
Scaling Distributed File Systems in Resource-Harvesting Datacenters∗

Pulkit A. Misra? Íñigo Goiri† Jason Kace† Ricardo Bianchini†
?Duke University †Microsoft Research

Abstract
Datacenters can use distributed file systems to store data
for batch processing on the same servers that run latency-
critical services. Taking advantage of this storage capac-
ity involves minimizing interference with the co-located
services, while implementing user-friendly, efficient, and
scalable file system access. Unfortunately, current sys-
tems fail one or more of these requirements, and must
be manually partitioned across independent subclusters.
Thus, in this paper, we introduce techniques for automat-
ically and transparently scaling such file systems to en-
tire resource-harvesting datacenters. We create a layer of
software in front of the existing metadata managers, as-
sign servers to subclusters to minimize interference and
data movement, and smartly migrate data across subclus-
ters in the background. We implement our techniques in
HDFS, and evaluate them using simulation of 10 produc-
tion datacenters and a real 4k-server deployment. Our
results show that our techniques produce high file access
performance, and high data durability and availability,
while migrating a limited amount of data. We recently
deployed our system onto 30k servers in Bing’s datacen-
ters, and discuss lessons from this deployment.

1 Introduction
Each datacenter costs billions of dollars to build, popu-
late, and operate. Even though procuring servers domi-
nates this cost [5], servers are often poorly utilized, es-
pecially in clusters that host interactive services [5, 10].
Resource harvesting. The co-location of useful batch
workloads (e.g., data analytics, machine learning) and
the data they require on the same servers that run inter-
active services is effective at extracting more value from
the servers, and at reducing the overall number of servers
that must be procured. Effectively, the batch workloads
can harvest the spare cycles and storage space left by
the services. However, the services must be shielded
from any non-trivial performance interference produced
by the batch workloads or their storage accesses; prior
work [20, 21, 30] has addressed this problem. At the
same time, we must ensure that the services’ resource
requirements and management do not unnecessarily de-
grade batch workloads’ performance or compromise the
availability and durability of the batch workloads’ data.

∗Pulkit Misra was a summer intern at Microsoft Research.

Zhang et al. [30] built a resource-harvesting dis-
tributed file system for the batch workloads’ data that
achieves these characteristics by smartly placing the file
block replicas across the servers. However, they did not
address how to scale the file system for full datacenter-
wide (e.g., 50k servers) harvesting, which is our target.
Scaling distributed file systems. Most distributed file
systems have not been designed to scale (transparently or
at all) to such large sizes. For example, HDFS [2], Cos-
mos Store [7], and GFS [13] do not typically scale well
beyond a few thousand servers, as they rely on a cen-
tralized metadata manager (with standby replicas). To
scale beyond this size, administrators must create sepa-
rate subclusters (of whatever maximum size can be effi-
ciently handled), each running an independent manager
for an independent portion of the namespace.

Unfortunately, this approach to scaling has several
drawbacks. First, users are presented a partitioned view
of the namespace and often have full control over which
subcluster to place their folder/files in. Second, exercis-
ing this control, users may inadvertently fill up a sub-
cluster or overload it with a high access demand. Third,
to mitigate these situations, administrators must manage
folder/file placement manually (via folder/file migration
and/or forcing users to the more lightly used subclus-
ters). Fourth, it is very difficult for administrators (and
impossible for users) to understand the characteristics of
the co-located services in each subcluster well enough to
make appropriate folder/file placement decisions, espe-
cially as services are complex and numerous.

Another approach to scaling is to implement mul-
tiple, strongly consistent, active metadata managers,
e.g. [1, 27]. Though no information has been published
about Google’s Colossus (the follow-on to GFS), we un-
derstand that it implements such managers. However,
this approach also has two key drawbacks: (1) the sys-
tem becomes more complex, and this complexity is only
required for large installations (simpler systems that also
work well for more popular smaller systems are pre-
ferrable); and (2) any software bugs, failures, or oper-
ator mistakes have a greater impact without the isolation
provided by subclusters, as highlighted in [26].

Given the drawbacks of these two approaches, it is
clear that a cleanly layered, automated, and manageable
approach to distributed file system scalability is needed.
Our work. Thus, in this paper, we design techniques for



automatically and transparently scaling file systems to
entire resource-harvesting datacenters with tens of thou-
sands of servers. We use Zhang’s replica placement
algorithm within each subcluster, but focus on how to
“federate” the subclusters transparently and efficiently.
We achieve these high-level characteristics by inserting a
layer of software between clients and metadata managers
that understands the federated namespace and routes re-
quests to the appropriate subclusters.

Moreover, our techniques seek to (1) avoid interfer-
ence from co-located services; and (2) promote behav-
ioral diversity, good performance, and good space usage
across subclusters. Achieving these goals at the same
time is challenging, given the large number of services
and servers, and the widely varying folder/file size and
access characteristics of the batch workloads.

To simplify the problem, we divide it into two parts.
First, we select the servers to assign to each subcluster
in a way that maximizes data availability and durabil-
ity. Specifically, we use consistent hashing [18] for this
new purpose, which has the added benefit of limiting data
movement when resizing subclusters. Second, we assign
folders/files to subclusters and efficiently migrate them
when either a subcluster starts to run out of space, or a
subcluster’s metadata manager starts to receive an exces-
sive amount of access load. We model this rebalancing
as a Mixed Integer Linear Program (MILP) problem that
is simple enough to solve efficiently. Migrations occur in
the background and transparently to users.
Implementation and results. To explore our techniques
concretely, we build them into HDFS and call the re-
sulting system “Datacenter-Harvesting HDFS” or sim-
ply “DH-HDFS”. We selected HDFS because (1) it is
a popular open-source system that is used in large Inter-
net companies, e.g. Microsoft, Twitter, and Yahoo (we
are contributing our system to open source [17]); (2)
our target workloads are mostly analytics jobs over large
amounts of data, for which HDFS provides adequate fea-
tures and performs well; and (3) many data-analytics
frameworks, like Spark and Hive, can run on HDFS.

Our evaluation uses a real deployment in a produc-
tion datacenter, real service and file access traces, and
simulation of 10 real datacenters. The results show
that our server-to-subcluster assignment prevents inter-
ference from co-located services, minimizes data move-
ment when subclusters are added/removed, and promotes
data availability and durability for batch jobs. The re-
sults also show that our folder migration policy is effi-
cient, migrating a small percentage of the folders; just
enough to manage severe space shortages or load im-
balances. When combining our techniques, DH-HDFS
improves durability and availability by up to 4 and 5 or-
ders of magnitude, respectively, compared to prior ap-
proaches. Finally, the results show that the federation

layer imposes little performance overhead.
Production use. We currently have 4 DH-HDFS deploy-
ments in production use in our datacenters; the largest
deployment now has 19k+ servers spread across 6 sub-
clusters. We discuss lessons from these deployments.
Implications for other datacenter types. Though we
focus on resource-harvesting datacenters, some aspects
of our work also apply to scenarios where the batch
workloads have the same priority over the resources as
the co-located services, or where there are no co-located
services. Specifically, our federation architecture and
techniques for folder/file mapping to subclusters with pe-
riodic migrations apply to any scenario. Our technique
for server-to-subcluster mapping would work in other
scenarios, but is not strictly needed.
Summary. Our main contributions are:
• We propose novel techniques for scaling distributed
file systems while accounting for data durability, avail-
ability, storage capacity, and access performance in large
resource-harvesting datacenters. In particular, we intro-
duce (a) layering for transparent scalability of unmodi-
fied existing systems; (b) consistent hashing for subclus-
ter creation; and (c) MILP-based dynamic file migration.
• We implement our techniques in HDFS to create DH-
HDFS, which we have deployed in production.
• We evaluate our techniques and system, using real
workloads, real experimentation, and simulation.
• We discuss lessons from DH-HDFS in production use.

