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Abstract. We present a data-driven verification framework to automat-
ically prove memory safety of heap-manipulating programs. Our core
contribution is a novel statistical machine learning technique that maps
observed program states to (possibly disjunctive) separation logic formu-
las describing the invariant shape of (possibly nested) data structures at
relevant program locations. We then attempt to verify these predictions
using a program verifier, where counterexamples to a predicted invariant
are used as additional input to the shape predictor in a refinement loop.
We have implemented our techniques in Locust, an extension of the
GRASShopper verification tool. Locust is able to automatically prove mem-
ory safety of implementations of classical heap-manipulating programs
such as insertionsort, quicksort and traversals of nested data structures.

1 Introduction

A number of recent projects have shown that it is possible to verify implemen-
tations of systems with complex functional specifications (e.g. CompCert [27],
miTLS [6], seL4 [24], and IronFleet [19]). However, this requires highly skilled
practitioners to manually annotate large programs with appropriate invariants.
While there is little hope of automating the overall process, we believe that this
annotation work could be largely automated.

A key problem in verification of heap-manipulating programs is the inference
of formal data structure descriptions. Separation logic [33, 36] has often been
used in automatic reasoning about such programs, as its frame rule favors compo-
sitional reasoning and thus promises scalable verification tools. However, the re-
sulting techniques have often traded precision and soundness for automation [12],
required extensively annotated inputs [20, 31, 35], or focused on the restricted
case of singly-linked lists (often without data) [3, 5, 7, 9, 13,17,18,29,34].

We follow earlier work and infer likely invariants from observed program
runs [14–16, 39–43]. At its core, finding a program invariant is searching for a
general “concept” (in the form of a formula) that overapproximates all occurring
program states. This is similar to many of the problems considered in statistical
machine learning, and recent results have shown that program analysis questions
can be treated as such problems [15,16,22,32,38–41]. With the exception of [32,38],
these efforts have focused on numerical program invariants.

We show how to treat the prediction of formulas similarly to predicting natural
language or program source code in Sect. 3. Concretely, we define a simple
grammar for our abstract domain of separation logic formulas with (possibly
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Fig. 1: Three heap graphs.

nested) inductive predicates. Based on a set of observed states, a formula can then
be predicted starting from the grammar’s start symbol by sequentially choosing
the most likely production step. As our grammar is fixed, each such step is a
simple classification problem from machine learning: “Considering the program
states and the formula produced so far, which is the most likely production
step?” Our technique can handle arbitrary (pre-defined) inductive predicates
and nesting of such predicates, and can also produce disjunctive formulas.

We show how to use this technique in a refinement loop with an off-the-
shelf program verifier (GRASShopper [35]) to automatically prove memory safety
of programs in Sect. 4. We experimentally evaluate our approach in Sect. 5.
There, we show that our shape analysis performs well on automatically generated
synthetic data sets similar to our training data. Furthermore, we show that Locust
is able to fully automatically verify programs from a standard test suite that
are beyond the capabilities of other tools. Finally, we evaluate our method on a
selection of programs handling nested data structures, which are at the core of
much low-level code such as device drivers [5].
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Fig. 2: Syntax tree of ∃p.Π : ls(x, p, . . .)∗
ls(p, p, . . .) ∗ emp. Expansion of Π
skipped, terminal symbols underlined,
boxes indicate result of a single gram-
mar production, circled indices indicate
the order of productions.

Our central goal is to predict a sep-
aration logic formula describing the
data structures used at a given pro-
gram location from a set of observed
program states. A core requirement is
that the predicted formula should gen-
eralize well, i.e., also describe differ-
ent, but structurally similar program
states. For this, we first convert pro-
gram states into heap graphs, in which
memory locations are nodes, pointers
are edges and program variables are
node labels (we drop all non-heap in-
formation). As examples, consider the
three graphs in Fig. 1, representing
program states with a program vari-
able x. These three heap graphs can
be described by the separation logic
formula ∃p.Π : ls(x, p, . . .) ∗ ls(p, p, . . .) ∗ emp. While we will discuss Π below, the
remainder of the formula means that there is a heap location p such that there is
a singly linked list from x to p and a disjoint list from p to itself. In this section,
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we discuss in detail how our method proceeds on the example graphs; the general
method and technical details are discussed in the following sections.

Our method predicts this formula by constructing it iteratively, following its
syntactic structure. We predict fromulas from a fragment of separation logic
described by a grammar (cf. Fig. 4). The syntax tree for the predicted formula
in this grammar is shown in Fig. 2. We generate formulas by starting with a
singleton tree containing the grammar’s start symbol and repeatedly expanding
the leftmost leaf nonterminal in the syntax tree. At each step, the grammar allows
only a few expansion rules, and we use a machine learning component to predict
the next expansion step based on the partial syntax tree generated so far and
the heap graphs provided as input. These predictions are made on features that
represent general structural information about graph properties such as cyclicity,
connections between labeled nodes, etc. This component is trained beforehand
on a large amount of automatically generated, program-independent data (cf.
Sect. 3.3). Thus, all of our predictions are based on learned patterns that were
observed in the training data, and do not depend on hardcoded rules.

Initially, the syntax tree contains only ϕ. In production step 1 , the root
nonterminal ϕ can be expanded to either ∃V.ϕ or Π : Σ. Intuitively, choosing
the former allows us to introduce a label for a node that we believe we will
need to reference later in the procedure. To decide which production to choose,
we extract a feature vector for each heap node that contains information about
the number of incoming and outgoing edges and distance to other nodes with
labels. Based on these features, our method predicts that we should introduce an
existential quantifier for a fresh variable name (in this case p), and computes that
it is most likely to refer to node 3 in the leftmost graph (resp. 8 in the second and
10 in the third) in Fig. 1. We attach the label p to these nodes for the remainder
of the procedure, and extend the syntax tree according to the production ∃p.ϕ.

