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We study the problem of designing optimal auctions under restrictions on the set of permissible allocations.
In addition to allowing us to restrict to deterministic mechanisms, we can also indirectly model non-additive
valuations. We prove a strong duality result, extending a result due to Daskalakis et al. [2015], that guar-
antees the existence of a certificate of optimality for optimal restricted mechanisms. As a corollary of our
result, we provide a new characterization of the set of allocations that the optimal mechanism may actually
use. To illustrate our result we find and certify optimal mechanisms for four settings where previous frame-
works do not apply, and provide new economic intuition about some of the tools that have previously been
used to find optimal mechanisms.

1. INTRODUCTION
The problem of revenue maximization a monopolist seller with a single item to sell to
a single buyer was solved by Myerson [1981], who showed that the optimal mechanism
provides a menu with two options to the buyer: get the item with probability zero for
free or get the item with probability one at a price that depends on the distribution
of the buyer’s value. The setting with multiple items is significantly more challeng-
ing, however, even when restricted to two items, as a line of work from economics
has shown [Chung and Olszewski 2007; Manelli and Vincent 2006, 2007; McAfee and
McMillan 1988; Nöldeke and Samuelson 2015; Pavlov 2011; Rochet and Chone 1998;
Thanassoulis 2004].

Significant progress has been made in the past few years, using a new duality tech-
nique introduced by Daskalakis et al. [2013]. Subsequent work has refined this tech-
nique, allowing for the design of both optimal and approximately optimal mechanisms
in a variety of settings [Daskalakis et al. 2015; Giannakopoulos 2015; Giannakopoulos
and Koutsoupias 2014, 2015]. See Daskalakis [2015] for a survey. However, all this
previous work has had two key restrictions:

(1) valuations are additive, in the sense that the value for a bundle of items is the sum
of values for the individual items, and

(2) the mechanism can choose any (randomized) allocation of the items.

We relax this second restriction, by showing how to extend this duality approach to
mechanism design problems where the set of permissible allocations is more general.
This allows problems with multiple copies of items or a requirement that the mech-
anism be deterministic. Indirectly, it also allows us to relax the first restriction. The
reason is that any problem can be made additive by redefining the space of types to
assign a value to each possible bundle. However, after this transformation the mecha-
nism must be restricted to only offer probability distributions over bundles. Thus, by
allowing restrictions on allocations we also enlarge the space of valuations to which
these techniques can be applied.
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1.1. General Duality
Our main result is a generalization of the strong duality framework of Daskalakis et al.
[2015] between optimal mechanism design and a dual problem that can be interpreted
as finding an optimal matching, and we broadly follow their approach.

— The standard way of phrasing the optimal mechanism design problem is in terms
selecting a convex consumer surplus function u. The constraint that u is a valid
mechanism corresponds requiring that the subgradients of u correspond to permis-
sible allocations. The revenue of a given u is then easily written as an expression
in terms of both u and its subgradients. However, this formulation seems difficult
to work with, so Daskalakis et al. use the divergence theorem to constuct a mea-
sure µ such that the objective function can be rewritten as

∫
udµ, thus excluding the

subgradients of u from the objective function. We adopt this approach wholesale.
— To define feasible dual solutions, their approach makes use of the notion of convex

dominance. A measure µ convex dominates a measure µ′ if
∫
udµ ≥∈ udµ′ for all

(non-decreasing) convex u. This makes convex dominance an instance of an inte-
gral stochastic order [Müller and Stoyan 2002]. The key to our approach is to use
more general such orders, in particular taking the order induced by set of u that are
actually feasible mechanisms rather than all convex u.

— Using our more general stochastic order, we prove a duality theorem of which their
result is a special case.

— To illustrate our framework, we illustrate optimal auctions and corresponding dual
witnesses for a number of settings that prior techniques could not handle. First,
we restrictions on the set of possible allocations, specifically the case of two item
i.i.d uniform [0,1] items with the restriction to allocate at most one item and the
restriction to allocate exactly one item. Second, we consider two i.i.d exponentially
distributed items with the restriction to deterministic mechanisms. The previous
examples have restricted the set of allocations but used additive valuations. Our fi-
nal example looks at a setting with non-additive valuations (there are two items and
the goods are complements) and unrestricted allocations, and shows that bundling
is optimal.

1.2. Finding Good Mechanisms
Our main theorem is a tool that certifies that a mechanism is optimal—it does not
directly provide guidance on how to find the optimal mechanism in the first place.
Thus, we provide several additional results that provide additional structure to aid in
the search for good mechanisms.

— We prove a lemma showing that optimal mechanisms only use allocations that are
exposed points of the set of allowable allocations. In particular, all previous known
optimal mechanisms for the additive case are zero set mechanisms [Daskalakis et al.
2015], where the buyer is either allocated nothing or at least one item with probabil-
ity 1. We show that in fact a slightly weaker version of this is a necessary condition,
and that suitably generalized it holds beyond the additive setting.

— One useful observation made by Daskalakis et al. [2015] for the case where the
optimal mechanism has a finite number of allocations is that if cell(s) is the set
of types that receive allocation s then

∫
cell(s)

µ = 0. We provide economic intuition
for this fact, showing that it corresponds to the simple first-order condition that
an optimal mechanism prices each allocation optimally. That is, the derivative of
revenue with respect to changing the price of any one allocation is 0.

— Any feasible dual solution provides an upper bound on the revenue of the optimal
mechanism. Giannakopoulos [2015] uses this observation to certify the approximate



optimality of mechanisms. We examine our dual problem, and show that it suggests
that a better understanding of the integral stochastic orders we use would shed
light on the question of how well the optimal mechanism can be approximated by a
deterministic mechanism.

2. PRELIMINARIES
Let O be a set of outcomes. There is a single agent whose preference over outcomes
can be represented as a function x ∈ RO≥0, known as the agent’s type. That is, this
function associates each outcome with a non-negative value for the agent. We work in
a Bayesian setting, so there is a distribution f over RO≥0 from which the agent’s type is
drawn. An allocation s is a linear function in the dual space RO → R. The value of the
agent is then s(x). IfO is finite, both x and s can be represented as vectors of dimension
|O| = n and s(x) = s · x. Because the techniques we use to derive the objective function
(see Section 2.2) are restricted to the finite case we assume that O is finite and use the
s ·x notation, but most of our remaining techniques do not rely on this assumption and
would generalize if this analysis does.