2 Background and related work

2.1 Resource-harvesting datacenters
In resource-harvesting datacenters, most servers are al-
lotted to native, often latency-critical, workloads. Be-
cause of their latency requirements, these workloads
store data using their servers’ local file system. We re-
fer to these workloads as “primary tenants”. To improve
utilization, lower priority workloads called “secondary
tenants”, such as batch data analytics jobs, can harvest
any spare capacity left idle by primary tenants. Primary
tenants have priority over their servers’ resources, i.e. a
load spike may cause secondary tenants to be throttled
(or even killed) and their storage accesses to be denied.
Moreover, primary tenant developers own their servers’
management, i.e. they are free to perform actions that de-
stroy disk data. Among other scenarios, disk reimaging
(reformatting) occurs when developers re-deploy their
primary tenants from scratch, and when the management
system tests the resilience of production services.

The resource-harvesting organization is reminiscent
of large enterprises where different departments have
their own budgets, without a central infrastructure group.
Nevertheless, multiple Internet companies, such as Mi-
crosoft and Facebook, use this type of underlying system.



Though Google’s infrastructure is fully shared, i.e. any
workload is treated the same, large Google tenants may
also request priority over their allotted resources [28].

2.2 Diversity-aware replica placement
A challenge in harvesting is protecting file block avail-
ability and durability: (1) if we store all of a block’s repli-
cas in primary tenants that load-spike at the same time,
the block may become unavailable; (2) if developers or
the management system reimage the disks containing all
of a block’s replicas in a short time span, the block may
be lost. Thus, a replica placement algorithm must ac-
count for primary tenant and management activity.

Zhang’s placement algorithm [30] places replicas
within a single cluster (i.e., a few thousand servers),
while maximizing diversity: it does not allow multiple
replicas of a block to be placed in any logical (e.g.,
servers of the same primary tenant) or physical (e.g.,
rack) server grouping that induces correlations in re-
source usage, disk reimaging, or failures.

We build upon Zhang’s single-cluster work by creat-
ing a federation of clusters (we refer to each cluster in the
federation as a subcluster). In this context, we also select
which servers to assign to each subcluster, and automati-
cally rebalance space and access load across subclusters.

2.3 Large-scale distributed data storage
Large-scale file systems. Several distributed file sys-
tems (e.g., [1, 22, 27]) have been proposed for large
installations. Though potentially scalable, they involve
complexity and overhead in metadata management, and
are hard to manage and maintain in large-scale produc-
tion. Moreover, they are often optimized for general
workloads, and not those of datacenter applications (e.g.,
write-once, append-only).

For these reasons, file systems at Microsoft [2, 7],
Facebook [2, 6], Twitter [2], and other datacenter opera-
tors are much simpler. They rely on a centralized meta-
data manager (e.g., “Namenode” in HDFS) that hosts all
metadata, handles all metadata accesses, and tracks the
storage nodes. To scale, administrators manually par-
tition the overall file set into independent file systems,
each in a subcluster. Some systems (e.g., ViewFS [3],
Cosmos Store [7]) enable users to access multiple sub-
clusters transparently, by exploiting “mount tables” that
translate folder names to subclusters. However, the
client-local mount tables are independent and not kept
coherent. In contrast, Google’s Colossus is rumored to
implement multiple active metadata managers. This ap-
proach is more complex and does not benefit from the
fault- and mistake-isolation provided by subclusters [26].
Rebalancing. Some systems rebalance metadata across
metadata managers without subclusters, e.g. [1, 27].

A challenge with subclusters is that they may be-

come imbalanced in terms of space usage and/or access
load. In resource-harvesting datacenters, imbalance is
also possible in the primary tenants’ resource usage and
management behavior; e.g., changes in primary tenant
disk reimaging patterns could start to harm a subclus-
ter’s durability. We are not aware of prior policies for
folder/file rebalancing across subclusters.

Several works considered rebalancing within a single
cluster. For example, [14] and [15] proposed balanc-
ing the access load. Considering space and access load,
Singh et al. [24] accounted for multiple resources (e.g.,
switches, disks) in making greedy rebalancing decisions.
The built-in HDFS rebalancer can be used to manually
rebalance data, and to populate newly added servers.
HDFS Federation. HDFS has an option to split the
namespace (and block management) explicitly across in-
dependent metadata managers, while storing data in any
server [12]. This approach does not involve subclusters,
but exposes multiple namespaces that users must manage
manually [3], and limits scaling as all servers still heart-
beat to all managers. Our system is quite different, and
should not be confused with this HDFS option.

3 Federation architecture

3.1 Overview
Our architecture assumes an unmodified underlying dis-
tributed file system similar in structure to HDFS [2], Cos-
mos Store [7], and GFS [13]. It federates subclusters of
the distributed file system, each defined by its own meta-
data manager, data storage nodes, and client library.

Each subcluster operates independently, unaware of
other subclusters. This characteristic simplifies our de-
sign, and means that all replicas of a file block live in
the same subcluster. As we illustrate in Figure 1, we
interpose a highly available and fault-tolerant layer of
software between the clients and the subclusters’ meta-
data managers (labeled “MM” in the figure). The layer
comprises (1) multiple client request routers (labeled
“R”); (2) a state store that maintains a global mount ta-
ble (i.e., the folder/file-to-subcluster mappings, which
we call “mount table entries” or simply “mount points”)
and other pieces of state about the federation; and (3) a
folder/file rebalancer. Next, we detail these components.

3.2 Client request routers
The routers transparently expose a single global names-
pace to the clients through the standard metadata man-
ager interface of the underlying distributed file system.
Clients are unaware of the routers. A client’s file access
may reach any router (arrow #1 in Figure 1), as routers
may sit behind a load balancer or some other request dis-
tribution mechanism. The router then consults the state
store to determine the metadata manager for the proper



Subcluster 0

SN

MM

SN

MM

SN

Subcluster N

SN

MM

SN

MM

SN

State
Store

Client

R RR

Rebalancer
1

2

3

4

Figure 1: Federation layer comprising transparent re-
quest routers, a logically centralized state store, and a
folder/file rebalancer. R = router; MM = metadata man-
ager; SN = storage node; grey color = standby manager.

subcluster (arrow #2), and forwards the request to it (ar-
row #3). The reply from the manager flows back in the
opposite direction. The reply lists the address of the stor-
age nodes for all replicas of the file’s blocks, so the client
can communicate directly with the corresponding storage
nodes on actual block accesses (arrow #4).

