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1 Introduction

Traditional encryption schemes, both symmetric and asymmetric, were not designed to respect
the algebraic structure of the plaintext and ciphertext spaces. Many schemes, such as ElGamal
(resp. e.g. Paillier), are multiplicatively homomorphic (resp. additively homomorphic), and can
be used to perform limited types of computations directly on the encrypted data and have
them pass through the encryption to the underlying plaintext data, without requiring access to
any secret key(s). The restriction to one single operation is very strong, however, and instead
a much more powerful fully homomorphic encryption scheme that respects both additions and
multiplications would be needed for many interesting applications. The first such encryption
scheme was invented by Craig Gentry in 2009 [21], and since then researchers have introduced
a number of new and more efficient fully homomorphic encryption schemes [111, 10} [7, 9] 20
30, 5, 23].

Despite the promising theoretical power of homomorphic encryption, the practical side
remained underdeveloped for a long time. Recently new implementations, new data encoding
techniques, and new applications have started to improve the situation, but much remains to
be done. In 2015 the first version of the Simple Encrypted Arithmetic Library - SEAL was
released, with the specific goal of providing a well-engineered and documented homomorphic
encryption library, with no external dependencies, that would be easy to use both by experts
and by non-experts with little or no cryptographic background.

The underlying encryption scheme, and some of the public API, were changed in 2016, and
the new version was released as SEAL v2.0. Soon after the release of SEAL v2.0 significant
performance updates and bug fixes were implemented, and released as SEAL v2.1. Along with
SEAL v2.1, an experimental branch of the library was released. This experimental branch,
along with several further updates, has now been released as SEAL v2.2.

This documents describes the core features of SEAL v2.2, and attempts to provide a
practical guide to using homomorphic encryption for a wide audience. We strongly advise
the reader to go over the code examples that come with the library, and to read through
the detailed comments accompanying the examples. For users of previous versions of SEAL
(both v2.1 and earlier) we hope to provide clear instructions for how to port old code to use
SEAL v2.2.

The library is available at http://sealcrypto.codeplex.com, and is licensed under the
MSR License Agreement.

1.1 Roadmap

In [Section 2| we give an overview of changes moving from SEAL v2.1 to SEAL v2.2, which are
expanded upon in the other sections of this document. In we define notation and


http://sealcrypto.codeplex.com

parameters that are used throughout this document. In we give the description of
the Fan-Vercauteren homomorphic encryption scheme (FV) — as originally specified in [20] —
and in [Section 5| we describe how SEAL v2.2 differs from this original description. In
we introduce the new notion of ciphertext noise and we discuss the expected noise growth
behavior of SEAL ciphertexts as homomorphic evaluations are performed. In we
discuss the available ways of encoding data into SEAL v2.2 plaintexts. In we discuss
the selection of parameters for performance, and describe the automatic parameter selection
module. In we discuss the security properties of SEAL v2.2.

2 Overview of Changes in SEAL v2.2

2.1 Encryption Parameters

The EncryptionParameters class has fundamentally changed, and applications need to change
a few lines of code to switch to using the new API. Essentially, the user needs to set all of the
parameters, and subsequently validate the parameter set by calling EncryptionParameters: :
validate, which will perform certain pre-computations, and also populate an instance of the
class EncryptionParameterQualifiers. The parameters need to be set with functions such
as EncryptionParameters: :set_coeff_modulus, and after any parameter is changed, the
entire parameter set needs to be re-validated by calling EncryptionParameters: :validate
again. We discuss encryption parameters in great detail in

2.2 Noise

In homomorphic encryption every ciphertext has a property known as noise, which grows as
homomorphic operations are performed. Different definitions of noise exist in the homomorphic
encryption literature (see e.g. [20][14]), and in previous versions of SEAL [17, 27, [26] a standard
definition referred to as inherent noise is used. In SEAL v2.2 we instead use a different
definition that we call the invariant noise, as it has certain advantages over the old definition.

Informally, the invariant noise is defined to be the quantity that must be “rounded away”
correctly for decryption to succeed. Thus, it is at most 1/2 in a ciphertext that we expect
to decrypt correctly, and a fresh ciphertext is expected to have an extremely small invariant
noise. From a practical point of view a small fraction is not very convenient to work with.
Instead, if v is the size of the invariant noise in a ciphertext, we define the noise budget of the
ciphertext to be —log, (2v). With this definition, any ciphertext which we expect to decrypt
successfully has a positive noise budget, and every homomorphic operation consumes a part
of the budget. Once the noise budget reaches 0, the ciphertext becomes undecryptable. The
noise budget in a ciphertext can be accessed with Decryptor::invariant_noise_budget.
For more information, see

2.3 Automatic Parameter Selection

The noise estimator and the automatic parameter selection tools now use the invariant noise,
rather than inherent noise.

In previous versions of SEAL, the noise growth simulator estimated the expected noise
growth behavior, but we decided to change this behavior to instead use heuristic upper bound
estimates @ la Costache and Smart [I4], which we find to be more useful.



2.4 Plaintexts and Ciphertexts

SEAL v2.2 contains new classes Plaintext and Ciphertext for representing plaintext and
ciphertext elements. Currently these are not much more than simple wrappers for BigPoly
and BigPolyArray, but this will change in future releases. For now, it is still possible to use
BigPoly and BigPolyArray as before. We discuss these classes further in

2.5 Number Theoretic Transforms

Evaluator contains new functionality for transforming plaintexts and ciphertexts to and from
the NTT domain, and a function Evaluator: :multiply_plain_ntt to perform a multiplica-
tion of a ciphertext with a plaintext, both in the NTT domain. In some situations, e.g. where
the same plaintext is used repeatedly for several Evaluator::multiply_plain operations,
keeping the plaintext in the NTT domain can significantly improve performance.

2.6 Local Memory Pools

In earlier versions of SEAL, every instance of classes such as Evaluator used a global memory
pool for allocations. In heavily multi-threaded applications one might want to instead use
local, or thread-local memory pools. This is now easy to do using the MemoryPoolHandle
class. Essentially, an instance of this class is a shared (reference-counted) pointer to a memory
pool, which can either be the global memory pool, or a local one. For example, to use thread-
local memory pools, one can simply create one MemoryPoolHandle instance per each thread,
each pointing to a new memory pool, and create a corresponding collection of classes (such as
Evaluator) by passing the appropriate MemoryPoolHandle instances to the constructors. We
will not discuss memory pools further in this document, as they are very specialized feature.
For more information, we refer the reader to the documentation in the code.

2.7 Other Changes

In addition to the above, numerous bugs have been fixed, performance improvements have
been implemented, and many smaller improvements have been made. We removed the default
parameter set with n = 1024, as it was nearly useless for homomorphic computations, and its
security level was lower than that of the other default parameter sets. We also added a new
parameter set for n = 32768.

3 Notation

We use |-], [], and [-] to denote rounding down, up, and to the nearest integer, respectively.
When these operations are applied to a polynomial, we mean performing the corresponding
opearation to each coefficient separately. The norm || - || denotes the infinity norm and ||-]|**"
denotes the canonical norm [14, 22]. We denote the reduction of an integer modulo ¢ by [-]+.
This operation can also be applied to polynomials, in which case it is applied to every integer
coefficient separately. The reductions are always done into the symmetric interval [—t/2,t/2).
log,, denotes the base-a logarithm, and log always denotes the base-2 logarithm. below
lists commonly used parameters, and in some cases their corresponding names in SEAL v2.2.

When referring to implementations of encryptor, decryptor, key generator, encryption pa-
rameters, coefficient modulus, plaintext modulus, etc., we mean SEAL objects Encryptor,
Decryptor, KeyGenerator, EncryptionParameters, coeff_modulus, plain_modulus, etc.
We use unsigned integers, polynomials, and polynomial arrays to refer to the SEAL objects
BigUInt, BigPoly, and BigPolyArray.



Parameter

Description

Name in SEAL (if applicable)

q

log w

Modulus in the ciphertext space (coefficient modulus)
Modulus in the plaintext space (plaintext modulus)
A power of 2

The polynomial modulus which specifies the ring R
The ring Z[z]/(z™ + 1)

The ring Zq[x]/(™ 4 1), i.e. same as the ring R but with
coefficients reduced modulo a

A base into which ciphertext elements are decomposed during
relinearization

There are £ + 1 = |log,, ¢] + 1 elements in each component of
each evaluation key

Quotient on division of ¢ by ¢, or |g/t|

Remainder on division of ¢ by ¢, i.e. ¢ = At + 7(q),
where 0 < r(q) < ¢

Error distribution (a truncated discrete Gaussian distribution)
Standard deviation of x

Bound on the distribution y

coeff_modulus

plain_modulus

poly_modulus

decomposition_bit_count

noise_standard_deviation

noise_max_deviation

Table 1: Notation used throughout this document.




4 The FV Scheme

In this section we give the definition of the FV scheme as presented in [20].

4.1 Plaintext Space and Encodings

In FV the plaintext space is Ry = Z[z]/(z™ + 1), that is, polynomials of degree less than n
with coefficients modulo ¢t. We will also use the ring structure in Ry, so that e.g. a product of
two plaintext polynomials becomes the product of the polynomials with " being converted to
a —1. The homomorphic addition and multiplication operations on ciphertexts (that will be
described later) will carry through the encryption to addition and multiplications operations
in Ry;.