Next, in step 2 , we expand the newly obtained ϕ nonterminal using the same
procedure, but with a feature vector modified by the newly introduced label. This
time, the production Π : Σ is chosen. Π is a “pure” formula (i.e., not concerning
heap shapes, but equalities between program variables and similar information),
which we deterministically compute (cf. Sect. 3.3). We thus focus on Σ, the
“spatial” formula describing heap shapes.

In step 3 , the choice is between emp (implying that we believe that we are
done describing the heap) and σ ∗ Σ, which means that we predict that there
are more heap regions to describe. We extract a feature vector summarizing
structural knowledge about the heap graphs, (e.g., “are there nodes with in-
degree i and out-degree j”) and syntactic knowledge about the formula (e.g.,

“how many program variables have not been used yet in the formula”). Based on
this, we predict that Σ should be expanded to σ ∗Σ, where σ is a “heaplet” that
describes a single shape on the heap.

Now, in step 4 , we choose whether the next heap region we describe is a list
or a tree. We use similar features as for Σ to predict that σ should be expanded
to ls(E,E, . . .),6 i.e., we predict that there is at least one list in the heap.

6 We will discuss the role of . . . in Sect. 3.2.
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The E (expression) nonterminals declare where this list begins and ends, and
can be expanded to either a variable or the special 0 value. To make choices in
steps 5 and 6 , we extract a separate feature vector for each program variable and
0, again combining knowledge from the heap graphs (e.g., “are there nodes with
in-degree i and out-degree j reachable from v”) and from the partially generated
formula (e.g., “has v already been used in the formula”, . . . ). From these features,
we predict the most likely identifier to expand E with. Our predictor chooses
x here, but could equally well return p. Next, we need to expand the second E
nonterminal. Here, we additionally consider a “reachable from syntactic sibling”
feature, which allows our system to correctly rule out x and instead choose p.

The process continues for the remaining nonterminals in the same manner,
using a frame inference to compute the footprint of already generated predicates
p(v1, . . . , vn) (i.e., heap nodes described by p). For instance, for the leftmost graph
of Fig. 1, after predicting ls(x, p, . . .) we compute its footprint as {1, 2}. We use
this information by restricting heap graph feature extraction to nodes outside of
the footprint of already generated predicates; this provides enough information
for the system to make progress and not get “stuck” predicting the same things
repeatedly. Eventually (step B ), we predict that Σ should be expanded into emp,
indicating the empty heap.

3 Predicting Shape Invariants from Heaps

In Sect. 3.1, we first present a general technique to predict derivations in a
grammar G from a set of objects H, given functions that compute features from
H. We then show how to apply this to our setting in Sect. 3.2, using a grammar for
separation logic as G and heap graphs as input objects, and discuss the features
used. Practical aspects of extending this core technique to a useful shape analysis
tool (e.g., how to generate training data) are discussed in Sect. 3.3.

3.1 General Syntax Tree Prediction

Let G be a context-free grammar, S the set of all (terminal and nonterminal)
symbols ofG, andN just the nonterminal symbols. We assume that every sentence
generated by G has a unique syntax tree, which we represent as a tuple T =
(A, g(·), ch(·)) where A = {1, . . . , A} is the set of nodes for some A ∈ N, g : A →
S maps a node to a terminal or nonterminal symbol from the grammar, and
ch : A → A∗ maps a node to its direct children in the syntax tree. A partial
syntax tree T<a is a syntax tree T restricted to nodes {1, . . . , a− 1}, where the
ordering on nodes comes from the order in which they are predicted.

We assume there is an underlying unknown distribution p(T | H). This
matches the observation that in our setting, there is no unique “correct” formula
describing a set of heap graphs. Instead, many formulas (from the trivial “true”
to formulas without inductive predicates, concretely describing the full observed
heap) are valid candidates. Our problem is to learn this distribution, so that we
can predict a syntax tree T given a set of objects H. As the set of valid syntax
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trees is extremely large, simply learning a mapping from inputs to a previously
enumerated set of syntax trees is impractical. Instead, we learn this distribution
following a technique that predicts source code from natural language [2]. The key
idea is that instead of considering the probability of the full tree, we decompose
the problem into learning the probability distributions for productions in our
grammar, conditional on the inputs and the partial syntax tree generated so far.

p(T | H) '
∏

{a∈A|g(a)∈N}

p(ch(a) | H, T<a)

This decomposition allows us to treat the problem as a sequential prediction
task in which we predict the syntax tree in a depth-first left-to-right node order.
A further simplification step to aid learning is to not operate directly on input
objects and syntax trees, but instead to compute a feature vector encoding
existing domain knowledge f = φN (H, T<a) ∈ RDN (where DN is the number of
features for N) that depends on the considered nonterminal N , the input objects
H and the partial syntax tree T<a generated so far.7 The learned probability
distribution is thus p(T | H) '

∏
{a∈A|g(a)∈N} p(ch(a) | φg(a)(H, T<a)).

We use two different models for these per-nonterminal probability distribu-
tions, depending on the production rules for N in G. If N has a fixed number of
production rules in G (for example, ϕ → ∃V.ϕ | Π : Σ) then we view this as a
standard multiclass classification task, i.e, where a probability is assigned to each
allowed production (“class”) based on a feature vector. If N can be expanded to
any terminal from a dynamic set (for example E, which stands for any variable in
scope at this point), then we instead learn a function that assigns a score to each
production. We then obtain a probability distribution over the productions from
these scores by a normalization procedure (see below). In both cases, we have
a PredictorN (f ; θ) function for each nonterminal N that assigns probabilities
to each production allowed by G based on the input feature vector. θ denotes
learnable parameters of this function. In practice, we use a neural network with
one fully connected layer for the classification tasks and a two layer network for
the ranking tasks, such that θ consists of the weights used in each layer.

The pseudocode for this procedure PlatypusCore is given in Alg. 1, which is
initially called with a syntax tree containing only the grammar’s start symbol.
Note that Alg. 1 is entirely independent of the semantics of the generated syntax
tree. All domain knowledge about the meaning of the generated syntax and how it
is related to the input objects needs to be encapsulated in the construction of φN ,
which extracts features to be used by the generic machine learning components.
We discuss our choices for φN below.