The routers intercept all calls. Most calls involve sim-
ply forwarding the same parameters to the proper meta-
data manager, perhaps after adjusting any pathnames.
However, four types of calls may require additional pro-
cessing: renames, deletes, folder listings, and writes.
Routers fail any renames or deletes of mount points, like
in other file systems (e.g., Linux). Renames or deletes of
folders/files that only affect one subcluster can simply be
forwarded to the proper metadata manager. We handle
renames of folders/files that affect multiple subclusters
by performing the rename in the state store (i.e., creating
a new mount table entry) and having the rebalancer mi-
grate the data later. Importantly, the routers “lock” the
federated namespace during these renames to prevent in-
advertent cycles [11]. Folder listing involves contacting
the parent folder’s subcluster, and including any mount
points under the same parent folder. Finally, routers may
fail folder/file writes during short periods, to guarantee
consistency (e.g., during rebalancing operations, as we
discuss in Section 3.4).

To avoid frequent communication with the state store,
the routers cache the folder/file-to-subcluster mappings
locally. The router’s cache entries may become stale, as
a result of rebalancing or of losing contact with the state
store for a period of time. To prevent uses of stale entries,
we ensure all routers acknowledge mount table changes,
and check the state store for freshness of their entries.
Dependability. Other than the disposable cache state,
routers are stateless and can be replaced or restarted for
high availability and fault tolerance. The routers send
heartbeats to the state store, including information about

metadata managers and subclusters. If a router cannot
heartbeat for a period T , it enters a “safe” mode (no ac-
cesses allowed), and the other routers take on the full
metadata access load. If a router does not update its sta-
tus for a period 2T , any locks it holds are taken away.

The router uses standard HDFS interfaces to query
the availability of the redundant managers and the space
available in the subcluster. For dependability, we asso-
ciate routers with overlapping sets of metadata managers,
and resolve conflicts using quorum techniques.

3.3 State store
The store maintains four pieces of state about the fed-
eration: (1) the global mount table; (2) the state of the
routers; (3) the access load, available space, and avail-
ability state of the metadata managers/subclusters; and
(4) the state of rebalancing operations (Section 3.4).

The mount table contains explicit mappings of fold-
ers and files to subclusters. For example, there could be
a mapping from folder /tmp/ to subcluster 3 in folder
/3/tmp/ in the federated namespace. Only the system
administrators or the rebalancer can create or modify en-
tries in the mount table. But, since there may be multi-
ple concurrent accesses to it, writes to the mount table
must be properly synchronized. In terms of structure,
the logically centralized nature of the state store simpli-
fies our architecture. However, for larger installations
(e.g., tens of active routers), the store must be physically
distributed and provide strong consistency. Existing sys-
tems, e.g. Zookeeper [16], provide these features and can
be used to implement the store. We use Zookeeper for
our implementation (Section 5).

3.4 Rebalancer
Subclusters may be unbalanced in three ways: (1) the
characteristics of their primary tenants are such that some
subclusters do not exhibit enough diversity for high-
quality replica placement; (2) the access load they re-
ceive may be skewed and overload some metadata man-
agers or interfere with the primary tenants in some sub-
clusters; and/or (3) the amount of data they store may be
widely different, threatening to fill up some of them.

We address the first way with our server-to-subcluster
mapping (Section 4.1). To address the other ways, our
architecture includes a rebalancer component. The re-
balancer migrates folders/files across subclusters (fold-
ers/files and subclusters are selected as discussed in Sec-
tion 4.2) and then updates the mount table. The source
data may be a sub-path of an existing mount point, i.e. the
rebalancer can create new mount table entries.
Ensuring consistency. The rebalancer must ensure the
consistency of the federated file system, as regular client
traffic may be directed to the files it is migrating, and
multiple failure types may occur. To achieve this, it first



records in the state store a write-ahead log of the oper-
ations it is about to start. As each operation completes,
it updates the log to reflect the completion. A failed re-
balance can be finished or rolled back using the log. The
log also protects the system against inadvertently run-
ning multiple concurrent rebalancer instances: each in-
stance checks the log before a migration, and aborts if it
finds that another instance is actively altering the same
part of the namespace.

Second, it takes a write lease on the corresponding
mount table entries (it may need to renew the lease dur-
ing long migrations) and records the state (e.g., last mod-
ification time) of the entire subtree to be migrated. The
lease prevents changes to the mount table points (by ad-
ministrators or multiple instances of the rebalancer), but
not to the source folders/files themselves by other clients.

Third, the rebalancer copies the data to the target sub-
cluster. At the end of the copy, it checks whether the
source data was modified during the copy. Via the state
store, the rebalancer must instruct the routers to prevent
writes to the source and target subtrees (and wait for
routers to acknowledge), before it can compare the meta-
data for the subtrees. This prevents a client from modify-
ing the source data after it has been inspected for recent
changes, but before the mount table has been updated
to point to the target subcluster. During this checking
phase, clients are still able to read from the source data.
If the source data is unchanged, the rebalancer updates
the mount table, waits for all routers to acknowledge the
change (at which point the source data can no longer be
accessed), stops blocking writes to the source and target
subtrees, and then removes the data from the source sub-
cluster. If the source data was modified during the copy,
the rebalancer rolls back and either re-starts the entire
copy or simply re-copies the changed files. Our current
implementation takes the latter approach. Similarly, a
failure in any step of the rebalancer (e.g., a file migra-
tion) causes a roll back. The rebalancer tries to complete
the copy a few times (three times in our implementation).
If these re-tries are not enough to complete the copy, the
rebalancer rolls back but, this time, it blocks writes to the
data before the copy starts.

Fourth, when the migration successfully completes,
the rebalancer gives up the lease on the mount points.

3.5 Alternative architecture we discarded

We considered simply extending a system like
ViewFS [3] with a shared mount table, but this de-
sign would not be transparent to the underlying file
system; it would require changing the file system’s client
code to implement the functionality of our routers.

4 Federation techniques

In this section, we discuss the two tiers of techniques
we propose to simplify the problem of organizing the
federated file system in a resource-harvesting datacen-
ter: (1) server-to-subcluster mapping, (2) folder/file-to-
subcluster mapping and dynamic rebalancing. The first
tier statistically guarantees that subclusters are diverse
in terms of primary tenants’ resource usage and disk
reimaging behaviors. The second tier ensures that no
subcluster undergoes an excessive access load or a stor-
age space shortage due to secondary tenants, while other
subclusters have available capacity. We finish the section
with a discussion of alternative techniques.

4.1 Assign servers to subclusters
The components above provide the mechanisms we need
to create and manage the federated file system. However,
we still need a policy for assigning servers to subclusters
in the first place. We have multiple goals for this policy:

1. Ensure that subcluster addition/removal (e.g., when
the administrator adds the servers of a large primary
tenant into the harvesting infrastructure) does not
cause massive data reorganization;

2. Promote network locality within subclusters;
3. Produce diversity in primary tenants’ resource us-

age and reimaging behaviors in each subcluster for
high availability and durability; and

4. Produce subclusters with balanced primary tenant
storage space usage. (The rebalancer balances the
subclusters with respect to secondary tenant access
load and space consumption.)