If one wishes to encrypt (for example) an integer or a rational number, it needs to be
first encoded into a plaintext polynomial in R;, and can be encrypted only after that. In
order to be able to compute additions and multiplications on e.g. integers in encrypted form,
the encoding must be such that addition and multiplication of encoded polynomials in R,
carry over correctly to the integers when the result is decoded. SEAL provides a few different
encoders for the user’s convenience. These are discussed in more detail in and
demonstrated in the SEALExamples project that comes with the code.

4.2 Ciphertext Space

Ciphertexts in F'V are arrays of polynomials in R,. These arrays contain at least two poly-
nomials, but grow in size in homomorphic multiplication operations unless relinearization
is performed. Homomorphic additions are performed by computing a component-wise sum of
these arrays; homomorphic multiplications are slightly more complicated and will be described
below.

4.3 Description of Textbook-FV

Let A be the security parameter. Let w be a base, and let £+1 = |log,, ¢|+1 denote the number
of terms in the decomposition into base w of an integer in base g. We will also decompose
polynomials in R, into base-w components coefficient-wise, resulting in £+ 1 polynomials. By

al S we denote that a is sampled uniformly from the finite set S.
The scheme FV contains the algorithms SecretKeyGen, PublicKeyGen, EvaluationKeyGen,
Encrypt, Decrypt, Add, and Multiply. These algorithms are described below.

e SecretKeyGen(\): Sample s & Rs and output sk = s.
e PublicKeyGen(sk): Set s = sk, sample a & R,, and e < x. Output pk = ([—(as + €)]q,a).
e EvaluationKeyGen(sk,w): for i € {0,...,¢}, sample a; & R,, e; < x. Output
evk = ([—(ais +e)+ wisg]q, ai) .
e Encrypt(pk,m): For m € Ry, let pk = (po, p1). Sample u & Rs, and eq, eg < x. Compute

ct = ([Am + pou + e1lq, [P1u + e2]q) -



e Decrypt(sk,ct): Set s = sk, ¢g = ct[0], and ¢; = ct[1]. Output

H;[CO +cls]th .

e Add(ctg, cty): Output (ctpl0] + ct1[0], cto[l] + ctq[1]).
e Multiply(cto, cty): Compute

o = H; (cto[0]cty[1] —I—cto[l]Ctl[O])H ;

co = HZCtOmCtlqu .

Express ¢y in base w as ¢y = Zf:o cgl) w'. Set

4
ch=co+ > evkli][0]c”
=0

¢
d=ci+ Y evklil[1)cy
i=0
and output (), c}).

5 How SEAL Differs from Textbook-FV

In practice, some operations in SEAL are done slightly differently, or in slightly more gen-

erality, than in textbook-FV (see [Section 4.3)). In this section we discuss these differences in
detail.

5.1 Plaintexts and Ciphertexts

Plaintext elements in SEAL v2.2 are polynomials in Ry, just as in textbook-FV. Earlier
versions of SEAL used instances of the BigPoly class to represent these polynomials, but
in SEAL v2.2 we have created a new class Plaintext for this purpose. For the moment
Plaintext is a simple wrapper for BigPoly.

To make clear the generalization of FV operations it is convenient to think of each ci-
phertext component as corresponding to a particular power of the secret key s. In particular,
in a ciphertext ct = (cg,c1,...c;) of size k + 1, the ¢q term is associated with s°, the ¢;
term with s!, and so on, so that the ¢; term is associated with s*. Earlier versions of SEAL
used instances of the BigPolyArray class to represent ciphertext elements, but in SEAL v2.2
we have created a new class Ciphertext for this purpose. For the moment Ciphertext is a
simple wrapper for BigPolyArray.

All of the functionality in SEAL v2.2 is still implemented using BigPoly and BigPolyArray,
and the use of Plaintext and Ciphertext relies completely on implicit conversion in C++.
This is expected to change in future releases, so we recommend starting to use the new classes
Plaintext and Ciphertext instead.



5.2 Decryption

A SEAL v2.2 ciphertext ct = (cp, ..., c) is decrypted by computing

[t [+

This generalization of decryption (compare to is handled automatically. The
decryption function determines the size of the input ciphertext, and generates the appropriate
powers of the secret key which are required to decrypt it. Note that because we consider well-
formed ciphertexts of arbitrary length valid, we automatically lose the compactness property
of homomorphic encryption. Roughly speaking, compactness states that the decryption circuit
should not depend on ciphertexts, or on the function being evaluated. For more details, see [3].

5.3 Multiplication

Consider the Multiply function as described in The first step that outputs the
intermediate ciphertext (cg, c1,c2) defines a function Evaluator: :multiply, and causes the
ciphertext to grow in size. The second step defines a function that we call relinearization, im-
plemented as Evaluator: :relinearize, which takes a ciphertext of size 3 and an evaluation
key, and produces a ciphertext of size 2, encrypting the same underlying plaintext. Note that
the ciphertext (cg, ¢1, c2) can already be decrypted to give the product of the underlying plain-
texts (see , so that in fact the relinearization step is not necessary for correctness
of homomorphic multiplication.

It is possible to repeatedly use a generalized version of the first step of Multiply to
produce even larger ciphertexts if the user has a reason to further avoid relinearization. In
particular, let ct; = (co,c1,...,¢5) and cty = (do,ds,...,di) be two SEAL v2.2 ciphertexts
of sizes j + 1 and k + 1, respectively. Let the ciphertext output by Multiply(cty, cta), which
is of size j + k + 1, be denoted ctyuy = (Co,C1,...,Cjtr). The polynomials Cy, € R, are

computed as
\‘t ( = - s) “ ] ‘
q r+s=m q

In SEAL v2.2 we define the function Multiply to mean this generalization of the first step
of multiplication. It is implemented as Evaluator: :multiply.

Con =

5.4 Relinearization

The goal of relinearization is to decrease the size of the ciphertext back to (at least) 2 after
it has been increased by multiplications as was described in In other words,
given a size k + 1 ciphertext (co,...,cx) that can be decrypted as was shown in
relinearization is supposed to produce a ciphertext (¢, ..., c}_;) of size k, or — when applied
repeatedly — of any size at least 2, that can be decrypted using a smaller degree decryption
function to yield the same result. This conversion will require a so-called evaluation key (or
keys) to be given to the evaluator, as we will explain below.

In FV, suppose we have a size 3 ciphertext (cp,c1,c2) that we want to convert into a
size 2 ciphertext (cf, ¢}) that decrypts to the same result. Suppose we are also given a pair

evk = ([—(as+¢€) + s?]4,a), where a & R;, and e < x. Now set ¢ = ¢y + evk[0]ca, ) =



c1+evk([1]cg, and define the output to be the pair (¢f, ¢} ). Interpreting this as a size 2 ciphertext
and decrypting it yields

ch+ s =co+ (—(as+e) + s?)ca + 15 + acas = ¢y + ¢15 + 257 — ecy.

This is almost what is needed, i.e. ¢y + c15 + ca5? (see , except for the additive
extra term ecs. Unfortunately, since co has coefficients up to size ¢, this extra term will make
the decryption process fail.

Instead we use the classical solution of writing cp in terms of some smaller base w (see
e.g. [II, @, [7, 20]) as co = Zf:o cg)wi. Instead of having just one evaluation key (pair) as
above, suppose we have £ + 1 such pairs constructed as in Then one can show
that instead setting ¢f, and ¢} as in successfully replaces the large additive term
that appeared in the naive approach above with a term of size linear in w.

This same idea can be generalized to relinearizing a ciphertext of any size k41 to size k > 2,
as long as a generalized set of evaluation keys is generated in the EvaluationKeyGen(sk,w)
function. Namely, suppose we have a set of evaluation keys evky (corresponding to s2), evks
(corresponding to s%) and so on up to evk; (corresponding to s¥), each generated as in
Section 4.3] Then relinearization converts (co, c1, ..., ¢x) into (¢j, ¢}, ..., ¢j,_,), where

14
ch=co+ Y eviylil[0]c}”
=0

l
g =c1+ Z evky [i][l]c,(;) ,
=0

andc;.:cj for2<j<k-1.

Note that in order to generate evaluation keys, one needs to access the secret key, and
so in particular the evaluating party would not be able to do this. The owner of the secret
key must generate an appropriate number of evaluation keys and pass these to the evaluating
party in advance of the relinearization computation. This means that the evaluating party
should inform the key generating party beforehand whether or not they intend to relinearize,
and if so, by how many steps. Note that if they choose to relinearize after every multiplication
only one evaluation key, evks, is needed.

In SEAL v2.2 we define the function Relinearize to mean this generalization of the
second step of multiplication as was described in It is implemented as Evaluator
::relinearize. Suppose a ciphertext ct has size K and L € [2,K) is an integer, then
relinearize(ct,L) returns a ciphertext of size L encrypting the same message as ct.

5.5 Addition

We also need to generalize addition to be able to operate on ciphertexts of any size. Suppose we
have two SEAL v2.2 ciphertexts cti; = (co, ..., ¢;) and cty = (do, . .. dj), encrypting plaintext
polynomials my and me, respectively. Suppose WLOG j < k. Then

Ctadd = ([Co + do]q, RN [Cj + dj]q, dj+17 - ,dk)

encrypts [my + ma];. Subtraction works exactly analogously.

In SEAL v2.2 we define the functions Add to mean this generalization of addition. It is
implemented as Evaluator: :add. We also provide a function Sub for subtraction, which works
in an analogous way, and is implemented as Evaluator: :sub.



5.6 Other Operations

In SEAL v2.2 we provide a function Negate to perform homomorphic negation. This is im-
plemented in the library as Evaluator: :negate.