To train the overall system, we assume we are given a training set of (T , H)
pairs drawn from the desired distribution (we discuss the details of this procedure
for our setting in Sect. 3.3). To obtain training data for the individual PredictorN

7 While we have experimented with avoiding this simplification to side-step the need for
feature engineering by operating directly on input graphs [28], the resulting system
was substantially harder to train and slightly less precise, as it had to learn domain
knowledge from the training data.
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Algorithm 1 Pseudocode for PlatypusCore (extension of [2])

Input: Grammar G, input objects H, (partial) syntax tree T = (A, g, ch), nonterminal
node a to expand

1: N ← g(a) {nonterminal symbol of a in T }
2: f ← φN (H, T<a) {compute features (see Sect. 3.2)}
3: P ← most likely production N → S∗ from G considering PredictorN (f)
4: T ← insert new nodes into T according to P
5: for all children a′ ∈ ch(a) labeled by nonterminal do
6: T ← PlatypusCore(G,H, T , a′)
7: return T

functions, we follow our PlatypusCore procedure. For each syntax tree node a
labeled with a nonterminal N , we extract the feature vector f = φN (H, T<a),
but retrieve the chosen production rule P from the ground truth syntax tree T
to generate a pair (f , P ) which can be used to train the classifier or ranker for
nonterminal N .

3.2 Predicting Separation Logic Formulas

To use the PlatypusCore algorithm for shape analysis, we need to specify the
input objects H, the output grammar G, and the feature extraction function φN

and predictor PredictorN for each nonterminal.

Inputs. Our inputs are directed—possibly cyclic—graphs representing the heap
of a program and the values of program variables. Intuitively, each graph node v
corresponds to an address in memory at which a sequence of pointers v0, . . . , vt
is stored.8 Edges reflect these pointer values, i.e., v has edges to v0, . . . , vt la-
beled with 0, . . . , t. The node 0 is special (corresponding to the null pointer in
programs) and may not have outgoing edges. Furthermore, we use unique node
labels to denote the values of program variables PV and auxiliary variables V,
which can be introduced by existential quantification.

Definition 1 (Heap Graphs). Let PV be a set of program variables and V be
a set of (disjunct) auxiliary variables. The set of Heap Graphs H is then defined
as 2N × 2(N\{0})×N×N × (PV ∪ V → N).

Outputs. We consider a fragment of separation logic [33,36]. Our method allows
the separating conjunction ∗, list-valued points-to expressions v 7→ [e1, . . . , en],
existential quantification and higher-order inductive predicates [5], but no −∗. As
pure formulas, we only allow conjunctions of (dis)equalities, and use the constant
0 as the special null pointer. We will only discuss the singly-linked list predicate
ls and the binary tree predicate tree in the following, though our method is
applicable to generic inductive predicates. The following grammar describes our
formulas, where nonterminals V and PV can be expanded to any terminal from
the corresponding sets.

8 Here, we discard non-pointer values.
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ϕ ::= ∃V.ϕ | Π : Σ Σ ::= emp | σ ∗Σ σ ::= ls(E,E, λV,V,V,V → ϕ)

Π ::= true | π ∧Π π ::= E = E | E 6= E | tree(E, λV,V,V,V → ϕ)

E ::= 0 | V | PV | V 7→ [E . . . E] | PV 7→ [E . . . E]

Semantics are defined as usual for separation logic, i.e., h |= σ1 ∗ σ2 for some
h = (V,E,L) ∈ H if h can be partitioned into two subgraphs h1, h2 such that
h1 (resp. h2) is a model of σ1 (resp. σ2) after substituting variables in σ1 and
σ2 according to L. The empty heap emp is true only on empty subgraphs, and
v 7→ [e1, . . . , en] holds iff V = {v} and for all 1 ≤ i ≤ n, there is some edge (v, i, ei).
For detailed semantics, see [33,36]. The semantics of inductive predicates are the
least fixpoint of their definitions, where nested formulas describe the shape of a
nested data structure. For example, we define ls and tree as follows.

ls(x, y, ϕ) ≡(x = y) ∨ (∃v, n.x 7→ [v, n] ∗ ls(n, y, ϕ) ∗ ϕ(x, y, v, n))

tree(x, ϕ) ≡(∃v, l, r.l 6=0 ∧ r 6=0:x 7→ [v, l, r] ∗ tree(l, ϕ) ∗ tree(r, ϕ) ∗ ϕ(x, v, l, r))

∨ (∃v, r.r 6=0:x 7→ [v, 0, r] ∗ tree(r, ϕ) ∗ ϕ(x, v, 0, r))

∨ (∃v, l.l 6=0:x 7→ [v, l, 0] ∗ tree(l, ϕ) ∗ ϕ(x, v, l, 0))

∨ (∃v.x 7→ [v, 0, 0] ∗ ϕ(x, v, 0, 0))

Note that our definition of ls implies that ls(x, x) holds both for empty list
segments as well as cyclic lists, and tree(x) implies that x 6= 0. We use > ≡
λv1, v2, v3, v4 → true : emp to denote “no further nested data structure”. Thus,
ls(x, y, λf1, f2, e1, e2 → tree(e1,>)) describes a list of binary trees from x to y.

Example 2. A “pan-handle list” starting in i2 is described by ϕ(i1, i2, i3, i4) ≡
∃p.ls(i2, p,>)∗ ls(p, p,>), where an acyclic list segment leads to a cyclic list. Here,
p is the existentially quantified node at which “handle” and “pan” are joined.
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Fig. 3: Tree of panhandle lists

The formula ψ(x) ≡ tree(x, ϕ) describes
a binary tree whose nodes in turn contain
panhandle lists. An example of a heap satis-
fying the formula ψ is shown in Fig. 3. Blue
nodes are elements of the tree data struc-
ture, having three outgoing edges labeled
0, 1, 2. Each of the green boxes in Fig. 3
corresponds to a subheap that is described
by the subformula ϕ. In each of these sub-
heaps, one node is labeled with p, which is
not a program variable, but introduced through the existential quantifier in ϕ.