To achieve these goals, we first define the number of
subclusters as the total number of servers divided by the
number of servers that can be efficiently accommodated
by a metadata manager (∼4000 servers per subcluster
by default). Then, our policy leverages consistent hash-
ing [18] of rack names for assigning server racks to sub-
clusters. As consistent hashing is probabilistic, each sub-
cluster is assigned multiple virtual nodes [9] on the hash
ring to balance the number of servers assigned to each
subcluster. Consistent hashing reduces the amount of
data reorganization needed when subclusters are added
to/removed – goal #1 above. We hash full racks to retain
within-rack network locality (within a datacenter, there
may be hundreds of racks, each with a few dozen servers
and a top-of-rack switch) – goal #2. Finally, since each
primary tenant is spread across racks for fault tolerance
and most primary tenants are relatively small, random-
izing the rack assignment to subclusters statistically pro-
duces evenly balanced diversity in primary tenant load
and reimaging behaviors, as well as balanced space us-
age – goals #3 and #4. We are unaware of other work
that has used consistent hashing for this purpose.



tmp user

/

logsapps

SC1 SC2 SC3 SC1

tmp user

/

logsapps

user1 user2

SC1 SC2 SC3

SC2 SC3

SC1

SC0 SC0

0.1TB0.5TB 0.2TB 2.5TB

1TB 1TB

0.5TB

0.5TB 0.1TB 0.2TB

0.5TB0.5TB

SC0: 0.5TB → 0.5TB
SC1: 3.0TB → 1.0TB (-2TB)
SC2: 0.1TB → 1.1TB (+1TB)
SC3: 0.2TB → 1.2TB (+1TB)

/user/user1 (1TB): SC1→SC2
/user/user2 (1TB): SC1→SC3

Figure 2: Example of rebalancing due to storage capac-
ity. The file system is stored across 4 subclusters. After
a rebalance, /user is split across 2 subclusters.

4.2 Assign/rebalance files to subclusters
Using the technique above, we now have subclusters with
statistically balanced primary tenant resource usage, disk
reimaging, and space usage. But we still need to assign
the secondary tenants’ folders/files to them, and possi-
bly re-assign (rebalance) folders/files, when some of the
current assignments are no longer appropriate.
Creation-time assignment policy. To avoid creating
new mount points every time a new folder/file is created,
the routers forward create operations to the same sub-
cluster of the parent folder. This may eventually fill up
some subclusters while others have plenty of free space.
In addition, it may produce subclusters that receive high
access loads while others receive much lower loads. We
leverage rebalancing to correct these situations.
Rebalancing policy. The rebalancer wakes up periodi-
cally (e.g., hourly) and compares the recent subclusters’
metadata access load and free space to pre-defined wa-
termark thresholds. We opt not to rebalance (an expen-
sive operation) simply because the subclusters are imbal-
anced with respect to load or space. Instead, the thresh-
olds define values beyond which a subcluster would be
considered “under stress”. Each rebalancing round tries
to bring all subclusters below the watermarks. Adminis-
trators can also start a rebalancing round manually.

The rebalancer finds the subclusters’ information in
the state store. As the routers intercept all accesses to
the metadata managers, they can easily accumulate this
information and store it in the state store. (The routers
cannot determine the access load imposed on a subclus-
ter’s storage nodes, only that on its metadata manager.
Nevertheless, the manager is the first to overload, since it
is centralized.) The routers periodically consult the man-
agers to find out the amount of free space in each sub-
cluster, and store it in the state store during heartbeats.

Figure 2 illustrates an example where subcluster 1 is
highly loaded. The rebalancer decides to split /user
and spread it across subclusters 2 and 3.
Rebalancing as optimization. To determine which fold-
ers/files to migrate to which subclusters, we model rebal-
ancing as a MILP problem and use a standard solver for
it. MILP is expressive enough and works well for our

constraints and objectives. We are not aware of similar
approaches to file system rebalancing.

We start by creating a representation of the federated
namespace, where we annotate each tree node with (1)
the peak amount of load it has received in any short
time interval (e.g., 5 minutes) since the last rebalance,
(2) the current size of the subtree below it, and (3) its
current subcluster. We prune nodes that exhibit lower
load and lower size than corresponding administrator-
defined low-end thresholds. This limits the size of the
MILP problem, making it efficient to solve.

We use the pruned tree as the input to the MILP prob-
lem. The main constraints are the maximum access load
a metadata manager can handle, and the maximum stor-
age capacity of each subcluster. As its outputs, the so-
lution produces the subcluster in which each of the tree
nodes should be after rebalancing. As the objective func-
tion, we minimize a utility function combining several
weighted factors: access load per subcluster, used stor-
age capacity per subcluster, amount of data to move in
the rebalance, and the number of entries in the mount ta-
ble after rebalancing. The administrator is responsible
for defining the weight for each factor.

Since these factors are measured in different units, we
represent them as percentages over their corresponding
watermarks. We introduced the access load and used ca-
pacity thresholds above. For the amount of data to move,
we compute the percentage with respect to the combined
size of the files that need to move to bring all subclus-
ters below the watermarks. For the number of mount ta-
ble entries, we use the percentage compared to the maxi-
mum between the number of subclusters and the number
of folders in the first level of the federated namespace.

Besides its ability to derive efficient rebalances, our
optimization approach is flexible in that different objec-
tive functions and constraints can be easily implemented.

4.3 Alternative techniques we discarded
Assigning servers and files to subclusters at once. For
the file system organization, we considered solving the
entire server and folder/file assignment problem as a
large mathematical program, including primary tenants’
characteristics and the federated file system. Doing so
would be unwieldy; splitting the problem into two tiers
of techniques makes the problem manageable.
Assigning servers to subclusters. We considered ran-
dom assignment per server, per primary tenant, and per
groups of primary tenants. These approaches produce
subclusters with high diversity, but cause significant data
movement when a subcluster is added/removed. Consis-
tent hashing achieves diversity without this problem.
Assigning/rebalancing files to subclusters. We consid-
ered using consistent hashing of file names. There are
two main problems with this approach: (1) the files in



each folder could be spread across multiple subclusters,
leading to a very large mount table; and (2) a subtree re-
name would likely cause the entire subtree to move. Us-
ing consistent hashing of immutable file identifiers [11]
would solve the latter problem but not the former.

5 Implementation and deployment

We implement our federation architecture and techniques
in HDFS, and call the resulting system “Datacenter-
Harvesting HDFS” or simply “DH-HDFS”. We are con-
tributing our system to open source [17].

In terms of structure and behavior, HDFS matches the
underlying distributed file system in Figure 1: its meta-
data manager is called “Name Node” (NN) and its per-
server block storage node is called “Data Node” (DN).
The NN implements all the APIs of standard distributed
file systems, and maintains the namespace and the map-
ping of files to their blocks. The (primary) NN is backed
up by one or more secondary NNs. In our setup, the NN
replicates each block (256 MBytes) three times by de-
fault. On a file access, the NN informs the client about
the servers that store the replicas of the file’s blocks. The
client contacts the DN on one of these servers directly to
complete the access. The DNs heartbeat to the NN; after
a few missing heartbeats from a DN, the NN starts to re-
create the corresponding replicas in other servers without
overloading the network (30 blocks/hour/server). Within
each subcluster, we use Zhang’s replica placement algo-
rithm [30] to achieve high data durability and availability
in a resource-harvesting datacenter.

We place the routers behind a load balancer and con-
figure clients (via their standard configuration files) to
use the load balancer address as the NN. We implement
the state store using Zookeeper [16]. At a high level, our
router and state store organization purposely matches a
similar architecture for YARN federation [4]. The rebal-
ancer runs as a separate MapReduce program (one file
per map task). For scalability, each DN determines its
subcluster membership independently at startup time. If
it needs to move to a different subcluster, the DN first de-
commissions itself from the old subcluster and then joins
the new one. We also allow administrators to define the
membership and trigger rebalances manually.