We also provide the functions AddPlain(ct,maqq) and MultiplyPlain(ct, mpyyy) that,
given a ciphertext ct encrypting a plaintext polynomial m, and unencrypted plaintext poly-
nomials Madd, Mmult, Output encryptions of m + maqq and m - myuy, respectively. When one
of the operands in either addition or multiplication does not need to be protected, these op-
erations can be used to hugely improve performance over first encrypting the plaintext and
then performing the normal homomorphic addition or multiplication. We will also see later in
[Section 6] that MultiplyPlain incurs much less noise to the ciphertext than normal Multiply,
which will allow the evaluator to perform significantly more MultiplyPlain than Multiply
operations. These functions are implemented in SEAL v2.2 as Evaluator::add_plain and
Evaluator::multiply_plain. Analogously to AddPlain we have implemented a plaintext
subtraction function as Evaluator: :sub_plain.

In many situations it is necessary to multiply together several ciphertexts homomorphi-
cally. The naive sequential way of doing this has very poor noise growth properties. Instead,
the user should use a low-depth arithmetic circuit. For homomorphic addition of several values
the exact method for doing so is less important. SEAL v2.2 defines functions MultiplyMany
and AddMany, which either multiply together or add together several ciphertexts in an optimal
way. These are implemented as Evaluator: :multiply_many and Evaluator: :add_many.

SEAL v2.2 has a faster algorithm for computing the Square of a ciphertext. The difference
is only in computational complexity, and the noise growth behavior is the same as in calling
Evaluator: :multiply with a repeated input parameter. Square is implemented as Evaluator
: :square.

Exponentiating a ciphertext to a non-zero power should be done using a similar low-depth
arithmetic circuit that MultiplyMany uses. We denote this function by Exponentiate, and
implement it as Evaluator:exponentiate. The implementations of both MultiplyMany and
Exponentiate relinearize the ciphertext down to size 2 after every multiplication. It is the
responsibility of the user to create enough evaluation keys beforehand to ensure that these
operations can be done.

With parameter sets that support the Number Theoretic Transform (NTT) (see[Section 8.4]
and , Evaluator: :multiply_plain works by first applying the Number Theoretic
Transform (NTT) to both the input ciphertext, and the input plaintext, then performing a
dyadic product of the transformed polynomials, and finally transforming the resulting cipher-
text back. In cases where the same input plaintext or ciphertext needs to be used repeatedly
for several different plain multiplications, it does not make sense to repeat the transform
every single time. Instead, SEAL v2.2 allows plaintexts and the ciphertexts to be NTT trans-
formed at any time using the functions Evaluator::transform_to_ntt and Evaluator::
transform_from_ntt. Given a ciphertext and plaintext, both in NTT transformed form, the
user can call Evaluator: :multiply_plain_ntt to perform a very fast plain multiplication
operation. The result will still be in NTT transformed form, and can be transformed back
with Evaluator: :transform_from_ntt.

5.7 Key Distribution

In we already explained how key generation in SEAL v2.2 differs from textbook-
FV. There is another subtle difference, that is also worth pointing out. In textbook-FV the
secret key is a polynomial sampled uniformly from Ry, i.e. it is a polynomial with coefficients



in {0,1}. In SEAL v2.2 we instead sample the key uniformly from R3, i.e. we use coefficients
in {~1,0,1}.

6 Noise

In this section we present a heuristic noise growth analysis for SEAL v2.2. Although in
textbook-FV all ciphertexts have size 2, in SEAL v2.2 we allow ciphertexts of any size greater
than or equal to 2, and present general results accordingly.

We adopt a new notion of noise than given in both the original FV paper [20], and previous
versions of SEAL [27, 26]. We call this the invariant noise.

Definition 1 (Invariant noise). Let ct = (cg,c1,...,¢;) be a ciphertext encrypting the
message m € Ry. Its invariant noise v is the polynomial with the smallest infinity norm such
that

t t
fct(s):f<co+cls+'~+cksk) =m+v+ate RRQ,
q q

for some polynomial a with integer coefficients.

The analysis for previous versions of FV-based SEAL [27, 26] used the inherent noise.

Definition 2 (Inherent noise). Let ct = (co,c1,...,c;) be a ciphertext encrypting the
message m € R;. Its inherent noise is the unique polynomial vy, € R with smallest infinity
norm such that

ct(s) = co+c1s+ -+ eps® = Am + vipy + ag

for some polynomial a.

Lemma [1] gives the relationship between the two definitions.

Lemma 1. Let ct be a ciphertext encrypting the message m € Ry. The invariant noise v and
the inherent noise v, are related as

3 7¢(q)
V= —Vipp — m
q q

We argue that invariant noise is more natural, and more convenient to use
than inherent noise. Intuitively, invariant noise captures the notion that the noise v being
rounded incorrectly is what causes decryption failures in the FV scheme. We see this in the
following Lemma, which bounds the coefficients of v.

Lemma 2. The function Decrypt, as presented in[Section 5.9, correctly decrypts a ciphertext
ct encrypting a message m, as long as the invariant noise v satisfies ||v|| < 1/2.



Proof. Let ct = (cg,¢1,-..,cx). Using the formula for decryption, we have for some polyno-
mial A with integer coefficients:

/
m =

[co+cls+~-+cksk} H
911t

c0+cls+~-+cks’“+Aq>H
t

t

T
»Q\t* Q\ﬂ»&\wa\w

5
(co+cls+~-+ck3k> +AtH
5

co+cls+---—|—cksk>-H .
t

Then by definition of invariant noise,
m' =[|m+v+at]],=m+ |v].
Hence decryption is successful as long as v is removed by the rounding, i.e. if |[v|| < 1/2. O

It is often in practice more convenient to talk about how much noise we have left until
decryption will fail. We call this the (invariant) noise budget.

Definition 3 (Noise budget). Let v be the invariant noise of a ciphertext ct encrypting
the message m € Ry. Then the noise budget of ct is —logy(2]|v]).

Lemma 3. The function Decrypt, as presented in correctly decrypts a ciphertext
ct encrypting a message m, as long as the noise budget of ct is positive. O

In SEAL v2.2 the user can output the noise budget in a particular ciphertext using the
function Decryptor: :invariant_noise_budget. Note that this will require having access to
the secret key. Users without access to the secret key can instead use the noise simulator (see

Section 8.6)) to estimate the noise.

6.1 Heuristic Estimates for Noise Growth

Homomorphic operations increase the invariant noise in complicated ways. The reader can find
strict upper bounds for the noise growth in the [Appendix] along with proofs, but these bounds
result in poor practical estimates. Instead, in earlier versions of SEAL we estimated noise
growth using much simpler average-case heuristic estimates. However, average-case estimates
are rarely useful, since typically correctness needs to be guaranteed with high probability.
This is why in SEAL v2.2 we have switched to using heuristic upper-bound estimates, that
hold with very high probability. Similar estimates have previously been presented in [14], but
using yet another definition of noise.

The heuristic upper bounds can be obtained by modifying the proofs of the strict upper
bounds in The key idea is to use the canonical norm ||-||*" instead of the usual
infinity norm || - ||, which has the nice property that for any polynomials a, b,

lall < {lall*™ < flally ,  [labl** < flaf " {|b]|*** .

Since the usual (infinity) norm is always bounded from above by the canonical norm, it
suffices for correctness to ensure that the canonical norm never reaches 1/2. For more details
on exactly how the canonical norm works, we refer the reader to [14], 22].



Lemma 4 (Initial noise heuristic). Let ct be a fresh encryption of a message m € Ry. Let
Ny, be an upper bound on the number of non-zero terms in the polynomial m. The noise v in
ct satisfies

t
ol < rt((]q) I[N+ min{B, 67} <4¢§n i \/ﬁ) 7
with very high probability.

Lemma 5 (Addition heuristic). Let ct; and cty be two ciphertexts encrypting my, mo €
Ry, and having noises vi, va, respectively. Then the noise vqqq n their sum ctyqq satisfies
[vadal " < loa|*" + [loa] "

Lemma 6 (Multiplication heuristic). Let cty be a ciphertext of size j1+ 1 encrypting mq
with noise v1, and let cty be a ciphertext of size jo + 1 encrypting ma with noise vy. Let Ny,
and Np,, be upper bounds on the number of non-zero terms in the polynomials my and ma,
respectively. Then the noise vy in the product ct.gu satisfies the following bound:

(" 12n)j1+1 -1 can
\/m_ 1 ||U2H

[Vt “*" < (2||mlHNm1 +tv/3n

V12n —1

1
tv3n (\/12n)j1+j2+1 —1
Vi2n —1 ’

Vizn) 2t
+ <2||m2HNm2 +tv 3n( ) (]| “"

+ 3 [Joa | oz +

with very high probability.

Lemma 7 (Relinearization heuristic). Let ct be a ciphertext of size M + 1 encrypting
m, and having noise v. Let ctpein of size N + 1 be the ciphertext encrypting m, obtained by
the relinearization of ct, where 2 < N +1 < M + 1. Then, the noise vrelin N Ctreyn can be
bounded as

t
[ Vretinl] " < ||v]| " + 5\/§min{B, 60}(M — N)n({ + 1w,
with very high probability.

Remark 1. Tt is worth mentioning that while the heuristics for initial noise and relinearization
look in fact worse than the strict upper bounds (see Appendix), the estimate for multiplication
is much tighter in the heuristic, and will quickly yield much better upper bound estimates
than the strict formula.