We found that our procedure PlatypusCore was often unnecessarily imprecise
when generating the pure subformula Π and 7→ atoms, which can simply be com-
puted deterministically. Thus, we restrict our machine learning-based component
to handle inductive predicates, and generate Π deterministically using a nullness
and aliasing analysis (see Sect. 3.3). While this can lead to predicting ls(x, y)
even if x.next = y in all observed states, our deterministic extension procedure
then yields x 6= y ∧ x.next = y. Our grammar thus simplifies to Fig. 4, where
Π is now a terminal symbol.
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ϕ := ∃V.ϕ | Π : Σ Σ := emp | σ ∗Σ
E := 0 | V | PV σ := ls(E,E, λV,V,V,V → ϕ) | tree(E, λV,V,V,V → ϕ)

Fig. 4: Grammar used by our Platypus procedure.

Predicting Flat Formulas We will first discuss the definitions of φN for the
case where the input is a single graph h with nodes V , and predict formulas from
a restricted separation logic grammar without nesting.

For any syntax node a, we define I(T<a) as the set of identifiers that are in
scope at point a in the partial syntax tree. Similarly, D(T<a) ⊆ I(T<a) is the set
of “defined” identifiers that occur as first argument of any predicate, following
the intuition that ls(x, y) and SLtree(x) define the data structure starting at x.

An important class of features is based on the notion of n-grams of heap
graphs. A 1-gram simply describes the in-degree and out-degree of some node v,
i.e., is a pair (indeg(v), outdeg(v)) ∈ N2. n-grams extend this idea to a sequence
of n connected nodes in a heap graph, e.g., a 2-gram is a pair of the 1-grams
for two nodes connected by an edge in h. Based on this, we also define a refined
measure of depth. For a path v1 . . . vt in the heap graph, we define its 1-gram
depth as the number of times the 1-gram changes, i.e., |{i ∈ {1 . . . t − 1} |
indeg(vi) 6= indeg(vi+1) ∨ outdeg(vi) 6= outdeg(vi+1)}|. Then, depth(v) is the
minimal depth of paths leading from a node labeled by a variable in PV ∪V to v.
In our method, we extend 1-grams by this depth notion, i.e., represent each node
by a (indeg(v), outdeg(v), depth(v)) triple. Intuitively, this information helps to
discover the level of data structure nesting. As an example, consider Fig. 3 again.
There, nodes 1, 10, 5, 15 and 11 have 1-gram depth 0, nodes 3, 4, 13, 6, 7 and 12
have 1-gram depth 1 (note that we haven’t drawn the edges to 0 for some “tree”
nodes), and nodes 8, 9, 2, and 14 have 1-gram depth 2.

As features of a heap graph, we use presence of n-grams in that graph, only
considering the n-grams observed at training time. Thus for the graph in Fig. 3,
we obtain 1gram(0,3,0) = 1 (cf. node 1), 1gram(1,3,1) = 1 (cf. node 3) and so on.

Σ, σ Nonterminals. Intuitively, the production choices for these nonterminals
depend on the structure of the heap graph that has not been described by the
partial syntax tree generated so far. As discussed above, we compute the footprint
of (i.e., those heap nodes described by) already predicted predicates. We denote
the set of nodes covered by predicates predicted up to syntax node a as V<a.

Using this, we compute features for Σ, σ as the 1-grams and 2-grams from
above restricted to the nodes V \ V<a, i.e., those nodes that are not covered by
the data structures described by the partial formula predicted so far. Their node
degrees, contained in the 1-gram features, are indicators of the data structures
present in the remaining heap. Additionally, we also include a feature reporting
the number of identifiers not defined yet, i.e., |I(T<a) \ D(T<a)|.

E Nonterminals. Here, we pick an expression as argument to a predicate. This
decision depends on how well the part of the heap graph reachable from the
expression matches the semantics of the surrounding predicate and possibly
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already predicted other arguments. The set of legal outputs differs at each syntax
node a: When making a prediction for E at node a, the set of legal outputs is
I(T<a) ∪ {0}; i.e., the set of all identifiers that are in scope at this point and 0,
which varies for each prediction. Thus, we treat this as a ranking task and, unlike
the earlier case where we had a single feature vector, we compute one feature
vector fE,z for each z ∈ I(T<a) ∪ {0}.

To this end, we compute 1-gram and 2-gram features as above for each
expression z separately, restricted to those heap graph nodes reachable from the
node labeled by z. We also extract boolean features signifying if z is part of a
non-trivial strongly connected component of the heap graph, or has a path to
a strongly connected component. Additionally, to relate z to already predicted
arguments of the same predicate, we define the sequence of “enclosing defined
identifiers” e1, . . . , et ∈ I(T<a), i.e., identifiers appearing in predicates enclosing
the currently considered node a. As an example, consider the partially predicted
formula ls(x,E, . . .), where we are interested in predicting the expression at
E. Here, we have e1 = x (for nested data structures, e2, . . . correspond to the
identifiers chosen in the outer data structures). We use a boolean feature to
denote reachability of (resp. from) each e1, . . . , et from (resp. of) z.

Furthermore, we refine our notion of reachability. We say that v “reaches” v′

if there is path v = v0, . . . , vt = v′ in the heap graph. If furthermore no v1 . . . vt−1
is labeled by another identifier, we say that v “directly reaches” v′. If all edges
used on the path have the same label, then we say that v “simply reaches” v′.
Finally, we also say that x “syntactically reaches” y if our partial syntax tree
T<a contains a predicate p(x, . . . , y, . . .).

Thus, for an identifier z labeling heap graph node v, we use these features:

– The frequency of 1- and 2-grams reachable from v.
– v is part (resp. reaches a node that is part) of a strongly connected component

of the graph.
– v reaches (resp. reaches directly, simply, or syntactically) the enclosing iden-

tifier ei for i = 1 . . . t.
– v is reached (resp. reached directly, simply, or syntactically) by the enclosing

identifier ei for i = 1 . . . t.