Based on our experience with the system, we define
the number of subclusters as the number of servers in the
datacenter divided by 4k (the largest size that HDFS han-
dles efficiently in our setup). We set the routers to heart-
beat to the state store every 10 seconds by default. In ad-
dition, we define the threshold for access load as an av-
erage 40k requests/second (near the highest throughput
that an NN can handle efficiently in our setup) over any
5-minute period, and the space threshold as 80% of each
subcluster’s full capacity. We leverage an HDFS utility

(DistCP) for copying file system subtrees. If writes occur
during a copy, DistCP only re-copies the individual files
written. It also transparently handles failures of NNs and
DNs. We configure the rebalancer to try a subtree copy
3 times before re-trying with blocked client writes (Sec-
tion 3). All settings above are configurable.

6 Evaluation

6.1 Methodology
Workloads. To represent the primary tenants, we use
detailed CPU utilization and disk reimaging statistics of
all the primary tenants (thousands of servers) in 10 real
large-scale datacenters.1 As our secondary tenants’ file
access workload, we use a real HDFS trace from Ya-
hoo! [29]. The trace contains 700k files and 4M file ac-
cesses with their timestamps. The trace does not specify
file sizes, so we assume each file has 6 blocks, for a total
of 4.2M blocks (as we replicate each block 3 times, the
total dataset is 3PB). The trace does not specify whether
file access operations are for reading or writing, so we as-
sume that each create operation represents a full file write
and each open operation represents a full file read. This
assumption is accurate for systems like HDFS, which im-
plement write-once, read-many-times files. Overall, our
trace contains 3.7M reads and 0.3M writes.
Simulator. Because we cannot experiment with en-
tire datacenters and need to capture long-term behaviors
(e.g., months), we extend the simulation infrastructure
from [30] to support multiple subclusters. We faithfully
simulate the CPU utilization and reimaging behavior of
the primary tenants, federation architecture, the tech-
niques for server and folder/file assignment, and HDFS
with diversity-aware replica placement. In the simulator,
we use the same code that implements server assignment
to subclusters, data placement and rebalancing in our real
systems. For simplicity, we simulate each rebalance op-
eration as if it were instantaneous (our real system ex-
periments explore the actual timing of rebalances). The
simulator replays the logs from the 10 datacenters for
simulating the primary tenants’ CPU utilization and disk
reimages, and uses the Yahoo! trace [29] for simulating
the secondary tenants’ block accesses. All operations are
faithfully executed based on their logged timestamps.

The simulator outputs durability (percentage of blocks
retained, despite disk reimages), availability (percentage
of successful accesses, despite primary tenant resource
usage), usable space, access load for each subcluster, and
amount of data migrated. For our durability results, we
simulate 6 months of the primary tenants’ reimages. For
our availability results, we simulate 1 month of primary
tenants’ utilizations and repeat the Yahoo! trace over this

1Due to commercial reasons, we omit certain information, such as
absolute numbers of servers and actual utilizations.



period. We run each simulation 5 times and report aver-
age results. The results are consistent across runs.

For comparison with DH-HDFS, we use a baseline
system that assigns servers to subclusters randomly (per
group of primary tenants), which provides high diversity
per subcluster. This approach represents the manual as-
signment we have observed in production in the absence
of DH-HDFS. The baseline assigns folder/files to sub-
clusters in such a way that each subcluster gets three lev-
els of the federated namespace in round-robin fashion.
The baseline rebalances folders/files based on a greedy
algorithm (which we adapted from [24] for the federated
scenario), whenever the access load or usable space ex-
ceeds their watermark thresholds. The algorithm ranks
the folders and subclusters from most to least busy (in
terms of load or storage), and migrates folders from the
top of the folder list to subclusters from the bottom of the
subcluster list. Finally, the baseline leverages Zhang’s al-
gorithm for replica placement within each subcluster.

We also present an extensive sensitivity study, explor-
ing the impact of the load threshold, space threshold, and
rebalancing frequency in DH-HDFS.
Real experiments. We use the implementation of DH-
HDFS from Section 5. We run the system on 4k servers
across 4 subclusters in a production datacenter. The
servers have 12-32 cores and 32-128GB of memory.
Each subcluster has 4 NNs and we co-locate a router
on each machine that runs a NN. We use 5 Zookeeper
servers for the state store. We set the rebalancer to wake
up every hour. We built a distributed trace replayer to
reproduce the same load as in the Yahoo! trace.

6.2 Simulation results
We start our evaluation by isolating the impact of each
feature in DH-HDFS. To conserve space, these compar-
isons use a single datacenter (DC-7); the other datacen-
ters exhibit similar trends. Then, we study data durability
and availability of the baseline and DH-HDFS systems
across the 10 datacenters. Finally, we use a sensitivity
study to quantify the impact of the load threshold, the
space threshold, and the rebalancing frequency.
Within-cluster replica placement. Comparing the first
two rows of Table 1 isolates the impact of the replica
placement approach within each subcluster. All system
characteristics other than the replica placement approach
are set to the baseline system, except that we turn off re-
balancing. Zhang’s algorithm accounts for primary ten-
ant behaviors, whereas stock HDFS places replicas in
different racks irrespective of primary tenants. The re-
sults show that Zhang’s algorithm is also effective in the
federated scenario: both durability and availability im-
prove by 4 orders of magnitude. Moreover, note that los-
ing even a single block (i.e., its 3 replicas) brings dura-
bility to six 9s (< 100×1/4.2M) in our setup, so achiev-

Study Version Dur. Avail.
Within-subcluster Stock HDFS two 9s one 9
replica placement Diversity-aware [30] six 9s five 9s

Server-to-subcluster Random per primary group two 9s two 9s
assignment Random per server six 9s five 9s

Random per rack six 9s five 9s
Consistent hashing per rack six 9s five 9s

Folder-to-subcluster Round-robin per subtree (RR) six 9s five 9s
assignment RR + rebalancing from [24] two 9s zero 9s

RR + our rebalancing six 9s five 9s

Table 1: Simulation results for DC-7.

ing higher durability is challenging especially as primary
tenants’ are free to reimage collections of disks at will.
Server-to-subcluster assignment. The next set of rows
compare approaches for assigning servers to subclusters.
Again, features other than server-to-subcluster assign-
ment are those of the baseline system without rebalanc-
ing. The results show that random per primary tenant
group, which groups together all primary tenants that
have related functionality, performs poorly. Due to their
close relationship and potentially large size, these groups
do not produce enough diversity even under Zhang’s al-
gorithm. The other three approaches achieve good re-
sults, as they leverage finer grain randomization and thus
benefit from primary tenant diversity.