Lemma 8 (Plain multiplication heuristic). Let ct = (o, ..., x;) be a ciphertext encrypt-
ing m1 with noise v, and let my be a plaintext polynomial. Let Ny,, be an upper bound on the
number of non-zero terms in the polynomial mo. Let ctypmyuy denote the ciphertext obtained by
plain multiplication of ct with ma. Then the noise Vpmuir 1 ctymuy can be bounded as

vamultHcan S NmQHmZH Hchan .

Lemma 9 (Plain addition heuristic). Let ct = (zo,...,z;) be a ciphertext encrypting my
with noise v, and let my be a plaintext polynomial. Let ctp,qq denote the ciphertext obtained
by plain addition of ct with ma. Then the noise vpaqq M ctpaaq can be bounded as

r(q)
q

[vpadall " < [[0]]*" + == N, [ ma| -



6.2 Summary of noise growth

In SEAL v2.2, we use slightly simplified versions of the heuristic estimates presented in
as it is easy to see that certain terms are insignificant for any reasonable set of
parameters. For a ciphertext ct, with invariant noise v, we denote by v(ct) an upper bound
on |[v||**". For operations that take only one input ciphertext ct, we denote v = v(ct). For
operations that take several inputs cty, ..., cty, we denote v = v(cty). For each operation
we describe a bound for the noise in the output in terms of v, or v, ..., vk, and the encryption
parameters (recall [Table 1.

Some operations, such as AddPlain and MultiplyPlain, take a plaintext polynomial m €
R; as input. In these cases the bound v for the output depends also on the qualities of the
plaintext polynomial, in particular the infinity norm [|m||, and an upper bound N, on the
number of non-zero coefficients in the polynomial m.

The noise growth estimates implemented in SEAL v2.2 are summarized in

Operation Input description Noise bound of output
Encrypt Plaintext m ”T('J) ||| N + % min{B, 60}
Negate Ciphertext ct v
Add/Sub Ciphertexts ct1 and cteo V1 + s

AddPlain/SubPlain| Ciphertext ct and plaintext m v+ "’T(‘Z)NmHmH
MultiplyPlain Ciphertext ct and plaintext m Np||m|lv
Multiply Ciphertexts ct; and cty of sizes tV3n [(12n)j1/21/2 + (12n)j2/21/1
ji+1and ja+1 —|—(12n)<j1+j2)/2]
Square Ciphertext ct of size j Same as Multiply(ct,ct)

Relinearize Ciphertext ct of size K and target| v + % min{B, 60 }(K — L)n(¢{ + 1)w
size L, such that 2 < L < K

AddMany Ciphertexts cty,...,ctg >ivi
MultiplyMany Ciphertexts cti,...,ctg Apply Multiply in a tree-like manner,
and Relinearize down to size 2 after

every multiplication

Exponentiate Ciphertext ct and exponent k& |Apply MultiplyMany to k copies of ct

Table 2: Noise estimates for homomorphic operations in SEAL.

We also take this opportunity to point out a few important facts about noise growth that
the user should keep in mind.

1. Every ciphertext, even if it is freshly encrypted, contains a non-zero amount of noise.

Addition and subtraction have a very small impact on noise.

3. Relinearization increases the noise only by an additive factor. Compare this with multipli-
cation, which increases the noise also by a multiplicative factor. This means, for example,

o



that after a few multiplications have been performed, depending on the decomposition bit
count (recall , the additive factor from relinearization can completely drown into
the noise in the input.

4. The decomposition bit count has a significant effect on both performance (recall
and noise growth in relinearization. Tuning down the decomposition bit count has a posi-
tive impact on noise growth in relinearization, and a negative impact on the computational
cost of relinearization. However, when the entire computation is considered, it is not ob-
vious at all what an optimal decomposition bit count should be, and at which points in
the computation relinearization should be performed. Optimizing these choices is a diffi-
cult task and an interesting research problem. We have included several examples in the
code to illustrate the situation, and we recommend the user to experiment to get a good
understanding of how relinearization behaves.

7 Encoding

One of the most important aspects in making homomorphic encryption practical and useful
is in using an appropriate encoder for the task at hand. Recall from that plaintext
elements in the F'V scheme are polynomials in R;, and homomorphic operations on ciphertexts
are reflected in the plaintext side as corresponding (multiplication and addition) operations
in the ring R;. In typical applications of homomorphic encryption the user would instead
want to perform computations on integers (or real numbers), and encoders are responsible for
converting these integer (or real number) inputs to elements of R; in an appropriate way.

It is easy to see that encoding is a highly non-trivial task. The rings Z and R; are very
different (most obviously the set of integers is infinite, whereas R; is finite), and they are
certainly not isomorphic. However, typically one does not need the power to encrypt any
integer, so we can just as well settle for some finite reasonably large subset of Z and try
to find appropriate injective maps from that particular subset into R;. Since no non-trivial
subset of Z is closed under additions and multiplications, we have to settle for something that
does not respect an arbitrary number of homomorphic operations. It is then the responsibility
of the evaluating party to be aware of the type of encoding that is used, and perform only
operations such that the underlying plaintexts throughout the computation remain in the
image of the encoding map.

7.1 Scalar Encoder

Perhaps the simplest possible encoder is what we could call the scalar encoder. Given an
integer a, simply encode it as the constant polynomial a € R;. Obviously we can only encode
integers modulo ¢ in this manner. Decoding amounts to reading the constant coefficient of the
polynomial and interpreting that as an integer. The problem is that as soon as the underlying
plaintext polynomial (constant) wraps around ¢ at any point during the computation, we are
no longer doing integer arithmetic, but rather modulo ¢ arithmetic, and decoding might yield
an unexpected result. This means that ¢ must be chosen to be possibly very large, which
creates problems with the noise growth. Recall from that the noise growth in most of
the operations, and particularly in multiplication, depends strongly on ¢, so increasing ¢ even
a little bit could possibly significantly reduce the noise budget.

One possible way around this is to encrypt the integer twice, using two or more relatively
prime plaintext moduli {¢;}. Then if the computation is done separately to each of the encryp-
tions, in the end after decryption the result can be combined using the Chinese Remainder



Theorem to yield an answer modulo []¢;. As long as this product is larger than the largest
underlying integer appearing during the computation, the result will be correct as an integer.

In most practical applications the scalar encoder is not a good choice, as it is extremely
wasteful in the sense that the entire huge plaintext polynomial is used to encode and encrypt
only one small integer. The scalar encoder is not implemented in SEAL v2.2 due to its ineffi-
ciency, but it can be constructed as a special case of some of the other encoders by choosing
their parameters in a certain way. These other encoders attempt to make better use of the
plaintext polynomials by either packing more data into one polynomial, or spreading the data
around inside the polynomial to obtain encodings with smaller coefficients.

7.2 Integer Encoder

In SEAL v2.2 the integer encoder is used to encode integers in a much more efficient manner
than what the scalar encoder (Section could do. The integer encoder is really a family of
encoders, one for each integer base B > 2. We start by explaining how the integer encoder
works with B = 2, and then comment on the general case, which is an obvious extension.

When B = 2, the idea of the integer encoder is to encode an integer —(2"—1) < a <2"—1
as follows. First, form the (up to n-bit) binary expansion of |a|, say a,—1...ajap. Then the
binary encoding of a is

IntegerEncode(a, B = 2) =sign(a) - (an—12" ' + ...+ @17 + ao) .

Remark 2. In SEAL v2.2 we only have an unsigned big integer data type (BigUInt), so we
represent each coefficient of the polynomial as an unsigned integer modulo ¢. For example,
the —1 coefficients of the polynomial will be stored as the unsigned integers t — 1.

Decoding (IntegerDecode) amounts to evaluating the plaintext polynomial at x = 2. It is
clear that in good conditions (see below) the integer encoder respects integer operations:

IntegerDecode [IntegerEncode(a, B = 2) + IntegerEncode(b, B =2)] =a+b,

IntegerDecode [IntegerEncode(a) - IntegerEncode(b, B = 2)] = ab.

When the integer encoder with B = 2 is used, the norms of the plaintext polynomials are
guaranteed to be bounded by 1 only when no homomorphic operations have been performed.
When two such encodings are added together, the coefficients sum up and can therefore get
bigger. In multiplication this is even more noticeable due to the appearance of cross terms.
In multiplications the polynomial length also grows, but often in practice this is not an issue
due to the large number of coefficients available in the plaintext polynomials. Things will go
wrong as soon as any modular reduction — either modulo the polynomial modulus 2™ + 1,
or modulo the plaintext modulus ¢ — occurs in the underlying plaintexts at any point during
the computation. If this happens, decoding will yield an incorrect result, but there will be no
other indication that something has gone wrong. It is therefore crucial that the evaluating
party understands the limitations of the integer encoder, and makes sure that the plaintext
underlying the result ciphertext will still be possible to decode correctly.

When B is set to some integer larger than 2, instead of a binary expansion (as was done
in the example above) a base-B expansion is used, where the coefficients are chosen from
the symmetric set [—(B —1)/2,...,(B —1)/2]. There is a unique such representation with
at most n coefficients for each integer in [—(B™ —1)/2,(B™ — 1)/2]. Decoding is obviously



performed by evaluating a plaintext polynomial at z = B. Note that with B = 3 the integer
encoder provides encodings with equally small norm as with B = 2, but with a more compact
representation, as it does not waste space in repeating the sign for each non-zero coeflicient.
Larger B provide even more compact representations, but at the cost of increased coefficients.
In most common applications taking B = 2 or 3 is a good choice, and there is little difference
between these two.