To implement PredictorE , we use a neural network NN (with learnable param-
eters θE) to compute scores sz = NN(fE,z; θE) for each identifier. We normalize
these scores using the softmax function to get a probability distribution over
identifiers (a common trick to reduce the influence of outliers). The probability

of expanding E by z is thus p(z) = exp(sz)∑
z′∈I(T<a)∪{0} exp(sz′ )

.

ϕ Nonterminals. Here, we need to decide whether to declare new identifiers via
existential quantification, so that we can refer to nodes not labelled by program
variables (e.g., for panhandle lists). Thus, we not only predict that we need a
quantifier, but also by which graph node it should be instantiated. To use this
information later on, we allow modifying the input H after a production step
(between line 4 and 5 of PlatypusCore). In this case, we add the newly introduced
identifier as a label to the corresponding node.
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We thus predict, independently for each node v ∈ V , the probability that it
is referred to by a new existential variable. We proceed similar to the E case and
compute a feature vector fϕ,v for each node v ∈ V . As features we again use
standard graph properties, such as membership in a strongly connected compo-
nent, existence of labels for a node, its in-degree and out-degree. Additionally,
we also use features comparing these values to each nodes’ direct neighbors, i.e.,
“has higher in-degree than average in-degree of neighbors”.

To make a prediction, we use a neural network NN (with learnable parameters
θϕ) to compute a score sv = NN(fϕ,v; θϕ). Unlike the E case where we have
to choose one option from many, here each v is an independent decision, and

so we use the sigmoid function9 p(v) = exp(sv)
1+exp(sv)

) to get the probability that

v is labelled by a new identifier. When choosing a production for ϕ, we thus
compute probabilities for each v independently and return arg maxv p(v) as the
probability of declaring a fresh identifier. If more identifiers are required, they
can be added in subsequent grammar expansion steps.

Predicting Nested Formulas We now discuss the general case, in which we
have several input heap graphs H, and data structures may in turn contain
other data structures. This requires us to make predictions that are based on
the information in all graphs, and sometimes on several subgraphs of each of
the graphs. As an example, consider again the heap in Fig. 3, and imagine
that we have successfully predicted the outer part of the corresponding formula,
i.e., tree(x, λi1, i2, i3, i4.ϕ), and are now trying to expand ϕ. This subformula
needs to describe all the subheaps corresponding to the contents of the green
boxes in Fig. 3. Again, we modify the input H to reflect the newly introduced
identifiers. So for our example, we would replace H with one heap graph with
labels {x 7→ 1, i1 7→ 3, i2 7→ 8, i3 7→ 0, i4 7→ 0} for the leftmost box, one with
labels {x 7→ 1, i1 7→ 1, i2 7→ 2, i3 7→ 3, i4 7→ 4} for the second box, and so on.

Everything but ϕ Nonterminals. We use the same features from Sect. 3.2, but
lift them to handle a set of heap graphs H. We compute feature vectors for each
heap graph independently as before, and then merge them into a new single
feature vector by computing features based on the maximum fmax , minimum
fmin , and average value favg across all H for each feature f . We also use the
same PredictorN functions.

ϕ Nonterminals. This covers the case in which we predict that we need to insert
an existential quantifier. In Fig. 3, this is the prediction of ∃p, where p corresponds
to one node in each of the green boxes. We again lift the feature extraction as
mentioned above, but as the number of nodes may differ between the different
heap graphs, we cannot simply lift the Predictorϕ from above.

This problem is a basic form of the structured prediction problem [4]. Suppose
there are R heap graphs. For each of the graphs, there is a set of nodes Vr which

9 Note that the softmax function used in the E case is the generalization of the sigmoid
function to many values.
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may require an existential quantifier to be described in our setting (in Fig. 3,
these are the contents of the green boxes). Let yv be a boolean denoting the
event that a new identifier is introduced for node v. We train a neural network
like in the single-heap case so that the probability of introducing an existentially

quantified variable for node v is p(yv = 1) = exp(sv)
1+exp(sv)

, where sv is the score

output by the neural network.
We now need to compute the probability of introducing a new identifier (for

all graphs) in terms of the scores sv (which only take one graph into account). We
first set the probabilities of illegal events (i.e., predicting that one graph requires
an existential quantifier, but another one does not) to 0. Then, the probability of
not declaring a variable is

∏
1≤r≤R

∏
v∈Vr

(1− p(yv = 1)) =
∏

1≤r≤R
1
Zr

, where
Zr =

∏
v∈Vr

(1 + exp(sv)). The probability of the event yrv of selecting exactly
node v from graph r is

p(yrv = 1) =
exp(sv)

1 + exp(sv)

∏
v′∈Vr,v′ 6=v

1

1 + exp(sv′)
=

exp(sv)

Zr
.

As the choice of node from each graph is independent given that we are declar-
ing a new identifier, the probability of choosing the set of nodes {vr}1≤r≤R
is the product

∏
1≤r≤R

exp(svr )
Zr

. Noting that all legal joint configurations have
the same denominator

∏
r Zr, we can drop the denominator and compute the

normalizing constant for the constrained space later. The total unnormalized
probability of declaring a variable is the sum of the unnormalized probabilities
of all ways to choose exactly one node from each graph r, which can be rewritten
as

∏
1≤r≤R

∑
v∈Vr

exp(sv). Normalising this, the probability of not introducing

an existential quantifier is 1
1+

∏
1≤r≤R

∑
v∈Vr

exp(sv)
while the probability of intro-

ducing an existential is
∏

1≤r≤R

∑
v∈Vr

exp(sv)

1+
∏

1≤r≤R

∑
v∈Vr

exp(sv)
.

To make predictions for all graphs at the same time, we use the above to
decide whether to introduce an existential quantifier. If not, we choose the Π : Σ
production. If we decide to use the ∃V.ϕ production, then we draw one node
from each graph according to a softmax over the scores; i.e., the probability of

choosing node v in graph r is exp(sv)∑
v′∈Vr

exp(sv′ )
.

