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ABSTRACT
Cloud scale provides the vast resources necessary to replace failed
components, but this is useful only if those failures can be detected.
For this reason, the major availability breakdowns and performance
anomalies we see in cloud environments tend to be caused by subtle
underlying faults, i.e., gray failure rather than fail-stop failure. In this
paper, we discuss our experiences with gray failure in production
cloud-scale systems to show its broad scope and consequences. We
also argue that a key feature of gray failure is differential observabil-
ity: that the system’s failure detectors may not notice problems even
when applications are afflicted by them. This realization leads us to
believe that, to best deal with them, we should focus on bridging the
gap between different components’ perceptions of what constitutes
failure.
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1 INTRODUCTION
The cloud possesses an abundance of redundant components, pro-
viding many opportunities to tolerate faults so a system can continue
to run. However, to make best use of this ability, a system must be
able to rapidly and reliably detect when a component is failing. For
this reason, cloud practitioners are frequently challenged by gray
failure: component failures whose manifestations are fairly subtle
and thus defy quick and definitive detection. Examples of gray fail-
ure are severe performance degradation, random packet loss, flaky
I/O, memory thrashing, capacity pressure, and non-fatal exceptions.

As cloud systems increase in scale and complexity, gray failure
becomes more common. Rare events increase in frequency and their
effect is amplified by the complex interactions, interference, and
dependencies among cloud components executing diverse workloads
in a multi-tenancy environment. Our first-hand experience with pro-
duction cloud systems reveals that gray failure is behind most cloud
incidents.
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Developers generally follow the common practice of building
fault-tolerant and highly available systems by introducing redun-
dancy, failure detection, and failure recovery. But, such mechanisms
are inadequate to deal with gray failure, and in some cases even
aggravate the situation. They often go wrong by assuming an overly
simple failure model in which a component is either correct or
stopped (i.e., fail-stop), and can be recovered through simple mech-
anisms such as rebooting. Understanding and defining gray failure
despite its variability is thus key to building highly available cloud
systems.

In this paper, we discuss in detail the gray-failure problem that
remains largely overlooked in the literature. We present real-world
examples to understand their characteristics and the risks they pose
to cloud systems. Drawing from these data points, we make the first
attempt to characterize gray failure.

We find that a key feature that instances of gray failure possess
is that they are perceived differently by different entities; we call
this differential observability. Specifically, one entity is negatively
affected by the failure and another entity does not perceive the
failure; this is problematic because the latter entity is responsible for
failure detection and recovery. For instance, if a system’s request-
handling module is stuck but its heartbeat module is not, then an
error-handling module relying on heartbeats will perceive the system
as healthy while a client seeking service will perceive it as failed.
As another example, if a link is operating at significantly lower
bandwidth than usual, a connectivity test will reveal no problems
but an application using the link may obtain bad performance.

One way to deal with gray failure is to mask it using protocols
robust to gray failure. An example is Byzantine-fault-tolerant (BFT)
state machines [6], which tolerate arbitrary faults of fewer than 13
of participating machines and thus tolerate gray failure as a special
case. However, Clement et al. [8] show the difficulty of making BFT
systems tolerate faults that take the form of slow operation, which is
a common way gray failure manifests. Also, BFT has yet to be used
in a production system, anecdotally because of its high overhead and
complexity. After all, gray failure in most cases is not arbitrary and
can be dealt with more efficiently.

A more fundamental problem with masking gray failure instead of
detecting it is that failed components may not get replaced, leading to
their number eventually exceeding the number that can be tolerated.
We therefore advocate tackling the problem of gray failure head-on
by addressing its fundamental trait, differential observability. We
outline potential solutions along this line.
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Figure 1: Gray failure in a typical Clos network

2 CLOUD ANOMALIES WITH GRAY
FAILURE

Our experience with real incidents in Azure, a major cloud service,
reveals interesting and somewhat unexpected interplay between
gray failure and fault-tolerance mechanisms. This leads to counter-
intuitive anomalies; we now highlight a few illuminating cases.