Despite calling O a set of outcomes, our formalism does not restrict s to ensure that
at most one outcome happens or that a given outcome can happen a single time. Thus
our formalism can handle auctions with multiple items or even multiple copies of a
single item with additive valuations in two distinct ways. O can be the set of individ-
ual items (or types of items), in which case s indicates how many (in expectation) of
each item are allocated. Alternatively, we can let O be the set of all bundles of items,
and s give a probability distribution over bundles. When there is a choice of represen-
tations, it is convenient to select one that results in a type distribution f that meets
the requirements of the derivation in Section 2.2 while also minimizing |O|. For an
example that takes advantage of this flexibility, see Section 4.5.

As this possibility of multiple representations suggests, it may be natural to have
a restricted set of types X and feasible allocations S to accurately describe a given
problem. For example, we can restrict X to capture additive valuations or that goods
are substitutes, while we can restrict S to impose constraints such as limited quantities
of an item available, that s is a probability distribution, or that the mechanism is
deterministic (i.e. s has an integer value in each coordinate). Previous work on optimal
mechanisms for the additive case has considered various restrictions on X, such as
requiring values to lie in [0, 1]|O|, but has always taken S to be [0, 1]|O|. Without loss of
generality, we require X to be convex.

2.1. Convex Representation
In this setting it is without loss of generality to restrict to truthful direct revela-
tion mechanisms. These consist of a rule that takes a report of x from the agent
and then selects an allocation s and payment p, which gives the agent a utility of
u(x) = s(x) · x − p(x). A standard fact is that we can represent such mechanisms as
convex functions u where s(x) is a subgradient of u at x and p(x) = u(x)−s(x) ·x. Thus,
the set U(X,S) of convex functions on X that are subdifferentiable with subgradients
in S1 corresponds exactly to the truthful direct revelation mechanisms. We further
require that the mechanism be individually rational, a restriction we enforce via the
objective function described in the next section.

1Of course, any u with subgradients in S in general has subgradients in conv(S) as well. We say “subgradi-
ents in S” to mean that u is supported by S alone: we can write u(x) = sups∈S s · x+ cs for some constants
cs.



Given a set of functions U , a geometric structure that will prove useful for our argu-
ments is the cone generated by U , which consists of all scaled versions of elements of
U . That is, U◦ = {λu | λ ≥ 0 ∧ u ∈ U}. Our arguments also make use of the convex hull
conv(U) and the closure cl(U).

Finally, we make use of the fact that since u is restricted to have subgradients in
S, a simple upper bound on the difference in the value of u between points x and y is
u(x)−u(y) ≤ sups∈S s·(x−y) = `S(x, y). We will be using the concise `S notation for this
supremum frequently. We require S to be closed and bounded, which ensures that this
supremum is finite and realized. To see the importance of closure, consider the case of
selling a single item, with S = [0, 1). There is no optimal mechanism restricted to this
S. We can approximate the optimal auction with S = [0, 1] arbitrarily well, but cannot
realize it because the optimal auction only offers the item for sale with probability
1. Similarly, without boundedness we could take S = [0,∞) and there would be no
optimal auction because it is optimal to sell as much of the item as possible.

2.2. Objective Function
Following Daskalakis et al. [2015], as long as the pdf of the type distribution f is
differentiable, we can write our problem as trying to choose the optimal consumer
surplus function u with respect to a measure µ. That is, we make use of the following
definition and result from their work.

Definition 2.1. Let X ′ ⊂ Rn≥0 be a well-behaved2 set of types. Let f : X ′ → R≥0
be a (differentiable) probability density function with bounded partial derivatives. Let
z0 ∈ Rn≥0 be any point which is coordinate-wise less than all points in X ′. The signed
Radon measure µ is a transformed measure of f if the relation∫

hdµ = h(z0) +

∫
∂X′

h(z)f(z)z · n̂dz −
∫
X′
h(z)(∇f(z) · z + (n+ 1)f(z))dz

holds for all continuous bounded functions h : Rn → R, where n̂ denotes the outer unit
normal field to the boundary ∂X ′.

THEOREM 2.2 ([DASKALAKIS ET AL. 2015]). LetX ′ ⊂ Rn≥0 be a well-behaved set of
types. Let f : X ′ → R≥0 be a (differentiable) probability density function with bounded
partial derivatives. Then the problem of determining the optimal IC and IR mechanism
for a single additive buyer whose type is distributed according to f is equivalent to
solving the optimization problem

sup
u∈U(X,S)

∫
X

udµ

Where X = [0,M ]n ⊃ X ′ and µ is a transformed measure of f .

Essentially, their result says that as long as we pick a “nice” f , it has a transformed
measure µ such that finding the optimal mechanism is the same as maximizing

∫
X
udµ,

where we have enlarged the set of types to be a hypercube. While this theorem requires
X ′ to be bounded, they show that this can be relaxed as long as f decays sufficiently
rapidly, and we use this extension in Section 4.4. Earlier work from has used more
restricted versions of this observation. For example, in economics, Manelli and Vincent
[2006] and Thanassoulis [2004] used integration by parts to get such a measure µ,
while in computer science, special cases of this approach were used by Daskalakis
et al. [2013] and Giannakopoulos and Koutsoupias [2014].

2X′ is well behaved if it is a Jordan-measurable bounded Lipschitz domain



2.3. Measure Theory
As our new objective involves a measure µ, we introduce some notation and definitions
from measure theory. Let X ⊂ Rn be compact. Then

— µ ∈ Radon(X), the set of signed Radon measures supported within X.
— By the Jordan decomposition theorem, µ = µ+−µ− where µ+, µ− ∈ Radon+(X), the

set of positive Radon measures supported within X. Intuitively µ+ is the positive
part of µ and µ− is the negative part.

— For γ ∈ Radon(X × X) (or Radon+(X × X)), the marginal measures γ1 and γ2 ∈
Radon(X) (or Radon+(X)) are defined as γ1(X ′) = γ(X ′, X) and γ2(X ′) = γ(X,X ′).

2.4. Stochastic Orders
Having reduced our objective function to something of the form

∫
X
udµ, previous dual-

ity based approaches have observed that it is useful to upper bound this with a trans-
formation µ′ of µ, but one that guarantees that

∫
udµ ≤

∫
udµ′. The problem is that

we do not know what u is, so we need this relation to hold for a large enough class of
functions. This guarantee is provided by integral stochastic orders [Müller and Stoyan
2002]. Let U be some set of functions X → R. Then µ′ �U µ if

∫
X
udµ′ ≥

∫
X
udµ for

all u ∈ U . Orders used in prior work include the stochastic order (U is all increasing
functions) and the convex order (U is all convex functions). The natural order for our
setting is to take U to be all feasible candidates for u. That is, U = U(X,S). Since this
order is entirely determined by X and S, for brevity we will write �X,S rather than
�U(X,S).