The integer encoder is significantly better than the scalar encoder, as the coefficients in the
beginning are much smaller than in plaintexts encoded with the scalar encoder, leaving more
room for homomorphic operations before problems with reduction modulo ¢ are encountered.
From a slightly different point of view, the binary encoder allows a smaller ¢ to be used,
resulting in smaller noise growth in homomorphic operations.

The integer encoder is available in SEAL v2.2 through the class IntegerEncoder. Its
constructor will require both the plain_modulus and the base B as parameters. If no base is
given, the default value B = 2 is used.

7.3 Fractional Encoder

There are several ways for encoding rational numbers. The simplest and often most efficient
way is to simply scale all rational numbers to integers, encode them using the integer encoder
described above, and modify any computations to instead work with such scaled integers.
After decryption and decoding the result needs to be scaled down by an appropriate amount.
While efficient, in some cases this technique can be annoying, as it will require one to always
keep track of how each plaintext has been scaled. Here we describe what we call the fractional
encoder. Just like the integer encoder above), the fractional encoder is a family
of encoders, parametrized by an integer base B > 2 [I7]. The function of this base is exactly
the same as in the integer encoder, so since the generalization is obvious, we will only explain
how the fractional encoder works when B = 2.

The easiest way to explain how the fractional encoder (with B = 2) works is through a
simple example. Consider the rational number 5.8125. It has a finite binary expansion

5875 =22 4204271 4 972 4 o074,

First we take the integer part and encode it as usual with the integer encoder, obtaining the
polynomial IntegerEncode(5, B = 2) = 22 + 1. Then we take the fractional part 27! +272 +
274 add n (as in to each exponent, and convert it into a polynomial by changing the
base 2 into the variable z, resulting in 2"~ ! + 2"~2 4+ 2”4, Next we flip the signs of each of
the terms, in this case obtaining —z" ' — 2”2 —
[0,1) with finite binary expansion we denote this encoding by FracEncode(r, B = 2). For any
rational number r with finite binary expansion we set

T 2"4. For rational numbers r in the interval

FracEncode(r, B = 2) = sign(r)-[IntegerEncode(||r||, B = 2) + FracEncode({|r|} , B = 2)] ,
where {-} denotes the fractional part. For example,
FracEncode(5.8125,B = 2) = —z" ! — 2" 2 — 2" 4 2% 1.

Decoding works by essentially reversing the steps described above. First, separate the high-
degree part of the plaintext polynomial that describes the fractional part. Next invert the
signs of those terms and shift their exponents by —n. Finally evaluate the entire expression
at x = 2. We denote this operation FracDecode(-, B = 2).



It is not hard to see why this works. As a very simple example, imagine computing 1/2 -2,
where FracEncode(1/2, B = 2) = —2" ! and FracEncode(2, B = 2) = x. Then in the ring R;
we have

FracEncode(1/2, B = 2) - FracEncode(2,B =2) = —z" =1,

which is exactly what we would expect, as FracDecode(1, B = 2) = 1. For a more complicated
example, consider computing 5.8125 - 2.25. We already computed FracEncode(5.8125, B = 2)
above, and FracEncode(2.25, B = 2) = —2" 2 + 2. Then

FracEncode(5.8125, B = 2) - FracEncode(2.25, B = 2)

— (_l,n—l _ :L,n—Q _ $n—4 + £E2 + 1) . (_xn—2 + l’)
_ x2n73 + l,2n74 + x2nf6 ) P xnfl _ l,an _ xn73 + $3 T
— _xn—l _ xn—2 _ 2$n—3 _ xn—4 _ xn—G —|—.%'3 Ltr492.

Finally,
FracDecode(—z" "t — "2 — 22" 3 — "4 — "0 1 43 1 242, B=2)

=[P +r+24+2 a2+ 20 427 4270 _, =13.078125.

There are several important aspects of the fractional encoder that require further clari-
fication. First of all, above we described only how FracEncode(:, B = 2) works for rational
numbers that have finite binary expansion, but many rational numbers do not, in which case
we need to truncate the expansion of the fractional part to some precision, say n¢ bits (equiv-
alently, high-degree coefficients of the plaintext polynomial). Next, the decoding process needs
to somehow know which coefficients of the plaintext polynomial should be interpreted as be-
longing to the fractional part and which to the integer part. For this purpose we fix a number
n; to denote the number of coefficients reserved for the integer part, and all of the remaining
n—n,; coefficients will be interpreted as belonging to the fractional part. Note that n;+n; < n,
and that ny only matters in the encoding process, whereas n; is needed both in encoding (can
only encode integer parts up to n; bits) and in decoding.

Decoding can fail for two reasons. First, if any of the coefficients of the underlying plaintext
polynomials wrap around the plaintext modulus ¢ the result after decoding is likely to be
incorrect, just as in the normal integer encoder (recall . Second, homomorphic
multiplication will cause the fractional parts of the underlying plaintext polynomials to expand
down towards the integer part, and the integer part to expand up towards the fractional part.
If these different parts get mixed up, decoding will fail. Typically the user will want to choose
ny to be as small as possible, as many rational numbers will have dense infinite expansions,
filling up most of the leading ny coefficients. When such polynomials are multiplied, cross
terms cause the coefficients to quickly increase in size, resulting in them getting reduced
modulo ¢ unless ¢ is chosen to be very large.

When B is set to some integer larger than 2, instead of a binary expansion (as was done
in the example above) a base-B expansion is used, where the coefficients are chosen from the
symmetric set [—(B —1)/2,...,(B — 1)/2]. Again, in this case decoding amounts to evaluating
polynomials x = B.

The fractional encoder is available in SEAL v2.2 through the class FractionalEncoder.
Its constructor will require the plain_modulus, the base B, and positive integers n; and n;
with ny +n; < n as parameters. If no base is given, the default value B = 2 is used.



7.4 CRT Batching

The last encoder that we describe is very different from the previous ones, and extremely
powerful. It allows the user to pack n integers modulo ¢t into one plaintext polynomial, and
to operate on those integers in a SIMD (Single Instruction, Multiple Data) manner. This
technique is often called batching in homomorphic encryption literature. For more details and
applications we refer the reader to [, 34].

Batching only works when the plaintext modulus ¢ is chosen to be a prime number and
congruent to 1 (mod 2n), which we assume to be the caseﬁ In this case the multiplicative
group of integers modulo ¢ contains a subgroup of size 2n, which means that there is an integer
¢ € Zy such that ¢?" =1 (mod t), and (™ # 1 (mod t) for all 0 < m < 2n. Such an element
C is called a primitive 2n-th root of unity modulo t. Having a primitive 2n-th root of unity in
Zy is important because then the polynomial modulus z™ + 1 factors modulo ¢ as

P+ 1= (==Y (@ —"Y) (mod ¢),

and according to the Chinese Remainder Theorem (CRT) the ring R, factors as

_ Zyfz] Z[z) CRT A I = P =
ey e - U= =11

All of the isomorphisms above are isomorphisms of rings, which means that they respect
both the multiplicative and additive structures on both sides, and allows one to perform n
coefficient-wise additions (resp. multiplications) in integers modulo ¢ (right-hand side) at the
cost of one single addition (resp. multiplication) in R; (left-hand side). It is easy to describe
explicitly what the isomorphisms are. For simplicity, denote a; = ¢%*1. In one direction the
isomorphism is given by

o)

n—1
Decompose : Ry — H Zi , m(z) — [m(ap), m(aq),...,m(an-1)] .
1=0

The inverse is slightly tricker to describe, so we omit it here for the sake of simplicity. We define
Compose to be the inverse of Decompose. In SEAL v2.2, these isomorphisms are computed
using a negacylic variant of the Number Theoretic Transform (NTT).

When used correctly, batching can provide an enormous performance improvement over
the other encoders. When using batching for computations on encrypted integers rather than
on integers modulo ¢, one needs to ensure that the values in the slots never wrap around
t during the computation. Note that this is exactly the same limitation the scalar encoder
has (recall , and could be solved by choosing t to be large enough, which will
unfortunately cause large noise growth.

SEAL v2.2 provides all of the batching-related tools in the PolyCRTBuilder class. The
constructor of PolyCRTBuilder takes an instance of EncryptionParameters as argument,
and will throw an exception unless the parameters are appropriate, as was described in the
beginning of this section.

8 Encryption Parameters

Everything in SEAL v2.2 starts with the construction of an instance of a container that holds
the encryption parameters (EncryptionParameters). These parameters are:

4 Note that this means t > 2n, which can in some cases turn out to be an annoying limitation.



poly_modulus: a polynomial ™ + 1; n a power of 2;
coeff_modulus: an integer modulus g¢;

plain_modulus: an integer modulus ¢;
noise_standard_deviation: a standard deviation o;
noise_max_deviation: a bound for the error distribution B;
decomposition_bit_count: the logarithm logw of w (Section ;
random_generator: a source of randomness.

Some of these parameters have good default values, and in that sense are not necessary for
the user to set in typical situations (see .

The choice of encryption parameters significantly affects the performance, capabilities,
and security of the encryption scheme. Some choices of parameters may be insecure, give
poor performance, yield ciphertexts that will not work with any homomorphic operations, or
a combination of all of these. In this section we will describe the different parameters and
their impact. We will discuss security briefly in [Section 9] In [Section 8.6] we will discuss the
automatic parameter selection tools in SEAL v2.2, which can assist the user in determining
(close to) optimal encryption parameters for certain use-cases.