3.3 Shape Analysis with Platypus

To obtain a shape analyzer, we have extended the procedure PlatypusCore to also
produce disjunctive invariants and deterministically compute pure subformulas.
Finally, whereas Alg. 1 selects a production “greedily” in line 3 (i.e., it will always
pick the most likely one), we have generalized this behavior to instead also sample
productions using the probabilities obtained from the PredictorN function. This
allows to iteratively obtain more and more formulas from Platypus, recovering
from cases where the system is uncertain about the correct formula.

11



Training the Analyzer Training the logistic regressors and neural networks
from above requires large amounts of training data, i.e., sets of heap graphs
labeled with corresponding formulas. To obtain this data, we generate synthetic
data by fixing a small set of program variables PV (typically of size 2 or 3) and
enumerate semantically valid derivations of formulas in our grammar, similar in
spirit to [23]. Then, we enumerate models for each formula by expanding inductive
predicates until only 7→ atoms remain. From this we read off heap graphs by
resolving the remaining ambiguous possible equalities between variables. The
result is a set of pairs (ϕ,H) such that h |= ϕ for every h ∈ H. We compute the
unique syntax tree Tϕ of each ϕ to get the desired training data pairs (Tϕ, H).

Pure Subformulas We use a deterministic procedure to expand the nontermi-
nal Π describing the pure part of our formulas, using simple aliasing and nullness
analyses. Namely, for all pairs of identifiers x, y ∈ PV ∪ {0}, we check if x = y
or x 6= y holds in all input heap graphs. Similarly, for all fields f and x 6= 0, we
consider the possible equalities x.f = y. Π is then set to the conjunction of all
(dis)equalities that hold in all input graphs.

Handling Disjunctions We found disjunctive separation logic formulas to be
needed even for surprisingly simple examples, as in many cases, the initial or
final iteration of a loop requires a different shape description from all other steps.
In our setting, the problem of deciding how many and what disjuncts are needed
can be treated as a clustering problem of heap graphs. In machine learning, the
clustering problem is the task of grouping a set of samples in such a way as to
group “similar” samples together. The notion of simlarity depends on the target
application and is normally defined through a distance measure. A widely used
and effective clustering method is k-means clustering, where the aim is to find
k cluster centers such that the sum of the distance of every point to the closest
cluster center is minimized.

For our setting, we convert the input heap graphs into feature vectors cap-
turing reachability between program variables and use the Euclidean distance
between these feature vectors as a distance measure between graphs. Following
our notion of different kinds of reachability from above, we define a function
rh(u, v) ranging from 0 if there is no connection between the nodes labeled by u
and v and 1 if u and v are labels on the same node, with steps for different kinds of
reachability. Using this function, we define fh as the vector 〈rh(u, v)〉u,v∈PV for
some fixed order on PV. In our implementation, we run the clustering algorithm
for k ∈ 1..5 and predict formulas for all generated clusterings.

4 Refining and Verifying Shape Invariants

We construct our fully automatic memory safety verifier Locust (pseudocode
in Alg. 2) by connecting our shape predictor from Sect. 3 with the program
verifier GRASShopper. For this, we keep a list of positive S+(`) and negative

12



Algorithm 2 Pseudocode for Locust
Input: Program P and entry procedure p with precondition ϕp, locations L requiring

program annotations
1: I ← sample initial states satisfying ϕp {see Sect. 4.1}
2: S+ ← execute P on I to map location ` ∈ L to set of observed states
3: while true do
4: for all ` ∈ L do
5: while true do
6: ϕ′` ← obtain fresh formula sample from Platypus(S+(`))
7: if exists ϕ′` consistent with all S+(`), S−(`) then {see Sect. 4.3}
8: ϕ` ← ϕ′`
9: break (continue on line 4)

10: P ′ ← annotate P with inferred ϕ`

11: if GRASShopper(P ′) returns counterexample s then
12: if s is new counterexample then
13: update S+, S− to contain s for correct location {see Sect. 4.2}
14: else return FAIL
15: else return SUCCESS

state samples S−(`) for every program location ` at which program annotations
for GRASShopper are required (i.e., loop invariants and pre/post-conditions for
subprocedures). We first sample initial states (cf. Sect. 4.1) and use these to
collect a first set of positive samples corresponding to valid program runs by
simply executing the program. Then we obtain a set of candidate formulas from
Platypus for each location and enter a refinement loop. If verification using these
candidates fails, we get a counterexample state at some location `, which we
use to extend the sets S+(`) and S−(`). As it is possible that no correct set of
program annotations can be found (due to an incorrect program or imprecisions
in our procedure), we report failure when the same counterexample is reported
for the second time (i.e., we have stopped making progress).

To simplify the procedure, we assume that Platypus always returns the most
precise formula from our abstract domain holding for the given set of input
heap graphs (†). While this assumption is not formally guaranteed, Platypus was
trained to produce this behavior (by choosing training data according to this
principle), and we have observed that it behaves like this in practice.

4.1 Initial State Sampling

We assume the existence of some set of preconditions describing the input to
the main procedure of the program in separation logic.10 To sample from these
preconditions, we can add assert false to the beginning of the program. Then,
every counterexample returned by GRASShopper is a model of the precondition.

10 Conceivably, these could be provided by users in a pre-formal language and translated
to separation logic using an interactive elaboration procedure. Alternatively, given a
test suite, Platypus could predict the initial precondition as well.
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To get more samples, and to ensure different sizes of input lists, we add cardinality
constraints to the precondition. For example, to force a list starting at lst to
have length ≥ 3, we add requires lst.next.next != null. States at other
locations are then obtained by executing the program from the initial sample.

While this strategy is complete relative to the fragment of separation logic
supported by GRASShopper, it is slow even for simple preconditions. Thus, we
have implemented a simple heuristic sampling algorithm for preconditions using
only simple predicates. If we detect that a precondition is simple enough for our
heuristic, we use it instead to generate sample states of varying sizes.