3. GENERAL STRONG DUALITY
Our main result is the following theorem, which establishes strong duality between
the optimal mechanism u an a matching γ.

THEOREM 3.1. Let X = [0,M ]n and let µ ∈ Radon(X) such that µ(X) = 0. Then

sup
u∈U(X,S))

∫
X

udµ = min
γ∈Radon+(X×X)
γ1−γ2�X,Sµ

∫
X×X

`S(x, y)dγ(x, y) (1)

Note that it is part of the theorem that the min is realized. While we do not prove
that the sup is realized, it is realized whenever an optimal mechanism exists. Theorem
2 of Daskalakis et al. [2015] is a special case of theorem with S = [0, 1]n. They directly
prove that the sup is realized in this case.

The structure of our proof parallels that of Daskalakis et al. [2015], which in turn
parallels the structure of the proof of Monge-Kantorovich duality for optimal transport
given by Villani [2003]. Just as the technical details of their proof differ from the proof
of Monge-Kantorovich duality due to an added convexity constraint, so to do ours differ
from theirs due to an added subgradient constraint.

To prove the theorem, we use three lemmas. We begin with a simple proof of weak
duality. Note that weak duality alone is enough to apply our framework to practical
examples. The remainder of our results are only needed to show that in fact our frame-
work always applies.

LEMMA 3.2.

sup
u∈U(X,S)

∫
X

udµ ≤ inf
γ∈Radon+(X×X)
γ1−γ2�X,Sµ

∫
X×X

`S(x, y)dγ(x, y) .



PROOF. Fix feasible u and γ.∫
X

udµ ≤
∫
X

ud(γ1 − γ2)

=

∫
X×X

u(x)− u(y)dγ(x, y)

≤
∫
X×X

`S(x, y)dγ(x, y) .

The first inequality follows by domination, the second by ` being an upper bound on
the difference in the value of u between any two points.

The next lemma is the most technical, and shows strong duality for a related prob-
lem. Ultimately we will combine this with weak duality to show strong duality for our
desired problem.

LEMMA 3.3.

sup
φ(x)−ψ(y)≤`S(x,y)

φ,ψ∈cl(conv(U◦(X,S)))

∫
X

φdµ+ −
∫
X

ψdµ− = min
γ∈Radon+(X×X)

γ1�X,Sµ+

µ−�X,Sγ2

∫
X×X

`S(x, y)dγ(x, y)

PROOF. The proof makes use of Fenchel-Rockafellar Duality (specifically in its sym-
metric form [Borwein and Vanderwerff 2010, Exercise 4.4.17], although we use the
version of the conditions for strong duality given by [Villani 2003]).

THEOREM (FENCHEL-ROCKAFELLAR DUALITY). Let E be a Banach space,
E∗ its dual, and proper Θ,Ξ : E → R with Θ convex and Ξ concave. Then

sup(Ξ−Θ) ≤ inf(Θ∗ − Ξ∗),

where Θ∗ and Ξ∗ are the convex and concave duals respectively. Further, if
there exists e ∈ E where Θ(e) and Ξ(e) are finite and Θ is continuous at e,
this holds with equality and the infimum is realized.

Our proof also makes use of the Fenchel-Moreau theorem, which says that a proper
convex f = f∗∗ iff f is lsc (equivalently closed).

Let CB(X × X) be the set of continuous, bounded functions X × X → R. Note its
dual space is Radon(X × X). To make use of the theorem, we can split the domain
constraint into two pieces and phrase the optimization problem on the right hand side
as infγ Θ∗(γ)− Ξ∗(γ), where

Θ∗(γ) =

{∫
X×X `S(x, y)dγ(x, y) if γ ∈ Radon+(X ×X)

+∞ otherwise

and

Ξ∗(γ) =

{
0 if γ1 �X,S µ+ and µ− �X,S γ2
−∞ otherwise

Note that we use a ∗ because these functions are on the dual space. Θ∗ is closed and
convex as it is linear on its domain, which is a closed convex set. Similarly, Ξ∗ is closed
and concave as its domain is a closed convex set. Thus, by Fenchel-Moreau we have
that Θ∗ = Θ∗∗∗ and Ξ∗ = Ξ∗∗∗.



We can calculate Θ∗∗ as

Θ∗∗(f) = sup
γ∈Radon+(X×X)

∫
X×X

(f(x, y)− `S(x, y))dγ(x, y)

=

{
0 if `S ≥ f
+∞ otherwise

For the second equality, note that in the first case the difference is non-positive at every
point and γ is non-negative, so the the supremum is realized by taking γ = 0. In the
second case, take any point where the difference is positive and choose a γ that puts
an arbitrarily high measure on that point and 0 measure elsewhere.

Note that (Θ∗∗)∗ = Θ∗ and Θ∗∗ is closed and convex. Thus we can take Θ = Θ∗∗ and
its dual and double dual will be Θ∗ and Θ∗∗ respectively.

For Ξ∗∗, we proceed by guessing a closed concave Ξ∗∗ and confirming that its dual is
in fact Ξ∗. Take

Ξ∗∗(f) =

{∫
X
φd(µ+)−

∫
X
ψd(µ−) if ∃φ, ψ ∈ cl(conv(U◦(X,S))) : f(x, y) = φ(x)− ψ(y)

−∞ otherwise,

(Ξ∗∗)∗(γ) = inf
f∈CBX×X

∫
X×X

f(x, y)d(γ(x, y))− Ξ∗∗(f)

= inf
φ,ψ∈cl(conv(U◦(X,S)))

∫
X

φd(γ1 − µ+) +

∫
X

ψd(µ− − γ2)

=

{
0 if γ1 �X,S µ+ and µ− �X,S γ2
−∞ otherwise

= Ξ∗(γ)

The penultimate equality follows from the following observation. If γ1 �X,S µ+, the
integral is always non-negative. Taking φ = 0 makes it 0, and similarly for φ. If γ1 6�X,S
µ+, then there is some φ ∈ U(X,S) for which the integral is negative. As we are allowed
to scale it arbitrarily in U◦(X,S), the infimum is infinite (and similarly for ψ). Since
Ξ∗∗ is closed and concave, we can again take Ξ = Ξ∗∗.