Consistent hashing has the additional advantage of re-
quiring limited data movement as a result of subcluster
additions/removals. For example, if we were to add a
new subcluster to DC-7, only 5.5% of the data would
move to populate it. In contrast, the random per rack
approach would move 44% of the data. On the other
hand, if we were to remove the subcluster with the most
data, consistent hashing would require 20% of the data
to move, while random per rack would move 68% of it.
Folder-to-subcluster assignment. The following set of
rows compare techniques for assigning folders to sub-
clusters; all other features are those of the baseline sys-
tem. The results show that our rebalancing approach im-
proves performance (not shown in the table) at the same
time as retaining high durability and availability. Specifi-
cally, without rebalancing, some subclusters are exposed
to extremely high load; at peak, 142k accesses/second
over a period of 5 minutes. With our approach, the peak
load on any subcluster goes down to 38k accesses/second
after rebalancing, just under our watermark threshold of
40k accesses/second. To achieve this, our rebalancer mi-
grates 24TB of data. In contrast, the greedy rebalancer
achieves a peak of 37k accesses/second, but migrates
84TB of data. Worse, this rebalancer degrades durabil-
ity and availability significantly, as it does not consider
the diversity of primary tenants in the lightly loaded sub-
clusters. Had we assumed consistent hashing (instead of
random per primary tenant group) for the server assign-
ment in this comparison, the greedy rebalancer would not
have degraded durability and availability, but would still



10-8

10-6

10-4

10-2

1

100

1 2 3 4 5 6 7 8 9 10

U
na

va
ila

b
le

 a
cc

es
se

s
(%

)

Datacenter

Baseline

DH-HDFS

Figure 3: Data availability for baseline and DH-HDFS
for 10 datacenters. The Y-axis is in log scale.

have moved 3.5× more data than our rebalancer.
Comparing baseline and DH-HDFS. Figure 3 quan-
tifies the data availability (in percentage of failed ac-
cesses) of the baseline and DH-HDFS systems for our
10 real datacenters. The Y-axis in the figure is in log
scale; a missing bar means that there were no failed
accesses. To study a spectrum of utilization scenarios,
we adjust the primary tenants’ workloads (via acceler-
ation/deceleration of their primary tenants’ utilizations)
to produce 3 groups of datacenters: the three leftmost
datacenters exhibit low average primary tenant utiliza-
tion (roughly 25% of the available resources), the four
next datacenters exhibit mid-range average utilizations
(roughly 50%), and the three rightmost datacenters ex-
hibit high average utilizations (roughly 75%).

These results show that both systems exhibit negligi-
ble unavailability (> seven 9s availability) for the data-
centers with low average utilization. For the mid-range
datacenters, DH-HDFS improves availability by up to 5
orders of magnitude for three of them, while it matches
the already high availability of the fourth (DC-6). The
three high-utilization datacenters pose the greatest chal-
lenge to data availability. Still, DH-HDFS produces
greater availability for all of them.

Figure 4 quantifies our datacenters’ durability (in per-
centage of lost blocks) in the same order. Again, the Y-
axis is in log scale. DH-HDFS exhibits greater durability
than the baseline system by up to 4 orders of magnitude.
The exception is DC-3 for which the baseline system pro-
duces slightly greater durability. The reason for this re-
sult is that consistent hashing provides statistical guar-
antees only. In exceptional cases, it may behave worse
than assigning servers to subclusters by groups of pri-
mary tenants. We verified this by changing the hashing
slightly to produce a different assignment, which makes
our durability better than the baseline’s.

Across all datacenters, our rebalancer migrates from
3.5× to 24× less data than the baseline’s rebalancer.
Sensitivity of rebalancing to its parameters. Table 2
lists the comparisons we perform to assess the sensitiv-
ity of rebalancing to its main parameters. We show re-
sults for DC-7 (our largest production deployment), but
other datacenters exhibit similar trends. Since durability

10-8

10-6

10-4

10-2

1

100

1 2 3 4 5 6 7 8 9 10

B
lo

ck
s 

lo
st

 (
%

)

Datacenter

Baseline

DH-HDFS

Figure 4: Data durability for baseline and DH-HDFS for
10 datacenters. The Y-axis is in log scale.

and availability are not strongly affected by rebalancing
(consistent hashing and Zhang’s replica placement [30]
are the dominant factors), we do not include these statis-
tics. Instead, the table includes the range of subcluster
peak loads (“Load range”), the range of subcluster space
usage (“Space range”), and the amount of data migrated
during rebalancing (“Data moved”).

The first three rows of the table isolate the impact of
the load threshold, assuming the other parameters are
fixed at their default values and spare-based rebalancing
is turned off. Looking at the load range and data moved
columns, we can see that setting the load threshold at the
average of the peak subcluster loads produces evenly bal-
anced subclusters. Higher thresholds (including our de-
fault value of 40k accesses/second) produce more uneven
peak loads, but can be satisfied with less data migration.

The next set of rows isolate the impact of the space
threshold, assuming the other parameters stay at their
default values and turning off load rebalancing. The
space range and data moved columns show a similar
effect: when the threshold is tight, rebalancing evens
out the space usage at the cost of substantial data mi-
gration. Higher thresholds produce more unevenly dis-
tributed space usage, but involve less migration.

The last row shows the impact of using both average
values for load- and space-driven rebalancing, assum-
ing other parameters at their default values. This result
shows that our full rebalancer brings both the peak load
and space below their thresholds.

Finally, we study the impact of the frequency with
which the rebalancer wakes up (not shown), while other
parameters stay at their default values. We consider wak-
ing up every 30 minutes, 1 hour, and 2 hours. The results
show that, for our setup, all these frequencies produce
the same statistics as in the third row of the table.

6.3 Experimental results
We start this section by presenting experimental results
on the performance of the DH-HDFS routers. We then
study the performance of rebalancing operations.
Router performance. To explore the limits of our
router’s performance, we study two scenarios: a work-
load dominated by block reads, and a workload with



Study Version Load range Space range Data moved
Load threshold average (30,500 acesses / sec) 27,250 - 30,600 accesses / sec 3 - 658 TB 33 TB

35,000 accesses / sec 21,508 - 34,457 accesses / sec 6.5 - 665 TB 26 TB
40,000 accesses / sec 21,508 - 37,834 accesses / sec 6.5 - 665 TB 24 TB

Space threshold average (136 TB) 3,746 - 142,573 accesses / sec 122 - 132 TB 543 TB
2 x average 5,873 - 141,789 accesses / sec 33 - 247 TB 439 TB
4 x average 5,953 - 141,858 accesses / sec 16 - 495 TB 190 TB

Space and load average, average 24,500 - 31,500 accesses / sec 117 - 136 TB 554 TB

Table 2: Rebalancing results for DH-HDFS and DC-7.

0

2

4

6

8

10

0 50 100 150 200

A
ve

ra
ge

 la
te

nc
y 

(m
s)

Thousands of requests per second

1R + 1NN

1NN

12R + 4NN

4NN

Figure 5: Performance for metadata operations.

metadata-only operations. The former scenario is the
best for our routers, and the latter is the worst; any real
workload would perform between these extremes. In the
best-case scenario, the performance of the routers is irrel-
evant. As each block is large (256MB), client-observed
read latencies are measured in seconds (it takes seconds
to read such a large block from disk), routers and NNs
have little work to do (as clients contact DNs directly for
blocks), and saturation occurs when the DNs saturate.

In the worst-case scenario, Figure 5 depicts the aver-
age metadata-only latency, as a function of load. This
figure shows that one NN saturates at roughly 40k re-
quests/second, whereas 4 NNs again saturate at roughly
4× higher load. In the small configuration, the routers
add less than 1ms of latency and saturate slightly sooner.
In the large configuration, the routers add up to 3ms of
latency and saturate around 150k requests/second.