4.2 Handling Counterexamples

If the program is incorrect, or the current annotations are incorrect or insufficient
to prove the program correct, then GRASShopper returns a counterexample at
a location `. Depending on the context of such a counterexample and its exact
form, we treat it as a positive or negative program state sample as follows.

– Case 1: A candidate invariant does not hold on loop entry. The counterex-
ample state is reachable, but is not covered by the candidate loop invariant,
and thus, the counterexample can be added as a positive sample to S+(`).

– Case 2: A candidate loop invariant is not inductive. This is an implication
counterexample [15, 40], i.e., a state s that is a model of the candidate loop
invariant and a state s′ reached after evaluating the loop body on s. Based
on our assumption (†), we conclude that s is likely to be a reachable state,
and thus s′ is. Hence, we treat s′ as a positive sample and add it to S+(`).

– Case 3: A postcondition does not hold for a state s. Again, by (†), we conclude
that s is a reachable state, and thus add the counterexample to S+(`).

– Case 4: Invalid heap access inside the loop. The counterexample state is
consistent with the candidate loop invariant, but triggers an invalid heap
access such as a null access. It is a negative sample and is added to S−(`).

4.3 Consistency Checking

For each prediction returned by the predictor, we check its consistency with the
positive and negative samples obtained so far. This is needed because Platypus
cannot provide correctness guarantees, and does not make use of negative samples.
Thus we check each returned formula ϕ` for consistency with the observed samples,
i.e., ∀h ∈ S+(`).h |= ϕ` and ∀h ∈ S−(`).h 6|= ϕ`. As in our sampling strategy, we
use the underlying program verifier for this. For this, we translate a state h into
a formula ϕh that describes the sample h exactly, by introducing variables nv
for each node v and representing each edge (n, f, n′) as n.f 7→ n′. Then h is a
model of ϕ` iff all models of ϕh also satisfy ϕ`. However, since by construction
ϕh only has the model h, this is equivalent to checking if ϕh ∧ ϕ` has a model.
This can be checked using a complete program verifier such as GRASShopper by
using ϕh ∧ ϕ` as precondition of a procedure whose body is assert false.
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5 Related Work & Experiments

We implemented the procedure PlatypusCore from Alg. 1 as a stand-alone tool
Platypus in F#, also containing the feature extraction routines and support
for data generation. The core machine learning models (Predictor∗) are imple-
mented in TensorFlow, using a small Python wrapper. Finally, we have extended
GRASShopper [35] with the procedure from Sect. 4. The source code for Locust
and Platypus is available at https://github.com/mmjb/grasshopper.

Limitations. As our method relies on a trained machine learning component,
we cannot give any completeness guarantees. However, our integration with a
program verifier checks that returned results are correct. This means that our
performance depends on that of the underlying verifier, and in fact, time spent
in GRASShopper dominates verification time. As our verification technique relies
on observing a sample of occurring program states, it is sensitive to the choice
of input samples (randomly sampled, taken from a test suite, or provided by a
human) used in the sample collection phase. However, this is a limitation shared
by other dynamic analysis systems, such as Daikon [14].

5.1 Related Work

Memory safety proofs have long been a focus of research, and we only discuss
especially recent and close work here. (Bi)-abduction based shape analyses [10–12,
25,26] have been used successfully in memory safety proofs, and can also be used
to abduce needed preconditions or the required inductive predicates. In another
recent line of work, forest automata have been used to verify heap-manipulating
programs [1], but require hard-coded support for specific data structures.

In property-directed shape analysis [21], predicate abstraction over user-
provided shape predicates ((sorted) list segments, . . . ) is combined with a vari-
ation of the IC3 property-directed reachability algorithm [8] to prove memory
safety and data properties. This can be viewed as continuation of three-valued
logic-based works (e.g. [37]), reducing the data type specification requirements.
Similary, SplInter extends the Impact [30] safety prover with heap reasoning based
on an interpolation technique for separation logic. Finally, we note that in prior
work on shape analysis for nested data structures [5], abstractions of heap graphs
using inductive predicates were found using manual heuristics and enumerative
search routines. Core parts of our method could be adapted to replace these by
directed, learned search.

A recent line of work is the use of machine learning techniques for inferring
numerical invariants [15, 16, 22, 39–41]. In these methods, a machine learning
model such as a decision tree is trained on observed program states using stan-
dard optimization techniques, and the trained model is interpreted as program
invariant. However, while the translation from separating hyperplanes or deci-
sion trees to standard invariant formats is straightforward for numerical data,
no such correspondence exists in the domain of heap data. In our approach, a
predictor is trained offline, independent of the considered programs, and at test
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Table 1: Precision of Platypus on synthetic data

Dataset Greedy Precision @1 @5 @10

Trained on 3 var., no nesting data:
3 var., no nesting 92.68% 86.88% 91.30% 96.43%

Trained on 2 var., nested data:
3 var., no nesting 70.50% 69.37% 73.36% 78.40%
2 var., with nesting 24.11% 24.53% 33.42% 34.19%

(i.e., verification) time produces invariant candidates. Thus, our method cannot
make use of negative examples obtained at test time, but does not require a close
correspondence between the structure of the learned model and target invariants.
Closest to this work is [32] which infers likely heap invariants from program traces
(i.e., it infers shapes from usage patterns) using machine learning techniques.

5.2 Platypus Experiments

To evaluate Platypus itself, we have generated two large data sets following our
procedure from Sect. 3.3. The first set contains all formulas we enumerate for
three variables without using nested predicates (327 formulas in total), and the
second set contains a random sample of 4% of the 36822 formulas we enumerate
for two variables with one data structure nesting level (i.e., we used 1472 formulas
in total). For each formula, we have generated 500 models (for the nested dataset,
we subsampled this again, picking 100 of the generated states at random). We
split both datasets into training, validation and test sets using a 3:1:1 split along
the formulas (i.e., no formula appeared in both training and test sets).