The final detail to apply the theorem is to find an f such that Θ(f) and Ξ(f) are finite
and Θ is continuous at f . Take f(x, y) = −1. Θ(f) = 0 and Ξ(f) = −

∫
X
dµ−. Θ(f ′) = 0

for all f ′ such that ||f − f ′||∞ ≤ 1. Thus, Θ is continuous at f .
We now apply Fenchel-Rockafellar duality, giving us the following:

sup
f∈CB(X×X)

Ξ(f)−Θ(f) = min
γ∈Radon(X×X)

Θ∗(γ)− Ξ∗(γ)

sup
φ(x)−ψ(y)≤`S(x,y)

φ,ψ∈cl(conv(U◦(X,S)))

∫
X

φdµ+ −
∫
X

ψdµ− = min
γ∈Radon+(X×X)

γ1�X,Sµ+

µ−�X,Sγ2

∫
X×X

`S(x, y)dγ(x, y)

The final lemma takes the supremum over two functions for which we proved strong
duality in the previous lemma, and shows that we can convert that not just a single
function, but one in U(X,S) as well.



LEMMA 3.4.

sup
φ(x)−ψ(y)≤`S(x,y)

φ,ψ∈cl(conv(U◦(X,S)))

∫
X

φdµ+ −
∫
X

ψdµ− = sup
u∈U(X,S)

∫
X

udµ (2)

PROOF. First, observe that for any u feasible on the right hand side of (2), φ = ψ = u
is feasible on the left hand side with the same value. Thus, the left hand side is at least
the right hand side.

Now consider φ and ψ feasible for the left hand side. By the constraints, ψ(y) ≥
φ(x) − `S(x, y) for all x ∈ X. Thus, define ψ̄(y) = supx φ(x) − `S(x, y). This is finite
on X as ψ̄(y) ≤ ψ(y). We claim that ψ̄ ∈ U(X,S). To show this, it suffices to find a
subgradient sy ∈ S of ψ̄ at each y ∈ X. Observe that since X is compact, S is closed,
and φ is continuous, we can write ψ̄(y) = maxx∈X,s∈S φ(x) − s · (x − y). Let sy and xy
denote the maximizers for y. Then for all y′ ∈ X,

ψ̄(y′) = max
x∈X,s∈S

φ(x)− s · (x− y′)

≥ φ(xy)− sy · (xy − y′)
= φ(xy)− sy · (xy − y)− sy · (y − y′)
= ψ̄(y)− sy · (y − y′)
= ψ̄(y) + sy · (y′ − y)

Thus, sy is indeed a subgradient of ψ̄ at y.
Since φ and ψ̄ are feasible for the left hand side of (2), we know that φ(x) ≤ `S(x, y)+

ψ̄(y) for all y ∈ X. Thus, we can define φ̄(x) = infy `S(x, y) + ψ̄(y) and observe that
φ̄(x) ≥ φ(x). Further,

∫
X
φdµ+ −

∫
X
ψdµ− ≤

∫
X
φ̄dµ+ −

∫
X
ψ̄dµ−.

We claim that φ̄ = ψ̄. For one direction, φ̄(x) ≤ `S(x, x) + ψ̄(x) = ψ̄(x). For the other,

φ̄(x) = inf
y
`S(x, y) + ψ̄(y) = ψ̄(x) + inf

y
`S(x, y) + ψ̄(y)− ψ̄(x) ≥ ψ̄(x).

The last inequality follows because ψ̄ ∈ U(X,S) implies ψ̄(x) − ψ̄(y) ≤ `S(x, y). Thus
taking u = ψ̄(= φ̄) is feasible for the right hand side and the value of the right hand
side is at least that of the left hand side.

The proof of the theorem then results by combining the lemmas.

PROOF OF THEOREM 3.1.

inf
γ∈Radon+(X×X)
γ1−γ2�X,Sµ

∫
X×X

`S(x, y)dγ(x, y) ≥ sup
u∈U(X,S)

∫
X

udµ

= sup
φ(x)−ψ(y)≤`S(x,y)

φ,ψ∈cl(conv(U◦(X,S)))

∫
X

φdµ+ −
∫
X

ψdµ−

= min
γ∈Radon+(X×X)

γ1�X,Sµ+

µ−�X,Sγ2

∫
X×X

`S(x, y)dγ(x, y)

A feasible γ for the final min is also feasible for the initial inf, so the inequality is in
fact an equality and the initial inf is a min.



4. CONCRETE EXAMPLES
In this section, we derive optimal mechanisms for a number of settings where previous
duality results do not apply. Since an optimal mechanism exists for all these settings,
Theorem 3.1 guarantees that there exist a u∗ and γ∗ that lead to equality in equa-
tion (1). In the following examples, however, we need only apply the framework to find
such a pair, as then Lemma 3.2 will certify optimality of u∗. To aid us in finding such a
pair we make use of the following powerful corollary of Lemma 3.2 that is a direct gen-
eralization from [Daskalakis et al. 2015], who describe it as providing complementary
slackness conditions.

COROLLARY 4.1. Let u∗ and γ∗ be optimal in (1). Then:

(1)
∫
X
u∗dµ =

∫
X
u∗d(γ∗1 − γ∗2) and

(2) `S(x, y) = u∗(x)− u∗(y) γ∗(x, y)-almost everywhere.

PROOF. By strong duality, the two inequalities in the proof of Lemma 3.2 are equal-
ities for u∗ and γ∗. This gives the first claim directly, and the second follows because
u∗(x)− u∗(y) ≤ `S(x, y) for all x and y.

From this corollary, and some basic facts about subgradients from convex analysis,
we can identify some additional structure linking u∗ and γ∗ that will guide our search.
Let exp(S) = {s ∈ S | ∃x, y ∈ X s.t. s · (x − y) = `S(x, y)} denote the union of exposed
faces of S with respect to X.3 The following lemma shows that, except for a set of
measure zero, these are the only permissible subgradients of u∗.

LEMMA 4.2. Points x and y share a subgradient of u∗ s ∈ exp(S) γ∗(x, y)-almost
everywhere. Furthermore, (x− y) is a direction in which s is exposed.

PROOF. By Corollary 4.1, `S(x, y) = u∗(x) − u∗(y) γ∗(x, y)-almost everywhere, so
consider some x and y that are. For λ ∈ [0, 1], let f(λ) = u∗(λx + (1 − λ)y). If f is
not affine, then `S(x, y) 6= u∗(x)− u∗(y), because the steepest slope present could have
been used the whole way. Thus, f is affine and there is some s ∈ S such that s ∈ ∂u∗(y)
(the set of subgradients of u∗ at y) and s · (x − y) = u∗(x) − u∗(y). It is standard (see,
e.g.,[Frongillo and Kash 2014, Lemma 2]) that this implies s ∈ ∂u∗(x). Since `S(x, y) =
u∗(x)− u∗(y), s ∈ exp(S), and furthermore is maximal in the (x− y) direction because
that is a direction that shows it is in exp(S).