8.1 Setting Parameters

Once an EncryptionParameters object has been created, the parameters need to be set. This
can be done using functions such as EncryptionParameters: :set_coeff_modulus. Once all
of the critical parameters have been set, the user needs to call EncryptionParameters: :
validate, which will evaluate the validity and properties of the parameters, and perform a
series of pre-computations on them. The properties of the parameters are stored in an instance
of the EncryptionParameterQualifiers class, which we describe below in Once
any of the parameters is changed, the parameter set gets automatically invalidated, and needs
to be re-validated by calling EncryptionParameters: :validate before it can be used in the
constructors of other classes.

8.2 Default Values

If the user does not specify o or B, they will be set by the constructor of EncryptionParameters
to default ones returned by the static functions

ChooserEvaluator: :default_noise_standard_deviation()

and
ChooserEvaluator: :default_noise_max_deviation() .

Currently these default values are set to 3.19 ~ 8/v/27 and 19.14 = 6 x 3.19, respectively, but
it is easy for a user to change them if they desire to.

If the user does not set the decomposition bit count, the constructor will set this value to
zero. This prevents the creation of any evaluation keys (recall . If no randomness
source is given, SEAL will automatically use std: :random_device.

The user will have to select n by setting the polynomial modulus (EncryptionParameters
: :set_poly_modulus) to a polynomial of the form z" 4 1, where n is a power of 2. For certain
realistic choices of n, SEAL v2.2 contains pre-determined values for ¢, with good security and
performance properties. These can be accessed through the static function

ChooserEvaluator: :default_parameter_options() .



The list that is currently used by default is presented in The security level estimates
use the LWE estimator of [2], which takes into account the recent attack by Albrecht [1], and
in that sense reflects our best understanding of the security at the time of writing this. The
estimates assume o and B to be the default values, and omit issues such as the memory cost
of the attacks. In we will discuss the security properties of SEAL v2.2 in a bit more
detail.

[ n | q [Security estimate (bits)]
2048 260 _ o141 115.1
4096 Q116 _ 918 4 1 119.1
8192 2226 _ 926 4 123.1
16384 2135 _ 933 11 130.5
32768(2889 _ 954 _ 953 _ 952 4 q 127.7

Table 3: Default pairs (n,q) and their estimated security levels.

8.3 Polynomial Modulus

The polynomial modulus (poly_modulus) must be a polynomial of the form z" + 1, where n is
a power of 2. This is both for security (see and performance reasons. Using a larger
n allows for a larger ¢ to be used without decreasing the security level, which in turn increases
the noise ceiling and thus allows for larger ¢ to be used, which is often important for integer
encodings to work (recall . Increasing n will significantly decrease performance, but
on the other hand it will allow for more elements of Z; to be batched into one plaintext when
using PolyCRTBuilder.

8.4 Coefficient Modulus and Plaintext Modulus

Suppose the polynomial modulus is held fixed. Then the choice of the coefficient modulus ¢
affects two things: the noise budget in a freshly encrypted ciphertextﬂ and the security leve]ﬁ

In principle we can take q to be any integer, as long as it is not too large to cause security
problems. However, taking ¢ to be of special form provides huge performance benefits, as we
will now explain. First, if ¢ is of the form 24 — B, where B is an integer of small absolute
value, then modular reduction modulo ¢ can be sped up, yielding overall better performance.

Next, if 2n|(¢ —1), SEAL can use the Number Theoretic Transform (NTT) for polynomial
multiplications, resulting in huge performance benefits perhaps most importantly in relin-
earization and encryption. We use David Harvey’s algorithm for NTT as described in [25],
which additionally requires that 4q < 3, where 3 denotes the word size,

3 — 04Tlog(a)/64]

If both requirements are not met, SEAL v2.2 automatically uses slower algorithms.

Third, if t|(¢—1) (i.e. 7:(q) = 1), then the noise growth properties are improved in certain
homomorphic operations (recall . In principle, the plaintext modulus ¢ can be any
integer, but choosing ¢ to be a power of 2 makes it very easy to have this last property satisfied.

® Bigger q means larger initial noise budget (good).
5 Bigger ¢ means lower security (bad).



The default parameters of satisfy all of these guidelines. They are prime numbers
of the form 24 — B where B is much smaller than 24. They are congruent to 1 modulo 2n,
and not too close to the word size boundary. Finally, r;(¢) = 1 for ¢ that are reasonably large
powers of 2, for example the default parameters for n = 4096 provide good performance for ¢ a
power of 2 up to 2'8. In some cases the user might want to use a particular n, but the default
coefficient modulus for that n is unnecessarily large. In these cases it might be beneficial from
the point of view of performance to simply use a smaller custom g. Note that this is always
safe: with all other parameters held fixed, decreasing ¢ only increases the security level.

Note that when using batching (recall it will not be possible to have t be a
power of 2, as t needs to instead be a prime of particular form. In this case the user can try
to choose the entire triple (n,q,t) simultaneously so that t = 1 (mod 2n) and ¢ satisfies as
many of the good properties listed above as possible.

8.5 Encryption Parameter Qualifiers

Instances of the EncryptionParameters class are given as input to the constructors of tools
such as Encryptor and Decryptor. These constructors need to check whether the param-
eters are valid, determine what optimizations they support, and copy over the results of
some pre-computations. The validity and properties of the parameters are stored within
EncryptionParameters instance in a structure called EncryptionParameterQualifiers,
which is populated by calling EncryptionParameters: :validate.

After the parameters have been validated, the user can call EncryptionParameters: :
get_qualifiers to return a copy of the qualifiers. Note that the only way to change the
qualifiers is to change the encryption parameters themselves to support the particular fea-
tures. Currently EncryptionParameterQualifiers contains 6 qualifiers, which are described

in [Table 4

| Qualifier [ [ Description

parameters_set true if the encryption parameters are valid for SEAL v2.2, otherwise false

enable_relinearization||true if decomposition_bit_count is positive, otherwise false
enable_nussbaumer Describes whether Nussbaumer convolution [I5] can be used for polynomial

multiplication. This is true if poly_modulus is of the form z™ + 1, where n

is a power of 2, and otherwise false. Note that in SEAL v2.2 this is necessarily

true if parameters_set is true, as we only allow polynomial moduli of this form.

enable_ntt true if NTT can be used for polynomial multiplication [25] 29], otherwise false.

See Section [8.4| above for details.

enable_batching true if batching (PolyCRTBuilder) can be used, otherwise false. See Section

for details.

enable_ntt_in_multiply||Not currently used.
Table 4: Encryption Parameter Qualifiers.

The function EncryptionParameters::get_qualifiers returns a copy of the encryp-
tion parameter qualifiers, while EncryptionParameters: :validate actually computes them.
When creating an object such as an Encryptor, its constructor calls EncryptionParameters
::get_qualifiers and checks that parameters_set is equal to true. If not, the encryp-
tion parameters are invalid and an error is thrown. Note that if EncryptionParameters: :
get_qualifiers is called on encryption parameters that are not validated, then the encryp-
tion parameter qualifiers will have parameters_set flag equal to false.



8.6 Automatic Parameter Selection

To assist the user in choosing parameters for a specific computation, SEAL v2.2 provides
an automatic parameter selection module. It consists of two parts: a Simulator component
that simulates noise growth in homomorphic operations using the estimates of and a
Chooser component, which estimates the growth of the coefficients in the underlying plaintext
polynomials, and uses Simulator to simulate noise growth. Chooser also provides tools for
computing an optimized parameter set once it knows what kind of computation the user
wishes to perform.

Simulator Simulator consists of two components. A Simulation is a model of the invariant
noise ||v|| (recall in a ciphertext. SimulationEvaluator is a tool that performs all
of the usual homomorphic operations on simulations rather than on ciphertexts, producing
new simulations with noise value set to a heuristic upper bound estimate according to
Simulator is implemented in SEAL v2.2 by the Simulation and SimulationEvaluator
classes.

Chooser Chooser consists of three components. A ChooserPoly models a plaintext polyno-
mial, which can be thought of as being either encrypted or unencrypted. In particular, it keeps
track of two quantities: the largest coefficient in the plaintext (coefficient bound), and the num-
ber of non-zero coefficients in the plaintext (length bound). It also stores the operation history
of the plaintext, which can involve encryption, and any number of homomorphic operations
with an arbitrary number of other ChooserPoly objects as inputs. ChooserPoly also provides
a tool for estimating the noise that would result when the operations stored in its operation
history are performed, which it does using Simulator, and a tool for testing whether a given
set of encryption parameters can support the computations in its history. ChooserEvalua-
tor is a tool that performs all of the usual homomorphic operations on ChooserPoly objects
rather than on ciphertexts, producing new ChooserPoly objects with coefficient bound and
length bound estimates based on the operation in question, and on the inputs. Furthermore,
ChooserEvaluator contains a tool for finding an optimized parameter set, which we will dis-
cuss below. ChooserEncoder creates a ChooserPoly that models an unencrypted plaintext
(empty operation history), encoded using the integer encoder (recall [Section 7.2)). ChooserEn-
cryptor converts ChooserPoly objects with empty operation history (modeling unencrypted
plaintexts) into ones with operation history consisting only of encryption. These tools are all
implemented in SEAL v2.2 by the ChooserPoly, ChooserEvaluator, ChooserEncoder, and
ChooserEncryptor classes.