2.1 High redundancy hurts
Cloud data center networks use high redundancy to tolerate failures,
typically with a Clos network [1, 4, 12, 22] as illustrated in Figure 1.
In such networks, applications are usually unaffected by switches
stopping because protocols re-route packets through other redundant
paths. For example, if servers A and B are communicating via core
switch r1 but r1 crashes, packets are re-routed through r2, r3, or r4.
Increasing redundancy thus helps availability.

A switch often can also experience intermittent gray failure, e.g.,
random and silent packet drops [14]. Routing protocols typically do
not re-route packets in such cases, unlike when switches crash. So,
gray failure can result in application glitches or increased latency.

As a consequence, we sometimes see cases where increasing
redundancy actually lowers availability. For example, consider the
following common workload pattern: to process a request, a front-
end server must fan out requests to many back-end servers and wait
for almost all of them to respond. If there are n core switches, the
probability that a certain core switch is traversed by a request is
1− n−1

n
m, where m is the fan-out factor. This probability rapidly

approaches 100% as m becomes large, meaning each such request
has a high probability of involving every core switch. Thus a gray
failure at any core switch will delay nearly every front-end request.
Consequently, increasing redundancy can counter-intuitively hurt
availability because the more core switches there are, the more likely
at least one of them will experience a gray failure. This is a classic
case where considering gray failure forces us to re-evaluate the
common wisdom of how to build highly available systems.

2.2 Under the radar of failure detectors
A typical class of gray failure involves failure detection being so
coarse-grained that it does not exercise some important path. For
example, we observe incidents where unhealthy VMs are internally
experiencing severe network connectivity issues, e.g., due to a driver
bug. However, the failure detector, a remote compute manager, does
observe not any problems because it does not exercise the VM’s

external network: it receives VM heartbeats forwarded via a host
agent that is able to communicate with the VM via local RPCs. Thus,
because of the observational differences between in-VM applications
and the failure detector, no recovery happens until a user reports
an issue. This creates a long gap between the time when a user is
affected and the time when the system becomes aware of the failure
(Figure 3). What is missing is a way for the compute manager to
observe the VM’s internal information.

2.3 Recovery that kills, rather than heals
Azure Storage uses data servers to store data and a storage manager
to decide which data servers to store data on. In one instance, a
certain data server was experiencing a severe capacity constraint,
but a subtle resource-reporting bug caused the storage manager to
not detect this gray failure condition. Thus, the storage manager
continued routing write requests to this degraded server, causing
it to crash and reboot. Of course, the reboot did nothing to fix the
underlying problem, so the storage manager once again routed new
write requests to it, causing it to crash and reboot again. After a
while, a failure detector detected that the data server was repeatedly
rebooting, concluded that it was irreparable, and took it out of service.
This, along with another subtlety in the replication workflow, reduced
the total available storage in the system and put pressure on the
remaining healthy servers, causing more servers to degrade and
experience the same ultimate fate. Naturally, this eventually led to a
catastrophic cascading failure.

2.4 The blame game
The Azure IaaS service provides VMs to its customers using highly
complex subsystems including compute, storage, and network. In
particular, VMs run in compute clusters but their virtual disks lie
in storage clusters accessed over the network. Even though these
subsystems are designed to be fault-tolerant, parts of them occasion-
ally fail. So, occasionally, a storage or network issue makes a VM
unable to access its virtual disk, and thus causes the VM to crash. If
no failure detector detects the underlying problem with the storage
or network, the compute-cluster failure detector may incorrectly
attribute the failure to the compute stack in the VM. For this reason,
such gray failure is challenging to diagnose and respond to. Indeed,
we have encountered cases where teams responsible for different
subsystems blame each other for the incidents since no one has clear
evidence of the true cause.

3 MODELING AND DEFINING GRAY
FAILURE

Although anecdotes of gray failure have been circulating among
practitioners and in the literature for years [3, 11, 13, 19, 20], the
term gray failure still lacks a precise definition. While it is often
associated with performance degradation, intermittent misbehavior,
fail-slow behavior, or capacity reduction, none of these characteris-
tics capture the true essence of gray failure. We consider modeling
and defining gray failure a prerequisite to addressing the problem.
After an extensive study of real incidents in Azure cloud services,
we make an attempt to define gray failure using the generic model
depicted in Figure 2.
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Figure 2: An abstract model to characterize gray failure

3.1 Terminology
Abstractly, we consider two logical entities in our model: a system,
which provides a service, and an app, which uses system. Examples
of a system include a distributed storage service, a data center
network, a web search service, and an IaaS platform. An app could
be a web application, a user, or an operator. One system may be an
app for another system. For example, a data center network provides
packet transmission service for a storage service. Within a system,
an observer actively or passively gathers information about whether
the system is failing or not. Based on the observations, a reactor
takes actions to recover the system. The observer and reactor are
considered part of the system.

