. [Online].

[Gan et al., 2016] Chuang Gan, Chen Sun, Lixin Duan, and
Boqing Gong. Webly-supervised video recognition by
mutually voting for relevant web images and web video
frames. In ECCV, 2016.

[Gelli et al., 2015] Francesco Gelli, Tiberio Uricchio, Marco
Bertini, Alberto Del Bimbo, and Shih-Fu Chang. Image
popularity prediction in social media using sentiment and
context features. In Proc. of ACM MM, 2015.

[Ghosh et al., 2016] Shalini Ghosh, Oriol Vinyals, Brian
Strope, Scott Roy, Tom Dean, and Larry Heck. Contex-
tual lstm (clstm) models for large scale nlp tasks. arXiv
preprint arXiv:1602.06291, 2016.

[He et al., 2014] Xiangnan He, Ming Gao, Min-Yen Kan,
Yiqun Liu, and Kazunari Sugiyama. Predicting the pop-
ularity of web 2.0 items based on user comments. In Proc.
of SIGIR, pages 233–242, 2014.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[Khosla et al., 2014] Aditya Khosla, Atish Das Sarma, and
Raffay Hamid. What makes an imag e popular? In Proc.
of WWW, 2014.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural in-
formation processing systems, pages 1097–1105, 2012.

[Li et al., 2015] Cheng Li, Yue Lu, Qiaozhu Mei, Dong
Wang, and Sandeep Pandey. Click-through prediction for
advertising in twitter timeline. In Proc. of KDD, 2015.

[Martin et al., 2016] Travis Martin, Jake M Hofman, Amit
Sharma, Ashton Anderson, and Duncan J Watts. Exploring
limits to prediction in complex social systems. In Proc. of
WWW, 2016.

[McGrath and Kelly, 1992] Joseph E. McGrath and Janice R.
Kelly. Temporal context and temporal patterning. Time &
Society, 1(3):399–420, 1992.

[Pinto et al., 2013] Henrique Pinto, Jussara M Almeida, and
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