Lemma 4.2 significantly restricts the space of both optimal mechanisms u∗ and opti-
mal duals γ∗. For u∗, the only allocations are elements of exp(S). For γ∗, when matching
x and y which share allocation s, they much be chosen to be in a direction where s is ex-
posed. For example, if S = [0, 1]2, when the allocation is (1, 0.5), γ∗ only matches pairs
x and y where x is to the right of y, while when the allocation is (1, 1) it is allowed to
have x be anything up and to the right of y.

4.1. A Recipe for the Examples
In each of the examples below, we follow the same basic recipe. First, we state the mea-
sure µ for which the optimal mechanism maximizes

∫
u∗dµ. As discussed in Section 2.2,

determining µ is a direct application of the machinery of Daskalakis et al. [2015], so we
simply give the measure without further comment. For some examples, we then iden-
tify an alternate measure µ′ and show that µ′ �X,S µ. The γ∗ we ultimately construct
will have the property that γ∗1 − γ∗2 = µ or µ′ as appropriate.

We then propose a mechanism u∗, which we will use to guide our construction of
a matching γ∗ for which strong duality holds, certifying its optimality. A useful con-

3Equivalently, the set of points in S supported by (dual) points in C = X −X.



struct in this regard will be the cell of an allocation/subgradient s ∈ S, the set of
types allocated s under u∗, defined formally by cell(s) = {x ∈ X | s ∈ ∂u∗(x)},
where ∂u∗(x) denotes the set of subgradients of u∗ at x. Lemma 4.2 shows that
γ∗1 (cell(s)) = γ∗2 (cell(s)) = γ∗(cell(s), cell(s)). Thus, a necessary property of such a u∗

is that for each s ∈ S, µ(cell(s)) = 0, meaning that γ∗ essentially only matches types
within the same cell. This property, which we term the “integrate to zero” condition,
guides our construction of γ∗ by allowing us to construct it on each cell independently.

As Corollary 4.1 tells us that u∗(x) − u∗(y) = `S(x, y) for almost every matched pair
(x, y), we must have u∗(x)−u∗(y) = s · (x−y) within a given cell(s); this lets us focus on
pairs such that s ∈ argmaxs′∈S s

′ · (x− y). A matching which satisfies this cell condition
will be said to “respect `S”. Once we verify that µ(cell(s)) = 0 for u∗, we then show
that such a γ∗ respecting `S exists, either by directly constructing it or by applying
Strassen’s [1965] Theorem (or more precisely a special case of it [Kamae et al. 1977;
Lindvall 1999]).

THEOREM 4.3 (STRASSEN’S THEOREM IN 1 DIMENSION). Let P be a set of points
on a line segment (and so totally ordered). Let ν+ and ν− be two unsigned measures on
P with ν+(P ) = ν−(P ) such that ν+ �st ν−, where �st denotes stochastic dominance.
Then there exists an unsigned measure γ on P ×P with marginals γ1 = ν+ and γ2 = ν−
such that x > y γ-almost surely.

Strassen’s Theorem allows us to prove the existence of the desired γ∗ without need-
ing to construct it directly. In many of the examples that follow, the mass of µ+ is
restricted to a 1-dimensional set P , but µ− need not be. Nonetheless, this one dimen-
sional set has some total order ≥P such that if x1 ≥P x2 then for all y in the cell, if
u∗(x1) − u∗(y) = `S(x1, y) then u∗(x1, y) = `S(x1, y). Intuitively, this ordering means
that if γ∗ is “permitted” to match x2 and y in this sense, it is also permitted to match
x1 and y. Thus, ≥P captures which points in P are least restricted in terms of the
matching, effectively reducing to the 1-dimensional case. This reduction is captured by
the following lemma.

LEMMA 4.4. Let X ′ ⊂ X, e.g. X ′ = cell(s), and ν+ and ν− be two unsigned measures
on X ′ with ν+(X ′) = ν−(X ′). For x ∈ X ′ define A(x) = {y ∈ X ′ | u∗(x)−u∗(y) = `S(x, y)}
to be the points in X ′ which can be matched with x. Let P ⊂ X ′ with ν+(P ) = ν+(X ′),
such that the subset relation on A(x) induces a total order on P defined by x ≥P x′ ⇐⇒
A(x′) ⊆ A(x). Letting B(x) = {x′ ∈ P | x ≥P x′}, if ν−(A(x)) ≥ ν+(B(x)) for all x ∈ P ,
there exists a measure γ on X ′ × X ′ with marginals such that γ1 − γ2 = ν+ − ν− and
u∗(x)− u∗(y) = `S(x, y) γ-almost surely.

PROOF. Define ν′− an unsigned measure on P by ν′−(P ′) = ν−({y ∈ X ′ | ∃x ∈
P ′.u∗(x) − u∗(y) = `S(x, y)}. Observe that, by construction, ν′−(B(x)) = ν−(A(x)) for
all x ∈ P . By assumption, ν′−(B(x)) = ν−(A(x)) ≥ ν+(B(x)) for all x ∈ P , so ν+ �st ν′−.
Thus by Strassen’s Theorem, there exists a γ′ on P × P with marginals γ′1 = ν+ and
γ′2 = ν′− and x ≥P x′ γ′-almost surely.

Let γ′′({(xi, yi)}) = ν−({yi | xi = min{x | yi ∈ A(x)}}) (where the min is taken accord-
ing to ≥P , also implicitly requiring that xi ∈ P ). Note that γ′′1 is a measure on P and
ν′− �st γ′′1 . Applying Strassen’s theorem again, we get a γ′′′ with marginals γ′′′1 = ν′−
and γ′′′2 = γ′′1 . Observe that P ⊂ X ′, so if x ≥P x′ then u∗(x)− u∗(x′) = `S(x, x′). There-
fore, we can take γ = γ′ + γ′′ + γ′′′, and have it satisfy u∗(x)− u∗(y) = `S(x, y) γ-almost
surely. Further, γ1 − γ2 = ν+ + γ′′1 + ν′− − ν′− − ν− − γ′′1 = ν+ − ν−.

Having constructed such a γ∗, we will then have shown
∫
X
u∗dµ =

∫
X×X `S dγ

∗,
which certifies optimality of u∗ by weak duality (Lemma 3.2).
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Fig. 1. (L) The µ for the two-item uniform valuaton setting. (M) The optimal mechanism in this setting
when at most one item can be sold. (R) Construction of a matching γ∗ certifying optimality.

4.2. Two items, allocate at most one
In this setting, values are uniform [0, 1] for each item and S = {(p1, p2) | 0 ≤ p1, p2 ∧
p1 +p2 ≤ 1}. This gives µ with a mass of −3 uniformly distributed on the interior of the
unit square, a point mass of +1 at the origin, and a mass of +1 uniformly distributed
on each of the lines (0, 1)− (1, 1) and (1, 0)− (1, 1). (See Figure 1.)