3.2 Differential observability
In addition to the system’s internal observer, an app that uses
the system also makes its own observations about the health of
the system. Such observations are typically based on application-
specific, end-to-end metrics such as query latency and remote I/O
status. Because it is common for a cloud system to be used by
different types of apps, the apps’ observations may be derived from
different metrics.

We then define gray failure as a form of differential observability.
More precisely, a system is defined to experience gray failure when
at least one app makes the observation that system is unhealthy, but
observer observes that system is healthy.

Table 1 illustrates the spectrum of possible observability cases, in
which our definition of gray failure occupies one quadrant. In case
➊, neither the app nor the observer observes a problem, so there is
no failure at all, let alone gray failure. We consider case ➋, in which
the app observes a failure but the observer does not, to constitute
gray failure, since users are suffering but the reactor will not be
invoked to help fix the problem. In case ➌, we also have differential
observability, but of the good kind: even though the app is not yet
experiencing problems, the observer knows of some issue and will
take proactive steps to repair it. (This case can be problematic if it
is a false positive, but that is a different kind of problem than gray
failure.) In case ➍, both the app and observer agree that the system
is experiencing a failure, so the problem will soon be rectified. Crash
and fail-stop failures fall under this case.

Note that gray failure is not unique to large systems. Small-scale
or even single-node systems can also experience peculiar failure
symptoms. Our above characterization is independent of the scale

Agood
i Abad

i

Sgood ➊ ➋

Sbad ➌ ➍

Table 1: Cases induced by the system’s observations (Sgood|bad)
and its ith app’s observations (Agood|bad

i )

or nature of a system. But, we focus our discussion on large dis-
tributed systems, where gray failure is prevalent and detrimental to
availability.

3.3 Temporal evolution
Gray failure tends to exhibit an interesting evolution pattern along
the temporal dimension: initially, the system experiences minor
faults (latent failure) that it tends to suppress. Gradually, the system
transits into a degraded mode (gray failure) that is externally visible
but which the observer does not see. Eventually, the degradation
may reach a point that takes the system down (complete failure),
at which point the observer also realizes the problem. A typical
example is a memory leak.

We can use the differential observability trait and our model to
characterize this pattern: when the observations of both the observer
and the app are good, the system is either working well or having
minor latent failure; as soon as at least one app observes that the
system is not doing well while the observer still perceives the
system as healthy, gray failure starts to happen. Eventually, the
observer also detects the problem so the differential observability
disappears, but by this point the gray failure has already evolved into
a complete failure. This process manifests as a transition from ➊ to
➋ to ➍ in Table 1. During gray failure with intermittent misbehavior,
this type of transition happens repeatedly.

3.4 Applying the model
We now apply our model to two gray failure cases and anomalies
described earlier (§2). In the network case (§2.1), some service
(the app) transmits packets through the network (the system). The
switches are the observers and the routing protocol is the reactor.
If a core switch experiences random packet drops, its neighbor
observers will not perceive it as failed and thus packets will not be
re-routed. However, if the app has a high-fan-out workload pattern,
it is likely to observe a problem even though the observers do not,
leading to differential observability and gray failure.