For our evaluation, we run Platypus on groups of 5 states generated as models
for the same formula at a time, producing 10 formula predictions for each group
of states. Note that due to our formula-based split into training and test sets,
both the tested states as well as the corresponding ground truth formula have
not been seen by the system before. As checking logical equivalence between
the formulas produced and the ground truth formula is expensive, we instead
approximate this by canonicalizing variable names and the order of commutative
elements in the formulas before comparing for exact (string) equality. We report
accuracy of our “greedy” mode (i.e., the result obtained by always picking the
most likely production) as well as top K accuracy (i.e., how often the correct
formula was in the K most probable formulas from the set of 10 sampled formulas)
for K ∈ {1, 5, 10}, and display the results in Tab. 1.

Table 2: Precision per nonterminal.

Nonterminal Accuracy

ϕ 73.03%
Σ 99.86%
σ 99.70%
E 87.66%

Furthermore, we evaluate the accuracy
of the per-nonterminal predictors, using a
model trained on the two variable with nest-
ing dataset and tested on the three variable
no nesting dataset. Tab. 2 reports how of-
ten the production rule predicted with high-
est probability (i.e., the one chosen in our
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“greedy” syntax tree sampling strategy), using features extracted under the as-
sumption that all prior nodes of the syntax tree were predicted correctly, is indeed
correct.

Analysis. We observe that on data structures without nesting, Platypus performs
very well, and that it generalizes reasonably well from one dataset to another.
Most notably, we found that generalizing to a larger number of program variables
posed no problem at all. Most wrong predictions are due to wrongly predicting
the need for existential quantifiers, or wrongly identifying the heap graph nodes
corresponding to these.

While performance on nested data structures is less encouraging, a detailed
analysis yielded that most mistakes occurred on formulas that are unlikely to
appear in practice (such as tree(x, λt, l, d, r → ls(d, l,>)), where each tree element
has a data field containing a list to its left child). In experiments involving more
realistic data structures (cf. below), we observed no such problems.

5.3 Locust Experiments

To validate that we can infer formulas for algorithms used in practice, we have
evaluated Locust on a number of standard example programs. For this, we consider
all example programs processing singly-linked lists with integer data distributed
with GRASShopper. These include standard algorithms such as list traversal,
filtering and concatenation, as well as more complex algorithms such as quicksort,
mergesort and insertionsort. Furthermore, we considered four simple traversal
routines of nested list/tree data structures. We again use our model trained on
the two variable with nesting dataset and compare Locust as a memory safety
prover to S2/HIP [25, 26], Predator [13] and Forester [1]. The full set of results is
displayed in Tab. 3, where a 3 indicates that a tool was successful, and 7 that
it failed (either explicit failure or timeout after 300s). For Platypus, we also note
the number of disjuncts in generated invariants, and for Locust the number of
iterations in the counterexample-refinement loop.

Analysis. Our results indicate that generalization from synthetic data used to
train Platypus to programs works well. For example, whereas our training data
was restricted to two program variables, the most complex program example,
strand sort, required an invariant involving six variables. In most cases, our
strategy of sampling initial program states is sufficient, but the merge sort and
strand sort examples show that additional counterexamples are indeed useful
to generalize predictions. Finally, as Locust is not optimized for time (e.g., each
Platypus invocation starts a .Net VM and initializes a Python interpreter) we do
not report detailed runtimes. However, the core shape analysis (factoring out
these startup times) took around a second for these benchmark programs.

6 Conclusion & Future Work

We have presented a new technique for data-driven shape analysis using machine
learning techniques, which can be combined with an off-the-shelf program verifier
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Table 3: Results of memory safety provers on GRASShopper benchmarks.

Example Platypus Locust S2/HIP Forester Predator

concat 3 (1 disj.) 3 (1 it.) 3 7 3

copy 3 (1 disj.) 3 (1 it.) 7 3 3

dispose 3 (1 disj.) 3 (1 it.) 7 3 3

double all 3 (1 disj.) 3 (1 it.) 7 3 3

filter 3 (2 disj.) 3 (1 it.) 7 3 3

insert 3 (1 disj.) 3 (1 it.) 7 3 3

insertion sort 3 (2 disj.) 3 (1 it.) 7 3 3

merge sort 3 (3 disj.) 3 (4 it.) 7 7 7

pairwise sum 3 (1 disj.) 3 (1 it.) 7 3 3

quicksort 3 (1 disj.) 3 (1 it.) 7 7 7

remove 3 (2 disj.) 3 (1 it.) 7 3 3

reverse 3 (2 disj.) 3 (1 it.) 7 3 3

strand sort 3 (3 disj.) 3 (5 it.) 7 3 3

traverse 3 (1 disj.) 3 (1 it.) 3 3 3

ls ls trav 3 (1 disj.) 3 (1 it.) 7 7 7

ls ls trav rec 3 (1 disj.) 3 (1 it.) 7 7 7

tr ls trav 3 (1 disj.) 3 (1 it.) 7 7 7

ls tr trav 3 (1 disj.) 3 (1 it.) 7 7 7

to automatically prove memory safety of heap-manipulating programs. All of
our contributions have been implemented in our tool Locust, whose experimental
evaluation shows that it is able to automatically prove memory safety of programs
that other state-of-the-art tools fail on.

Future Work. We plan to extend this work in three aspects. Firstly, we aim to
extend Locust to support the introduction of existential quantifiers that Platypus
allows. Secondly, one aspect of Platypus that still requires manual and skilled
work is feature extraction, which can make extending the tool to handle new in-
ductive separation logic predicates precisely hard. We would like to automate the
extraction of relevant features for each production rule, and have already made
steps in this direction. We recently introduced Gated Graph Sequence Neural
Networks [28] — a technique that leverages deep-learning techniques to make
the predictions directly on graph-structured inputs instead of feature vectors.
We plan to integrate this into our framework. Initial tests have shown promising
results, but some of the features supported by Platypus (most significantly, dis-
junctive formula predictions) are not yet available in this new method. Finally,
we are interested in integrating our method with interactive program verification
assistants, to support verification engineers in their daily work.

Acknowledgements We thank Martin Hruška and Quang Loc Le for help with
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thank Thomas Wies for valuable feedback on drafts of this paper.
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