These results suggest that the routers perform well,
adding relatively low latencies to metadata operations
and negligible latencies to block accesses. Given that the
latency of actual block transfers would likely dominate
in real workloads, our routers should pose no significant
overheads or bottlenecks in most scenarios.
Rebalancer performance. To explore the performance
of rebalancing in our system, we study the Yahoo! trace
when we replay it against a DH-HDFS setup with 4 sub-
clusters and 4k servers. Figure 6 depicts the distribu-
tion of requests across the subclusters without rebalanc-
ing over time. The figure stacks the requests sent to each
subcluster, representing them with different colors.

The figure shows that subcluster 0 receives a large
amount of load around 4000 seconds into the execution.
To demonstrate the rebalancer, we set the load watermark
threshold at 2000 requests/second over any 5-minute pe-

0

500

1000

1500

2000

0 2000 4000 6000 8000 10000 12000

R
eq

ue
st

s 
pe

r 
se

co
nd

Time (seconds)

Subcluster 3

Subcluster 2

Subcluster 1

Subcluster 0

Figure 6: Subclusters’ loads without rebalancing.

riod. As this threshold is exceeded, the rebalancer moves
4 folders of roughly the same size (400 files each) with
a total of 13TB away from subcluster 0. Over repeated
runs, we find that folder migrations take 354 seconds on
average, 80% take less than 500 seconds, but one of them
takes up to 25 minutes. Performance is especially vari-
able when primary tenant traffic on the network is signif-
icant, i.e. during the weekdays. Most of the rebalancing
time is spent in DistCP, with less than 34 seconds going
into ensuring consistency and synchronizing the mount
tables. The MILP solver takes negligible time (<100
milliseconds) to select the migrations.

These results demonstrate that the rebalancer itself is
efficient, but the overall time to complete migrations can
vary significantly, mainly due to primary tenant traffic.
Nevertheless, recall that rebalances occur in the back-
ground and transparently to users, so the migration time
variability is unlikely to be a problem.
File system performance. To illustrate the impact of the
network traffic on the performance of our federated file
system, Figure 7 shows Cumulative Distribution Func-
tions (CDFs) of the performance of client-router inter-
actions over the trace execution during a weekday (left)
and during a weekend (right). The left graph shows much
greater performance variability than the right one.

These results illustrate that harvesting spare resources
for lower priority (secondary) workloads leaves their per-
formance at the mercy of the primary tenants’ resource
demands. Most secondary workloads have lax perfor-
mance requirements, so variability only becomes a prob-
lem when it is extreme. Nevertheless, if datacenter oper-
ators desire greater performance predictability for some
of their secondary workloads, they must (1) account for
these workloads in their resource provisioning, e.g. net-



0

20

40

60

80

100

1 10 100 1000

C
D

F
 (

%
)

Latency (ms)
1 10 100 1000

Latency (ms)

SC 0

SC 1

SC 2

SC 3

Figure 7: Client-router latency during weekday (left) and
weekend (right).

work bandwidth; or (2) ensure that these workloads re-
ceive better than best-effort quality of service.

7 Lessons from production deployment
We deployed DH-HDFS in 4 production datacenters
roughly 6 months ago. The deployments currently in-
volve a total of more than 30k servers, and range from
roughly 1k servers across 3 subclusters to more than 19k
servers across 6 subclusters. We learned several lessons
from these deployments and from the process of on-
boarding users onto DH-HDFS.
Server-to-subcluster assignment and bootstrapping.
Once we started deploying DH-HDFS, switching from
manual server assignment to consistent hashing caused
many servers to switch subclusters. This implied moving
large amounts of data, which produced heavy network
traffic and long downtimes. To avoid this data reshuf-
fling, the administrators introduced a new service called
the Subcluster Controller. This component maintained
the server-to-subcluster assignments and authorized (or
not) servers to join a subcluster. Servers with data from
a subcluster are not allowed to join a different subclus-
ter. Once a server is reimaged or decommissioned, the
controller allows it to join the new subcluster assigned
through consistent hashing.
File-to-subcluster assignment and onboarding users.
Before introducing DH-HDFS, users submitted their
batch workloads pointing to data of one subcluster (meta-
data manager). To onboard workloads gradually, we de-
ployed the routers to listen to their own RPC and HTTP
ports (instead of the metadata managers’ ports).

Workloads that do not yet fully leverage the single
DH-HDFS namespace still want to access subclusters di-
rectly. For this reason, we added special mount points
that point to the root of each subcluster.
Spreading large datasets across subclusters. Even un-
der DH-HDFS, workloads operating on large datasets
were having difficulty (1) storing all their data in a sin-
gle subcluster and (2) overloading the metadata manager.
One option would have been to spread the files across
folders in different subclusters, but users wanted this data
in a single folder. For these users, we created special

mount points that span multiple subclusters. Each file
within such a mount point is assigned to one of the sub-
clusters using consistent hashing. As explained in Sec-
tion 4.3, this approach adds additional complexity for re-
naming. For this reason, we disallow renames and re-
strict these special mount points to certain workloads.
Rebalancing and administrators. Currently, the rebal-
ancer is a service triggered by the administrator. It col-
lects the space utilization and access statistics, and pro-
poses which paths to move across subclusters. Our de-
sign expected paths to be unique across the namespace.
However, administrators created multiple mount entries
pointing to the same physical data (in the same subclus-
ter). In this case, the federated namespace had loops and
counted multiple times the same physical entity. In ad-
dition, we had the special mount points (i.e., subcluster
roots and folders spread across subclusters), which made
the namespace even more complex. To handle these sit-
uations when collecting the statistics, we modified the
rebalancer to (1) ignore the special mount points; and (2)
map all aliases to a single federated location. For exam-
ple, if /tmp/logs and /logs both point to /logs in
subcluster 0, we assign all the accesses to just one path.
Performance in production. Our largest deployment
has 24 routers for 6 subclusters, and typically runs large
data analytics workloads on an index of the Web. The
load across the routers and their latency are fairly even.
The latency of the routers is around 3 milliseconds,
whereas the latency of the metadata managers is around
1 millisecond. These match the latencies from Section 6.

For this deployment, we use a 5-server Zookeeper en-
semble for the state store. On average, a router sends 5
requests to the store every 10 seconds. This is a low load
compared to the other services that use the ensemble.

8 Conclusions
In this paper, we proposed techniques for automatically
and transparently scaling the distributed file systems
used in commercial datacenters. We focused on systems
where interactive services and batch workloads share the
same servers, but most of our work also applies to ded-
icated servers. Our results show that our techniques in-
troduce little overhead, and our system behaves well even
in extreme scenarios. We conclude that it is possible to
scale existing systems to very large sizes in a simple and
efficient manner, while exposing a single namespace.

Acknowledgments
We would like to thank Bing’s Multitenancy team, Chris
Douglas, Carlo Curino, and John Douceur for many sug-
gestions and discussions about this work, their comments
to our paper, and help open-sourcing our system and de-
ploying it for production use.



References
[1] ADYA, A., BOLOSKY, W. J., CASTRO, M., CER-

MAK, G., CHAIKEN, R., DOUCEUR, J. R., HOW-
ELL, J., LORCH, J. R., THEIMER, M., AND WAT-
TENHOFER, R. P. FARSITE: Federated, Available,
and Reliable Storage for an Incompletely Trusted
Environment. In OSDI (2002).