In the storage service example (§2.3), when several data servers
are under severe capacity pressure, the storage manager (acting as
both observer and reactor) is unaware of the issue. But, some
VMs (the apps) experience remote I/O exceptions, i.e., they observe
unhealthiness. This differential observability between observer
and app constitutes gray failure. After the data server crashes, the
observer detects the failure (the observation difference being tem-
porarily gone) and perceives it as a regular crash. So, the reactor
makes the data node reboot, making the data node perceived as
healthy again. In this vicious loop, more observation differences and
instances of gray failure arise. Eventually the system becomes aware



Disk Read Bytes/sec

Disk Write Bytes/sec

Network In

Network Out

Percentage CPU

Down

Up

VM Up

VM Down

Figure 3: The first three graphs show various in-VM performance counters before and during an instance of gray failure (§2.2);
the network counters drop shortly after the failure-triggering event (VM migration). The last graph, in the bottom right, shows the
compute manager’s observations over time: green dots represent a belief that the VM is healthy and red dots represent a belief that
it is unhealthy. Each red dot here is caused by a user-initiated reboot; the underlying issue is not detected until well after the time
period depicted here.

of the cascading failures, so the observation differences permanently
disappear. But, it is too late.

4 DISCUSSION
The ambiguous nature and temporal idiosyncrasy of gray failure
make it distinctly different from what is assumed in typical failure
models. This defeats traditional fault-tolerance solutions and thus
poses significant challenges to cloud practitioners. The model that
we developed in §3 not only provides a definition of gray failure; it
also implies a potential solution space. In this section, we outline
future directions for addressing gray failure.

4.1 Closing the observation gap
A natural solution to gray failure is to close the observation gaps
between the system and the apps that it services. In particular, sys-
tem observers have traditionally focused on gathering information
reliably about whether components are up or down. But, gray failure
makes these not just simple black-or-white judgments. Therefore,
we advocate moving from singular failure detection (e.g., with heart-
beats) to multi-dimensional health monitoring. This is analogous
to making assessments of a human body’s condition: we need to
monitor not only his heartbeat, but also other vital signs including
temperature and blood pressure. For example, to address the problem
of invisible VM connectivity issues from §2.2, we could leverage
in-VM performance counters to detect connectivity issues earlier.
We could thereby avoid customer-reported incidents and lengthy
troubleshooting (Figure 3).

4.2 Approximating application views
Although it would be ideal to eliminate differential observability
completely by letting the system measure what its apps observe, it
is practically infeasible. In a multi-tenant cloud system that supports
various applications and different workloads, it is unreasonable for a
system to track how it is used by all applications. Also, the modu-
larity principle precludes applications from directly observing the

health of internal system components. These constraints imply that
observation differences will persist to a certain extent.

One feasible approach is for a system to measure metrics that
approximate the observations of its apps. For example, to tackle
the network gray failure example (§2.1), the cloud system can send
probes to measure server-to-server latency and reachability to em-
ulate observations of the network by common applications, as in
Pingmesh [14]. Such approximation can significantly reduce the
chance of gray failure due to differential observability. However, so-
lutions along this line must address the challenge that overly active
probing may further burden an already degraded system and nega-
tively impact system health. Recall that an app is a logical entity that
could represent another system (§3.1), so approximating application
views is not necessarily the same as taking an end-to-end approach.

4.3 Leveraging the power of scale
While the scale of cloud systems contributes to the rising frequency
of gray failure, we can also leverage this scale to tackle the challenge
of gray failure. In particular, since gray failure is often due to isolated
observations of an observer, leveraging the observations from a
large number of different components that are complementary to
each other can help uncover gray failure rapidly. Indeed, many gray
failure cases we investigated are only detectable in a distributed
fashion because each individual component has only a partial view
of the entire system (so the gray failures are intrinsic). Even for cases
where the underlying problem is simply that the observer is doing
a poor job of detecting failures (so the gray failures are extrinsic
and could be avoided by fixing the observer), such distributed
observation can also be helpful.

Where to conduct such aggregation and inference is an interesting
design question to explore. If it is done too close to the core of a
system, it may limit what can be observed. If it is near the apps,
the built-in system fault-tolerance mechanisms that try to mask
faults may cause differential observability to be exposed too late.
We envision an independent plane that is outside the boundaries
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Figure 4: Compute’s view of storage service health during an
incident involving gray failure (§2.3)

of the core system but nevertheless connected to the observer or
reactor.

Sometimes, a gray failure that is observable by an app may not be
readily detectable. For example, a random-packet-drop gray failure
results in differential observability between the system and app, but
it is often unclear which network device is responsible for the dif-
ference. Investigating an individual case is particularly difficult due
to the transient nature of the issue and the lack of information. But,
perhaps with the help of global-scale probing from many devices,
we can obtain enough data points to apply statistical inference and
thereby identify components with persistent but occasional failures.