Parameter Selection One of the most important tools in Chooser is the SelectParameters
functionality. It takes as input a vector of ChooserPoly objects, a set ParameterOptions of
pairs (n,q), a value for o, and a value for B, and attempts to find an optimal pair (nept, gopt)
from ParameterOptions, together with an optimal value t,p¢, such that that the parameters
are just large enough to support the computations specified by all of the given ChooserPoly
objects. It returns true if appropriate parameters were found, and populates a given instance
of EncryptionParameters with (™"t 4 1, gopt, topt). Note that it will select also an optimal
value for the decomposition bit count if relinearization was used, and also sets the parame-
ters o and B (see below). SelectParameters is implemented in SEAL v2.2 by the function
ChooserEvaluator: :select_parameters.



Recall from that SEAL v2.2 has an easy-to-access (and easy-to-modify) de-
fault list of pairs (n,q), and default values for o and B. The basic version of the func-
tion ChooserEvaluator::select_parameters uses these, but there is also an overload that
lets the user pass their own values to be used instead. When calling ChooserEvaluator: :
select_parameters, both overloads require the user to give a noise gap g (in bits). The
parameters are selected so that even after the computations, with very high probability there
is at least g bits of noise budget left. To only ensure correctness, one can set the noise gap
to 0.

The way the ChooserEvaluator: :select_parameters function works is as follows. First
it looks at the ChooserPoly input(s) it is given, and selects a t just large enough to be sure
that all the computations can be done without reduction modulo ¢ taking place in the plaintext
polynomialeﬂ Next, it loops through each (n,q) pair available in the order they were given,
and runs the ChooserPoly: :test_parameters function every time until a set of parameters
is found that gives enough room for the noise.

If the computation involved relinearization, things are a little bit trickier. Whenever a new
pair (n,q) is selected, the decomposition bit count is set to be the smallest possible so that
|log,, ¢ +1 = 2 (recall . This means that in relinearization the polynomial coefficients
can be split into two base-w components, which offers the best performance at the cost of
higher noise growth, as noise grows in relinearization by an additive factor proportional to w
(recall . If these parameters fail, the decomposition bit count will be decremented
until decryption is expected to succeed, or the decomposition bit count becomes so small that
|log,, ¢]+1 > 5, in which case the outermost loop moves on to the next (n, q) pair. If eventually
a good parameter set is found, the function populates the instance of EncryptionParameters
given to it, and returns true. Otherwise it returns false. The SEALExamples project that
comes with the code contains a detailed demonstration of using the parameter selection tools.

9 Security of FV

9.1 RLWE

The security of the FV encryption scheme is based on the apparent hardness of the famous
Ring Learning with Errors (RLWE) problem [31]. We give a definition of the decision-RLWE
problem appropriate to the rings that we use.

Definition 4 (Decision-RLWE). Let n be a power of 2. Let R = Zlz|/(z™ 4+ 1), and
R, = Zg[z]/(z™ 4+ 1) for some integer q. Let s be a random element in Ry, and let x be
the distribution on R, obtained by choosing each coefficient of the polynomial from a discrete
Gaussian distribution over Z. Denote by Ag . the distribution obtained by choosing a < R,
uniformly at random, choosing e < x, and outputting (a,[a - s + €]q). Decision-RLWE is the
problem of distinguishing between the distribution As, and the uniform distribution on Rg.

It is possible to prove that for certain parameters the decision-RLWE problem is as hard as
solving certain famous lattice problems in the worst case. However, in practice the parameters
that are used are not necessarily in the range where the reduction holds, and the reduction
might be very difficult to perform in any case.

" This makes sense in the context of the integer encoders. Currently automatic parameter selection is only
designed to work with these integer encoders.



Remark 3. While it is possible to prove security results for certain choices of the polynomial
modulus other than z™ + 1 for n a power of 2 (see [31], I8]), these proofs require the error
terms e to be sampled from the distribution y in a way very different from how SEAL does
it. This, and performance reasons, is why we only allow polynomial moduli of the form ™ + 1
for n a power of 2.

In practice an attacker will not have unlimited access to the oracle generating samples in
the decision-RLWE problem, but the number of samples available will be limited to d. We call
this the d-sample decision-RLWE problem. 1t is possible to prove that solving the d-sample
decision-RLWE problem is equally hard as solving the (d —1)-sample decision-RLWE problem
with the secret s instead sampled from the error distribution x [32]. Furthermore, it is possible
to argue [24], 20] that the security level remains roughly the same even if s is sampled from
almost any narrow distribution with enough entropy, such as the uniform distribution on Ro
or Rs, as in SEAL v2.2 (recall [Section 5.7).

It is easy to give an informal argument for the security of the FV scheme, assuming the
hardness of decision-RLWE. Namely, the FV public key is indistinguishable from uniform
based on the hardness of 2-sample decision-RLWE (or rather the hardness of the 1-sample
small secret variant described above). Subsequently, an FV encryption is indistinguishable
from uniform based on the 3-sample decision-RLWE (or rather the hardness of the 2-sample
small secret variant described above), and the assumed uniformity of the public key. We refer
the reader to [32] and [20] for further details and discussion.

9.2 Choosing Parameters for Security

Each RLWE sample (as + e,a) € Rg can be used to extract n Learning with Errors (LWE)
samples [33, 28]. To the best of our knowledge, the most powerful attacks against d-sample
RLWE all work by instead attacking the nd-sample LWE problem, and when estimating the
security of a particular set of RLWE parameters it makes sense to instead focus on estimating
the security of the induced set of LWE parameters. We are only aware of relatively small
improvements to attacks of this type that utilize the ring structure in the RLWE samples.

At the time of writing this, determining the concrete hardness of parametrizations of
(R)LWE is an active area of research (see e.g. [16, 12, 2]) and no standardized (R)LWE
parameter sets exist. The security estimates for the default parameters in [Table 3| only reflect
our best understanding at the time of writing this, and should not be interpreted as definite
security guarantees. We strongly recommend the user to consult experts in the security of
(R)LWE when choosing parameters for SEAL.

9.3 Circular Security

Recall from that in textbook-FV we require an evaluation key, which is essentially
a masking of the secret key raised to the power 2 (or, more generally, to some higher power).
Unfortunately, it is not possible to argue the uniformity of the evaluation key based on the
decision-RLWE assumption. Instead, one can think of it as an encryption of (some power of)
the secret key under the secret key itself, and to argue security one needs to make the extra
assumption that the encryption scheme is secure even when the adversary has access to all of
the evaluation keys which may exist. In [20] this assumption is referred to as a form of weak
circular security.

In SEAL v2.2 we do not perform relinearization by default, and therefore do not require
the generation of evaluation keys, so it is possible to avoid having to use this extra assumption.



However, in many cases using relinearization has massive performance benefits, and — as far
as we are aware — there exist no known practical attacks that would exploit the evaluation
keys.

9.4 Function Privacy

The privacy goal of SEAL is to allow the evaluation of arithmetic circuits on encrypted inputs,
without revealing the input wire values to the evaluator. In particular, no attempt is made to
keep any information hidden from the owner of the secret key. Even in a semi-honest security
model this causes challenges for designing protocols (see e.g. [13]), since the evaluator might
input some private information of its own to the circuit, which needs to be protected from the
owner of the secret key. For example, a semi-honest party can find information about a circuit
that was evaluated on encrypted data simply by looking at the resulting ciphertexts, or — even
better — at resulting ciphertext/plaintext pairs. For example, if no relinearization is used, the
highest power that was computed can be read from the size of the output ciphertext. A
much bigger issue is that noise growth in homomorphic operations depends on the underlying
plaintexts (recall : the owner of the secret key can compute the noise in the output
ciphertext, and deduce information about the circuit, including the inputs of the evaluator.

It is possible to solve these problems and obtain function privacy [3] in a number of ways.
One way already described by Gentry in [2I] is to flood the noise by first relinearizing the
ciphertext size down to 2, and then adding an encryption of 0 with noise super-polynomially
larger than the old noise. An alternative approach, replacing flooding with a soak-spin-repeat
strategy, is given by Ducas and Stehlé in [19]. This technique uses Gentry’s bootstrapping
process to repeatedly re-encrypt the ciphertext. Unfortunately this is slow, and requires the
encryption parameters to be large enough to support bootstrapping (which is not currently
implemented in SEAL). Finally, there are scheme specific function privacy techniques that
can in some cases be much more efficient than the two generic method mentioned above. One
such method for the GSW cryptosystem [23] is described in [6].