[2] APACHE FOUNDATION. HDFS Architecture
Guide, 2008. http://hadoop.apache.org/
docs/current/hdfs_design.html.

[3] APACHE FOUNDATION. ViewFs Guide,
2016. http://hadoop.apache.org/
docs/current/hadoop-project-dist/
hadoop-hdfs/ViewFs.html.

[4] ARENE, M., CHALIPARAMBIL, K., CURINO, C.,
DOUGLAS, C., FUMAROLA, G. M., HEDDAYA,
S., KRISHNAN, S., RAMAKRISHNAN, R., RAO,
S., SAKALANAGA, S., SHAH, R., SHI, B., AND
ZHOU, B. Enable YARN RM Scale Out via Feder-
ation using Multiple RM’s. https://issues.
apache.org/jira/browse/YARN-2915.

[5] BARROSO, L. A., CLIDARAS, J., AND HÖLZLE,
U. The Datacenter as a Computer: An Introduc-
tion to the Design of Warehouse-Scale Machines.
Morgan & Claypool Publishers, 2009.

[6] BEAVER, D., KUMAR, S., LI, H. C., SOBEL, J.,
VAJGEL, P., ET AL. Finding a Needle in Haystack:
Facebook’s Photo Storage. In OSDI (2010).

[7] CHAIKEN, R., JENKINS, B., LARSON, P. Å.,
RAMSEY, B., SHAKIB, D., WEAVER, S., AND
ZHOU, J. SCOPE: Easy and Efficient Parallel Pro-
cessing of Massive Data Sets. In VLDB (2008).

[8] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH,
W. C., WALLACH, D. A., BURROWS, M., CHAN-
DRA, T., FIKES, A., AND GRUBER, R. E.
BigTable: A Distributed Storage System for Struc-
tured Data. In OSDI (2006).

[9] DECANDIA, G., HASTORUN, D., JAMPANI, M.,
KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A.,
SIVASUBRAMANIAN, S., VOSSHALL, P., AND
VOGELS, W. Dynamo: Amazon’s Highly Avail-
able Key-Value Store. In SOSP (2007).

[10] DELIMITROU, C., AND KOZYRAKIS, C. Quasar:
Resource-Efficient and QoS-Aware Cluster Man-
agement. In ASPLOS (2014).

[11] DOUCEUR, J. R., AND HOWELL, J. Distributed
Directory Service in the Farsite File System. In
OSDI (2006).

[12] FOUNDATION, A. HDFS Federation, 2016.
https://hadoop.apache.org/docs/
r2.7.2/hadoop-project-dist/
hadoop-hdfs/Federation.html.

[13] GHEMAWAT, S., GOBIOFF, H., AND LEUNG,
S. T. The Google File System. In SOSP (2003).

[14] HILDRUM, K., DOUGLIS, F., WOLF, J. L., YU,
P. S., FLEISCHER, L., AND KATTA, A. Storage
Optimization for Large-Scale Distributed Stream-
Processing Systems. Transactions on Storage
(TOS) 3, 4 (2008), 5.

[15] HSIAO, H. C., CHUNG, H. Y., SHEN, H., AND
CHAO, Y. C. Load Rebalancing for Distributed
File Systems in Clouds. TPDS 24, 5 (2013), 951–
962.

[16] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND
REED, B. ZooKeeper: Wait-free Coordination for
Internet-scale Systems. In USENIX ATC (2010).

[17] KACE, J., AND GOIRI, I. Router-based HDFS
federation, 2017. https://issues.apache.
org/jira/browse/HDFS-10467.

[18] KARGER, D., LEHMAN, E., LEIGHTON, T., PAN-
IGRAHY, R., LEVINE, M., AND LEWIN, D. Con-
sistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the
World Wide Web. In STOC (1997).

[19] LAKSHMAN, A., AND MALIK, P. Cassandra:
A Decentralized Structured Storage System. In
LADIS (2009).

[20] LO, D., CHENG, L., GOVINDARAJU, R., RAN-
GANATHAN, P., AND KOZYRAKIS, C. Heracles:
Improving Resource Efficiency at Scale. In ISCA
(2015).

[21] MARS, J., TANG, L., HUNDT, R., SKADRON, K.,
AND SOFFA, M. L. Bubble-up: Increasing Utiliza-
tion in Modern Warehouse Scale Computers Via
Sensible Co-Locations. In MICRO (2011).

[22] MUTHITACHAROEN, A., MORRIS, R., GIL,
T. M., AND CHEN, B. Ivy: A Read/Write Peer-
to-Peer File System. In OSDI (2002).

[23] ROWSTRON, A., AND DRUSCHEL, P. Pastry:
Scalable, Decentralized Object Location, and Rout-
ing for Large-Scale Peer-to-Peer Systems. In Mid-
dleware (2001).

[24] SINGH, A., KORUPOLU, M., AND MOHAPATRA,
D. Server-Storage Virtualization: Integration and

http://hadoop.apache.org/docs/current/hdfs_design.html
http://hadoop.apache.org/docs/current/hdfs_design.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ViewFs.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ViewFs.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/ViewFs.html
https://issues.apache.org/jira/browse/YARN-2915
https://issues.apache.org/jira/browse/YARN-2915
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/Federation.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/Federation.html
https://issues.apache.org/jira/browse/HDFS-10467
https://issues.apache.org/jira/browse/HDFS-10467


Load Balancing in Data Centers. In Supercomput-
ing (2008).

[25] STOICA, I., MORRIS, R., KARGER, D.,
KAASHOEK, M. F., AND BALAKRISHNAN, H.
Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications. In SIGCOMM (2001).

[26] VERMA, A., PEDROSA, L., KORUPOLU, M., OP-
PENHEIMER, D., TUNE, E., AND WILKES, J.
Large-Scale Cluster Management at Google with
Borg. In EuroSys (2015).

[27] WEIL, S. A., BRANDT, S. A., MILLER, E. L.,
LONG, D. D., AND MALTZAHN, C. Ceph: A

Scalable, High-Performance Distributed File Sys-
tem. In OSDI (2006).

[28] WILKES, J. Private communication, 2016.

[29] YAHOO! Yahoo! Research Webscope Pro-
gram, 2008. https://webscope.sandbox.
yahoo.com/.

[30] ZHANG, Y., PREKAS, G., FUMAROLA, G. M.,
FONTOURA, M., GOIRI, I., AND BIANCHINI,
R. History-Based Harvesting of Spare Cycles
and Storage in Large-Scale Datacenters. In OSDI

(2016).

https://webscope.sandbox.yahoo.com/
https://webscope.sandbox.yahoo.com/

	Introduction
	Background and related work
	Resource-harvesting datacenters
	Diversity-aware replica placement
	Large-scale distributed data storage

	Federation architecture
	Overview
	Client request routers
	State store
	Rebalancer
	Alternative architecture we discarded

	Federation techniques
	Assign servers to subclusters
	Assign/rebalance files to subclusters
	Alternative techniques we discarded

	Implementation and deployment
	Evaluation
	Methodology
	Simulation results
	Experimental results

	Lessons from production deployment
	Conclusions