There are similar benefits in leveraging scale to address the
“blame game” described in §2.4. For instance, we can aggregate
observations of VM virtual disk failure events and map them to
cluster and network topology information. Indeed, we have used this
approach to pinpoint many gray failure cases due to storage over-
loading or unplanned top-of-rack (ToR) switch reboots. In general,
from our experience, we believe that leveraging global data at scale
is a promising approach that should be embraced in the battle against
gray failure.

4.4 Harnessing temporal patterns
In addition to leveraging the spatial dimension, understanding the
evolution of gray failure manifestations over time can also help pro-
vide early warnings to mitigate them before they have catastrophic
impact. As discussed in §3, the prelude to gray failure is usually a
latent fault that is too minor for the observer to declare a failure.
Finding the temporal patterns that lead to gray failure would allow
the system to react early even before apps are affected. But, since
most latent faults are benign, this has to be done with care so as not
to trigger too many false positives.

Even after a gray failure strikes, there remains an opportunity to
react before it leads to a widespread complete failure. For example,
in the storage gray failure case in §2.3, which later leads to a large-
scale cascading failure, Figure 4 shows two time points t1 and t2.
Here, t1 is when the compute service observes an uptick in remote
I/O exceptions. But, it is not until t2 that the storage service detects
the issue and takes action. Thus, there is a window of opportunity
between t1 and t2 to prevent the cascading failure by harnessing and
correlating differential observability over time.

5 RELATED WORK
The phenomenon of gray failure is not new, so unsurprisingly there
has been literature and system-incident reporting [3, 19] mentioning
the symptoms of gray failure. For instance, Gray [11] discusses the
Heisenbug—a bug that seems to disappear when one attempts to
study it—and proposes techniques such as re-execution to deal with
it. Gunawi et al. [13] analyze public cloud service outage reports
and show cases that we classify as gray failure. An internal study
of failures in a major cloud service by Huang et al. [15] discusses
fail-slow faults. However, none of these works focus on gray failure
or attempt to define the problem domain.

A myriad of techniques have been proposed to leverage redun-
dancy and replication to tolerate component faults, e.g., prima-
ry/backup replication [2], RAID [21], Paxos [16], and chain replica-
tion [23]. Many of these techniques assume a simple failure model:
fail-stop. Different from fail-stop, a component experiencing gray
failure appears to be still working but is in fact experiencing severe
issues. Such discrepancy can negatively impact traditional tech-
niques and cause fault-tolerance anomalies (§2). Even techniques
that are designed to mask Byzantine faults, as discussed in §1, can
be insufficient or inefficient for gray failure.

Several works have proposed ways to improve failure detectors
in asynchronous, distributed environments. Falcon [18] leverages a
network of spies across layers of a system to make failure detection
more reliable. Pigeon [17] exposes uncertain failure information to
applications to allow applications to take informed recovery actions.
However, all these reliable failure detectors are designed for fail-
stop failures; to alleviate the gray failure problem, we argue that
the system needs to go beyond traditional failure detection to health
monitoring. The differential observability trait that we describe can
be leveraged to reliably detect gray failure.

Much work has been done to collect system performance metrics
and then apply statistical techniques to diagnose or detect perfor-
mance issues [5, 7, 9, 10]. For example, Cohen et al. [9] proposes
Tree Augmented Naive Bayesian networks to correlate low-level per-
formance metrics with high-level Service Level Objectives (SLO).
While these works can help address certain types of gray failure,
they tend to look at the system by itself and conduct analysis reac-
tively. Moreover, there are many types of gray failure that are not
performance-related. We advocate leveraging diverse observations
from different entities to complete their health views and proactively
enhance failure handling.

6 CONCLUSION
As cloud systems continue to scale, the overlooked gray failure
problem becomes an acute pain in achieving high availability. Un-
derstanding this problem domain is thus of paramount importance.
Drawing from our experiences with a major cloud service, we dis-
cuss the gray failure problem and make the first attempt to define
it. We argue that to address the problem, it is crucial to reduce
differential observability, a key trait of gray failure.
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