Due to its superior performance, we recommend using the noise flooding technique when
necessary. In practice, a “smudging lemma” (see e.g. [4]) can be used together with the heuristic
noise growth estimates implemented in SEAL v2.2 to precisely bound the amount of noise
that needs to be flooded to obtain a given statistical security level. For a concrete example,
we refer the reader to [13].
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Appendix

Initial Noise

Lemma 10. Let ct = (cp,c1) be a fresh encryption of a message m € R;. The noise v in ct
satisfies
ri(q)

tB
lo]] < \ImHJr?(?nJrl)-

Proof. Let ct = (cg, c1) be an encryption of m under the public key pk = (pg, p1) = ([—(as +
€)]q;a). Then, for some polynomials ko, ki, k,

t t
5 (co+c18) = 5 (Am + pou + eg + kog + prus + e1s + ki1gs)

t [ —ri(g)m
=m-+ - (t(q) + pou + €g —i—plus—i-els) + t(ko + k1s)

=m+ p <_rt(Q)m + (—as — e+ kq)u + ep + aus + ew) + t(ko + k1s)

t —
:m+< Tt(q)m—eu—kel—kezs)+t(kg+k:13+k:u),
q

so the noise is

— <—7“t(Q)

meu+61+egs> .
q t

To bound ||v||, we use the fact that the error polynomials sampled from x have coefficients
bounded by B, and that ||s|| = ||u|| = 1. Then

tB
loll < ”é‘”nmu

+ —2n+1).
q( )



Addition

Lemma 11. Let cty = (co,c1,...,¢j) and cty = (do, d1, . .., di) be two ciphertexts encrypting
mi1,mo € Ry, and having noises vi, va, respectively. Then the noise vyqq in their sum ctyqq @S
Vadd = V1 + V2, and satisfies ||vgqql| < |lv1]| + |Jvzl-

Proof. By definition of homomorphic addition, ct,gqq encrypts [my + mal;. Let [my + mal; =
m1 + mg + at for some integer coefficient polynomial a. Suppose WLOG that max (5, k) = j,
so that

Ctadd = (co +do, ..., Cp + di, Cpy1, - - - Cj) -
By definition of noise in cty and cte, we have
t
§Ct1(8) =mq + v1 + ait, gctg(s) = mg + v + ast,
for some polynomials a1, as with integer coefficients. Therefore

t t t

gctadd(s) = 6ct1(s) + gctg(s)
=m1 + v1 + a1t + mo + vo + ast
= [m1 + mg]t + (m1 + mg — [m1 + mg]t) + v + v+ (CL1 + ag)t
= [m1 +ma] +v1 +v2 + (a1 + a2 — a)t,

so the noise is vaqq = v1 + v2, and ||vaqq|| = [|v1 + v2|| < ||v1]| + [|vz]l- 0
Multiplication

Lemma 12. Let cty = (2o, ...,xj,) be a ciphertext of size j1+1 encrypting mi with noise vy,
and let cty = (Yo, .- .,Yj,) be a ciphertext of size jo+ 1 encrypting ma with noise va. Let Ny,

and Ny, be upper bounds on the number of non-zero terms in the polynomials my and ma,
respectively. Then the noise vy in the product ctp satisfies the following bound:

nt nttl —1
ol < [+l + 2+ 2 o

nt ni2tl -1
| el + -
t [ niritietl _1q
3 S0
sullllel + 5 ()

Proof. By definition of homomorphic multiplication the ciphertext ctmuy = (co, ... ¢j+4,) is
such that for 0 < ¢ < j; + j2, for some polynomials ¢; with coefficients in (—%, %], and for
some polynomials A; with integer coefficients,

=[] [ () [ o= () e

q

Also, by definition ctyyy encrypts [mimal;, and that [mime]; = mimse + at for some polyno-
mial a with integer coefficients.



By definition of noise in cty and cto, we have for some polynomials a1, as with integer
coefficients,

t t
gctl(s) =mq +v1 + ait, gctg(s) = mo + v + aot.

We then compute

&Ctmult(s) = (C(]a cee 7Cj1+j2)(5)

t ¢ o
[(q(woyo) +e0 + AOQ) +...+ <q($j1yj2) + €y 4jp + Aj1+j2q> SW”Q}

; J1+72 ' " J1+j2 4 J1+J2 ,
=0

=0 k+l=t 1=0

" ¢ + J1+7j2 4 J1+7j2 '
= 6Ct1<3) . gctg(s) + 5 Z €8 + <Z AZ'SZ> t
=0

=0

QI+ QR+

" J1+72 ' J1+72 ‘
= (m1+v1 +art)(ma +va+ast) + - Y s’ + ( > Aﬁ’) t
K —s i=0
Ji+j2 A
= [mima]; + myva + mavy + viva + viast + veart + — Z €;s"
i=0

Jji+je .
+ <m1a2 + moay + ajast + Z Ajs' — a) t,
i=0

where in the last step we used mimg = [mima]; — at. Thus, we find that the noise in ctyt
is given by
J1+i2 ‘
Umult = M1v2 + mavy + v1vg + (viag + voar )t + — Z €5 .
i=0

To be able to bound the new noise, we first note that

t J1ts2 ; t [ niitietl _ 1
— ; < —( —|. 1
o % _2Q< n—1 ) W

Next, we write a;t = écti(s) — m; — v;, and note that

1
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t
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Finally, using and we can bound the noise growth in multiplication:
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Relinearization

Lemma 13. Let ct be a ciphertext of size M + 1 encrypting m, and having noise v. Let
Ctrelin Of size N + 1 be the ciphertext encrypting m, obtained by the relinearization of ct,
where 2 < N +1 < M + 1. Then, the noise Vel N Ctreyn 1S given by

" M-N-1 ¢
— § : (2)
Urelin = U — 6 e(ij),ichj )
j=0 =0

and can be bounded as

t
[vretinl| < vl + g(M — N)nB(l+ 1)w.
Proof. Relinearization of a ciphertext from size M + 1 to size N + 1, where 2 < N 4+ 1 <
M + 1 consists of M — N ‘one-step’ relinearizations. In each step, the ‘current’ ciphertext
(co,c1,...,cx) is transformed to an intermediate ciphertext ct’ = (cf, ¢}, ...,¢,_,) using the
appropriate evaluation key

evkp = [([—(ak,is + e;m') + wisk]q, ak,i) 1 =0,... ,6] .

In the following step, ct’ becomes the ‘current ciphertext’, and so on until the intermediate
ciphertext produced is of size N + 1, at which point it is output as ctyelin.

The input ciphertext is ct = (co,c1,...,car), and after the first one-step relinearization,
the intermediate ciphertext is ct’ = (¢f, ¢}, ..., c,_;), where

14

l
h=co+ Y evkylil[0)cy), =ci+ > evkylil[llc};
1=0 =0



and c; =¢; for 2 < j < M — 1. So, for some polynomials a; with integer coefficients, where

0<i</l+1,
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Hence, the noise grows by an additive factor —4 > i—o€M,iCy; in a one-step relinearization.
Iterating this process, we find the noise after relinearization:
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Bounding ||vyelin|| is easy:
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Plain Multiplication

Lemma 14. Let ct = (xzo,...,x;) be a ciphertext encrypting mi with noise v, and let mo
be a plaintext polynomial. Let Ny, be an upper bound on the number of non-zero terms in
the polynomial mao. Let ctppmyy denote the ciphertext obtained by plain multiplication of ct
with ma. Then the noise in the plain product ctpmuir 18 Vpmuit = Ma2v, and we have the bound

[vpmuiell < Noms[[mz|[[v]] -



Proof. By definition the ciphertext ctpmus = (mao, ..., mox;). Hence for some polynomials
a, a’ with integer coefficients,

t )
6Ctpmu1t(3) = 6 (mga?() +mox1S+ -+ mngsj)
t .

= ma—ct(s)
q

= mga(my + v + at)
= mimsg -+ mov + moat

= [mima] + mov + (moa — a')t,

where in the last line we used [myms]; = mimg + a’t. Hence the noise is Vpmult = Mov and
can be bounded as
[vpmult|| < Niny [[ma|[|v]] -

Plain Addition

Lemma 15. Let ct = (zo,...,x;) be a ciphertext encrypting m, with noise v, and let mo

be a plaintext polynomial. Let ctyqqq denote the ciphertext obtained by plain addition of ct

with ma. Then the noise in ctpedd S Vpadd = U — @mg, and we have the bound

r¢(q)
vpaaall < llvll + |

m2|| .

Proof. By definition of plain addition we have ctpaqqa = (o + Ama, z1,...,2;). Hence for
some polynomials a, ' with integer coefficients,

t t ;
6Ctpadd(5) = 6 (l’o + Amo + 18+ - + {E]'SJ)

At t :
Z?m2+6($0+$18+"'+1}jsj)

At t
= —mgy + —ct(s)
q q

— T
:m1+v+q7t(q)m2+at
q

rt(q)
q

=mq+mgo+v— ma + at

rt(q)

= [m1 +mals +v— —Zmo+ (a—ad)t,
q

where in the last line we used [mj + ma]y = m; + mgy + at. Hence the noise is

B Tt(Q)
VUpadd = UV — ma
and this can be bounded as (@
Ti\q
[vpadall < [[v]l + . [[ma]| .



Negation

Lemma 16. Let ct be a ciphertext encrypting m with noise v and ctpey be its negation. The

NOISE Vpeg 1M Clpeg 15 gIVEN bY Vpey = —v and we have
[Vnegll = (vl -
Proof. If ct = (co, 1, . . ., ;) then its negation ctpeg = (—co, —c1,...,—cx) = —(co, €1, ..., Ck).
So
t t
actneg(s) = —act(s)
= —(m+ v+ at)

Hence the noise vpeg in ctyeg is —v and ||[vpeg|| = |- 0

Subtraction

Suppose cty and cty are two ciphertexts encrypting m; and me and we want to compute a
ciphertext ctgy, encrypting m; — mga. We could firstly negate cta to obtain a ciphertext ctf,
that encrypts —mg and then perform an addition of ct; and ct}. By viewing the subtraction
operation in this way we can see that the noise growth in subtraction is at most that for
addition, since the noise does not change in norm in negation.

Lemma 17. Let cty and cto be two ciphertexts encrypting mq, meo respectively with noises
v1,v9 respectively. The noise vgyp in the result ctgy is bounded as ||vsupll < [Jv1]| + ||v2]|-

Plain subtraction

By the same argument as for subtraction, the noise growth in plain subtraction is at most
that for plain addition.

Lemma 18. Let ct be a ciphertext encrypting mi1 with noise v, and let mo be a plaintext
polynomial. Let ctyg, denote the ciphertext obtained by plain subtraction of mo from ct.
Then the noise vpsyp M Clpgyy is bounded as

[opsunll < llvll + mal|.

Tt(q) ||
q
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