As we will show, the optimal mechanism here is to offer the choice of either item
at a price of 1/

√
3. This mechanism divides the space into 3 cells: (0, 0) when neither

item worth more than 1/
√

3, (1, 0) when at least one item is worth 1/
√

3 and item
one is preferred to item two, and (0, 1) when at least one is worth 1/

√
3 with item

two preferred. Each cell satisfies the integrate to 0 condition: the no-sale cell has a
negative mass inside of

∫
0≤p1,p2≤1/

√
3
−3dp1dp2 = −3(1/

√
3)2 = −1 and there is a point

mass of 1 at the origin. By symmetry, the interior of the other cells also integrate to −1,
yielding 0 when including the boundary. Thus, we may turn to constructing γ∗ which
only matches points within one of these cells. For the (0, 0) cell, this matching is trivial,
as we match all the negative mass to the point mass at (0, 0).

It remains to show that for the cell where (without loss of generality) item 1 is sold,
we can match the interior to the boundary such that a point (x1, x2) is matched to a
boundary point (1, x′2) with 1 − x′2 ≥ x1 − x2, thus respecting `S . For this we apply
Lemma 4.4, with X ′ being the (1, 0) cell, P being its right boundary, and of course
ν = µ, as µ+(cell(1, 0)) = µ−(cell(1, 0)) by the above (we drop the double parentheses
when plugging in coordinates). Here A(1, x′2) = {x | 1−x′2 ≥ x1−x2}∩cell(1, 0) is the set
of points which can be matched with boundary point (1, x′2) and B(1, x′2) = {(1, x2) | 1 ≤
x2 ≤ x′2} is an upward-closed portion of the boundary; see Figure 1(R). Thus, we need
only check that for all a ∈ [0, 1], µ+(B(1, 1 − a)) = a ≤ µ−(A(1, 1 − a)). This reduces to
two cases: (i) 3(1 − 1/

√
3)a ≥ a when 0 ≤ a ≤ 1/

√
3, which holds for all a ≥ 0, and (ii)

1 − 3
2 (1 − a)2 ≥ a when 1 ≤ a ≤ 1/

√
3, which is easily checked on the two endpoints

a = 1 and a = 1/
√

3.

4.3. Two items, allocate exactly one
In this setting, values are uniform [0, 1] for each item and S = {(p1, p2) | 0 ≤ p1, p2 ∧
p1 + p2 = 1}. Thus µ is the same as in the previous example. We claim that the optimal
mechanism is to offer the choice of either the first item at a price of 1/3 or the second
item for free. This mechanism divides the space into two cells, separated by the line
x1 = x2 + 1/3. Each cell satisfies the integrate to 0 condition: the (1, 0) cell has a mass
of 2/3 along the boundary and the interior mass is

∫ 1

1/3

∫ x1−1/3
0

−3dx2dx1 = −2/3. It
remains to show that for each cell, we can match the interior to the boundary such
that `S(x, y) = y1 − x1 in cell 1 and similarly for cell 2. For the (1, 0) cell this is easily
seen by the same sort of application of Lemma 4.4 as before, this time looking at the
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Fig. 2. (L) Matching for two items, allocating exactly one. (M) Matching for the deterministic mechanism
with two items with exponentially-distributed valuations. (R) Depiction of a non-mean-preserving operation
which is still permitted in the deterministic setting.

point (1, a) with B(1, a) again being upward closed: 2
3 −

3
2a

2 ≥ 2
3 − a. For the (0, 1) cell,

the matching is a bit more complex; Figure 2(L) diagrams the matching. The dashed
line again divides the cells, with the lower right being the (1, 0) cell, for which we have
already described the matching. The (0, 1) cell has several areas of positive mass to
be matched: the top left, two in the top right, and two in the bottom left. The top left
we match the same as the (1, 0) cell. For the rest, our matching respects `S if points
on the boundary are matched with points along a line at a 45 degree angle from them
(because it is a translation of y = x); we match the two regions in the top right in
this way. For the bottom left, we take advantage of the fact that we are allowed to do
mean-preserving spreads: we may replace µ with some µ′ where all we have done is
spread (positive) mass out such that at the end of any spreading operation the center
of mass of the mass that has been spread is unchanged (See [Daskalakis et al. 2015,
Remark 2] for additional discussion of why this is permissible). Here we take a mass
on the line y = x and spread it in the (−1, 1) and (1,−1) directions evenly to cancel out
the negative mass in the cell, leaving a residual negative mass of −1 on the line y = x.
With this µ′ (which clearly has not changed the matching in the other cells) we match
this line of negative mass with the origin.

4.4. Deterministic allocations with two exponential items
In this setting, values are exponentially distributed on [0,∞) with λ1 = 2 and λ2 = 1.
Section 9 of Daskalakis et al. [2013] analyzes this setting and shows that the optimal
mechanism is randomized (sell both items at a price p∗ of approximately 1.2319, sell
item 1 with probability 1 and item 2 with probability 0.5 for a price of 1, sell neither for
a price of 0). Here we consider the optimal deterministic mechanism, captured by the
restriction S = {(0, 0), (1, 0), (0, 1), (1, 1)}, which turns out to be the following: sell both
for a price of approximately 1.2286, and sell just item 1 for a price of approximately
0.9288.4 This case is a good example to illustrate how our approach extends to deter-
ministic mechanisms (i.e. non-convex sets of subgradients), since it is the perhaps then
simplest case where the optimal randomized mechanism is not in fact deterministic.

To verify the optimality of the deterministic mechanism, we need to match each of
the regions shown in Figure 2(M). The zero region integrates to 0, so every point can
be matched with the origin. However, the other two regions are more problematic, and
cannot immediately be matched. Consider the cell where item 1 is sold. To get a “tight”
matching, we can only match along horizontal lines as otherwise we get the added
cost from the (1, 1) subgradient. This leaves negative mass we cannot match at the
left boundary with positive mass out toward infinity, as shown in red in Figure 2(M),
where the main dashed red line has the property that integrating from it to infinity

4The exact values are those which cause the integrate to zero condition to be satisfied in all three cells.



yields zero. This same line shows that there is also a problem in the cell where both
goods are sold, because the line passes through the zero cell. This means that there
is excess positive mass in the lower right “corner” of this cell which we cannot easily
match.

The key to resolving this is shown in Figure 2(R). Suppose we have positive mass
at the two black points. We claim that we can replace µ with a measure µ′ given by
moving mass up from the first one and down from the second one in equal amounts, in
a non-mean-preserving spread. To see why, consider where the two points sit relative
to any possible cell boundary. Since there are only 3 allocations, there are only 9 cases
(the gray lines). In 6 of them, the two points end up in the same cell (at least relative
to that boundary), so this move does not change the integral of the function because if
we do this to two points in the same cell it is effectively a mean-preserving spread. In
the other three cases we can only increase the value:

(1) When the boundary is vertical this move has no effect because a vertical boundary
means only item 1 is allocated and we are only changing values for item 2.

(2) When the boundary is horizontal this increases the value because we are increas-
ing the value for item 2 in a cell where item 2 is allocated and decreasing it where
it is not (or is allocated to a lesser extent).

(3) When the boundary is at 45 degrees the same applies, just item 1 happens to be
(irrelevantly) allocated as well.

While we have drawn this with the line between the points at 45 degrees, but all that
matters is that it is that or steeper.

Note that since we need a strictly lower optimal dual value than the randomized
case, for this operation to be helpful, it must not be permissible in the randomized case.
Indeed this is the case, as we illustrate by the red line, which is a possible boundary in
the randomized case: with such a boundary, our operation decreases the value of the
integral, so it would not be permitted.

We also need to find some mass to move up, and moving mass in the item 1 cell
does not help since we need to move all that positive mass downward. The key is to
observe that 45 degree lines near the left end of the item 1 cell pass into the zero
cell, and that instead of matching the negative mass there to the positive mass at the
origin we can move the mass at the origin to those points (which is equally costless).
The positive mass is still too far out in the (1, 0) direction, but we can fix this with a
mean-preserving spread along each horizontal line where we move the mass we need
towards zero in exchange for pushing some mass even further out (this has no effect
on the cost of the matching).

To be more explicit about the construction, let pos1(z) =
∫∞
x1=0.9288

µ(x1, 1.2319 −
0.9288 − z)dx1 be the excess positive mass along the horizontal line a distance z down
in the item 1 cell. Similarly, let neg1(z) =

∫ 2(1−0.9288−z)
x2=0

µ(0.9288 + z, x2)dx2 be the
excess negative mass below the dashed red line in Figure 2(M) along the vertical line
at x1 = 0.9288 + z. It is easy to verify that these new measures have the same total
measure, are 1 dimensional, and pos(z) stochastically dominates neg(z). Thus, we can
find a matching such that that the excess positive mass from z1 is matched to excess
negative mass z2 such that z2 < z1. We cannot give a closed form for this, but as we
will see this is not needed.

To move this mass downward as described (after first performing a mean-preserving
spread so the mass we need to move downward is just a point mass), we need to move
mass in the zero cell upward. Conveniently, we can do so by moving equal mass on the
origin to any point on the 45 degree line up and to the left from this point mass. Thus,
it suffices to verify that sufficient negative mass always exists on such lines. In fact, let



(x∗1, x
∗
2) be the point at which the red dashed line in Figure 2(M) crosses the boundary

between the cell where no item is sold and the cell where both items are sold. We use
only the mass at points where x1 < x∗1, as we will use the mass at points with x1 ≥ x∗1
for the cell where both items are sold. It is straightforward to verify numerically that
such a line that has the least negative mass (which is exactly the boundary between
the zero cell and the cell where both items are sold), has more mass than any value of
neg(z) by at least a factor of 20.

Having created this µ′, we have
∫∞
x1=0.9288

dµ′(x1, x2) = 0 for all x2 < 1.2319− 0.9288.
On each of these lines the negative mass is entirely to the left of the positive mass, so
by a direct application Strassen’s Theorem we can construct a γ∗ that matches along
each of these lines.

Similarly, in the cell where both items are sold, we can move mass at a 45 degree an-
gle up and to the left while moving mass in the zero cell at a 45 degree angle down and
to the right. Once this is done, we can then match this cell in the standard way (each
negative point matched to positive point(s) up and to the right of it) via an application
of Theorem 7.4 of Daskalakis et al. [2013] (another application of Strassen’s theorem),
in the same manner as their analysis in their Theorem 9.3.

To make this more precise, let pos2(z) =
∫∞
x1=0.9288−z µ(x1, 1.2319 − 0.9288 + z)dx1 be

the excess positive mass along the horizontal line a distance z up in the cell where
both items are sold. Similarly, let neg2(z) =

∫ x∗1−z/2
x1=0

µ(x1, x
∗
1 + x∗2 + z/2− x1)dx1 be the

excess negative mass below on the 45 degree line inside the dashed red line shifted
upward from the cell boundary by z. Again Strassen’s theorem shows we can find an
appropriate place to shuffle the excess positive mass to the desired negative mass. To
counteract this moving of positive mass up and to the left on a 45 degree angle, we
move mass from the origin to some point to the right of the point we are moving the
excess positive mass out of to create a negative point mass. By construction, these are
all at or to the left of x∗1, thus it suffices to verify that the total mass to the right of x∗1 is
the zero cell excess the total mass we need to move, which is easily done numerically.
Note that the shuffle we performed in this cell had no effect on the ultimate cost of
this matching because moving mass at a 45 degree angle up and to the left exactly
counters the increase in cost from the leftward movement with the decrease in cost
from the upward movement.

Having created this µ′, we can now apply Theorem 7.4 of Daskalakis et al. [2013].
By construction, we can first match all the horizontal lines with x2 ≤ x∗2 in the same
manner we did in the cell where item 1 is sold. For the remainder of the cell the ap-
plication of Theorem 7.4 of Daskalakis et al. [2013] is now straightforward because we
have because as in their application of it the zero cell is entirely below the dashed red
line (what they term the “absorbing hyperplane”), and our construction of µ′ has not
affected any mass above or to the right of the dashed red line.

4.5. Optimal mechanism for two non-additive items
Consider a setting values are uniform [0, 1] for each item individually but getting both
items is twice as valuable as their sum. Thus X = {(x1, x2, x3) | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤
1, x3 = 2(x1 + x2)} with S = {(p1, p2, p3) | 0 ≤ p1, p2, p3 ∧ p1 + p2 + p3 ≤ 1}. However, it is
convenient to instead use the equivalent representation X = {(x1, x2) | 0 ≤ x1, x2 ≤ 1}
with S = conv({(0, 0), (1, 0), (0, 1), (2, 2)}), which allows us to use the same µ as in our
first two examples.

We show that grand bundling at a price of
√

8/3 is optimal. (Note that this choice
causes both cells to satisfy the integrate to zero condition). To construct an appropriate
γ∗, observe that a point (x1, x2) with x1 > x2 and 2(x1 + x2) >

√
8/3 can be matched



with a point (1, x) if (2, 2) · ((1, x)− (x1, x2)) ≥ (1, 0) · ((1, x)− (x1, x2)). Again we apply
Lemma 4.4 to show that one half of the cell can be matched to the right boundary
and the other, by symmetry to the top boundary. In particular, we take A(1, x′2) =

{x | x1 > x2 ∧ 2(x1 + x2) ≥
√

8/3 ∧ 2(1 − x1 + x′2 − x2) ≥ 1 − x1} is the set of points
in the correct half of the cell which can be matched with boundary point (1, x′2) and
B(1, x′2) = {(1, x2) | 0 ≤ x2 ≤ x′2} is a downward-closed portion of the boundary. Thus,
we need only check that for all a ∈ [0, 1], µ+(B(1, 1− a)) = a ≤ µ−(A(1, 1− a)), which is
easily verified numerically.

In fact we can generalize this analysis to the case where bundling is α times as
valuable and conclude that grand bundling is optimal at a price of α

√
2/3 if and only

if α is greater than approximately 1.24.

5. DISCUSSION
We have given a duality framework that generalizes that of Daskalakis et al. [2015]
by allowing restrictions on the set of allowable allocations. This allows us to model
problems that previous frameworks could not handle, such as

— non-additive valuations,
— multiple copies of items,
— a requirement that the mechanism be deterministic, and
— allocation restrictions such as matroid constraints.

One particularly interesting combination is an arbitrary convex type space with the
constraint that the allocation must be a probability distribution. This recovers mecha-
nism design. Thus, in a sense our framework is fully general.

We have provided both a weak duality result (Lemma 3.2) that provides a recipe
for certifying the optimality of mechanisms, as well as a strong duality result (Theo-
rem 3.1) which guarantees that such a certificate always exists, even in settings where
an optimal mechanism does not exist. The key technical tool we use is the observation
that we can restrict the set of convex functions to those that correspond to mechanisms
that satisfy our allocation restriction, leading to an alternative integral stochastic or-
der �X,S . Using this, as well as facts from convex analysis about subgradients, we
provide a new characterization result (Lemma 4.2) that identifies the set of allocations
an optimal mechanism can use as those that are exposed points of the set.

For the remainder of the paper, we turn to additional intuition from this lemma, and
then discuss some of the limitations of our results, how these can be relaxed, and other
future research directions.

5.1. The Simple Economics of Optimal Mechanism Design
In their classic paper, Bulow and Roberts [1989] reinterpreted Myerson’s [1981] char-
acterization of optimal single item auctions in terms of pricing. In particular, they
observed that his characterization in terms of virtual valuations could instead be de-
scribed as finding a price such that the derivative of expected revenue with respect to
that price is zero. In the examples, we made frequent use of the necessary condition
that µ(cell(s)) = 0 for each allocation s ∈ S. As we show, this necessary condition has a
simple economic interpretation: the partial derivative of expected revenue with respect
to that price must be zero in an optimal auction.

Consider an allocation s that is purchased with positive probability in the optimal
mechanism given by u∗. ∫

cell(s)

u∗dµ =

∫
cell(s)

(x · s− p)dµ(x).



The marginal revenue from selling s is the derivative of this with respect to p, which
is
∫
cell(s)

−dµ, and by the envelope theorem, this is the marginal revenue of the overall
mechanism. Thus, by the optimality of u∗ we must have µ(cell(s)) = 0.

This analysis also shows why this necessary condition is not sufficient in our multi-
dimensional setting: for all fixed choices of allocations to offer, there exists an optimal
pricing, but that does not mean that the menu we have chosen to price is the optimal
menu.

5.2. Zero Set Mechanisms
Daskalakis et al. [2015] define a class of mechanisms for the additive setting they call
zero set mechanisms. Such mechanisms have two features. First, they either allocate
nothing or allocate at least one good with probability 1. Second, they are entirely de-
termined by the boundary of the cell where no goods are allocated (i.e. the zero set).
Geometrically, this means the cell for every other allocation borders the zero set. All
known optimal mechanisms for independently distributed items are in this class.

Lemma 4.2 shows that the first property is not an accident. The only allocations
in exp(S) that are not permissible in a zero set mechanism are those which allocate
at least one item with probability zero and there is no item allocated with probability
one. Such allocations would only be permissible if γ∗ were such that we could match all
the xs with that allocations to points y directly above them. All explored µ render this
impossible and it is possible that in fact no such µ exists and all optimal mechanisms
for the additive setting satisfy this first property of zero-set mechanisms.

5.3. Approximate Optimality of Deterministic Mechanisms
A significant current research direction is identifying simple classes of mechanism that
are approximately optimal in some setting [Alaei et al. 2013; Giannakopoulos 2015;
Hart and Nisan 2012]. One such simple class is deterministic mechanisms. Let D be a
finite set of deterministic allocations and let conv(D) be the set of allocations that ran-
domizes over them. Note that `D = `conv(D), which means that the dual optimization
problems differ only in their set of feasible γ. An interesting future research direction
is to try and use this fact to give a bound on the ratio between optimal revenue and
optimal deterministic revenue settings of interest.

5.4. Limitations
As discussed, our framework is fully general, in that it encompasses all of mechanism
design. However, there are a number of technical caveats that still restrict the appli-
cability of our results. Most notable is our reliance on Theorem 2.2, which imposes
significant restrictions on the prior f over agent types. Most notably it imposes a dif-
ferentiability requirement, as well as requiring the support of f to be a subset of a
compact set. Similarly, several steps of the proof of Theorem 3.1 rely on the compact-
ness of X. We know that these restrictions can be relaxed at least somewhat, as the
example of exponentially distributed f shows. Daskalakis et al. [2015] has some dis-
cussion related to this relaxation, but a fuller understanding is an important direction
in understanding the limitations of this approach.

A smaller restriction is our requirement that S be closed. This is primarily used
in Lemma 3.4. It is unclear how important relaxing this restriction his however, as
most natural problems seem to yield a closed S. Further, cases with open S are often



ones where no optimal mechanism exists, although it is possible to construct contrived
examples where one still exists.5

Finally, while not a limitation of our framework per se, applying it to practical ex-
amples requires constructing a γ∗ to certify the optimality of u∗. The primary tool we
have for this is Strassen’s theorem, but this is a difficult tool to apply in more than two
dimensions. Giannakopoulos and Koutsoupias [2014][2015] have had some success in
constructing matchings by using Hall’s theorem on finite approximations of the prob-
lem, but even this approach is difficult to apply in higher dimensions. Better tools here
would greatly extend the practical reach of our framework.
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