

J. Symbolic Computation (1996) 21, 313–327

Improved Techniques for
Factoring Univariate Polynomials†

GEORGE E. COLLINS AND MARK J. ENCARNACIÓN‡

Research Institute for Symbolic Computation
Johannes Kepler University, A-4040 Linz, Austria§

(Received 9 April 1995)

The paper describes improved techniques for factoring univariate polynomials over the
integers. The authors modify the usual linear method for lifting modular polynomial
factorizations so that efficient early factor detection can be performed. The new lifting
method is universally faster than the classical quadratic method, and is faster than a
linear method due to Wang, provided we lift sufficiently high. Early factor detection is
made more effective by also testing combinations of modular factors, rather than just
single modular factors. Various heuristics are presented that reduce the cost of the factor
testing or that increase the chance of successful testing. Both theoretical and empirical
computing times are presented.

c© 1996 Academic Press Limited

1. Introduction

Modern algorithms for factoring a univariate polynomial over the integers Z are based
on some variant of the familiar Berlekamp-Zassenhaus scheme:

(i) For a suitable prime p, compute the factors of the polynomial modulo p;
(ii) lift the factors modulo p to factors modulo pk for some sufficiently large integer k;
(iii) from the factors modulo pk, determine the irreducible factors over Z.

The integer k must be large enough that pk ≥ B, where B is a certain bound that will
ensure that the irreducible factors over Z, also called true factors, can be determined
from the factors modulo pk. For most polynomials, the best known bounds B are loose.
Motivated by this observation, Wang (1983) introduced the technique of early factor
detection, which attempts to determine the true factors while lifting.

Wang’s technique can detect only those factors that remain irreducible modulo p. This
is a serious limitation since the probability that a random polynomial will remain irreduc-
ible modulo p is about 1/n, where n is the degree of the polynomial (see Knuth (1981),

† This research was supported in part by Austrian FWF project no. P8572-PHY.
‡ Present address: Department of Computer Science, University of the Philippines, Quezon City 1101,

Philippines. E-mail: mje@engg.upd.edu.ph
§ E-mail: {gcollins, mencarna}@risc.uni-linz.ac.at

0747–7171/96/030313 + 15 $18.00/0 c© 1996 Academic Press Limited

314 G. E. Collins and M. J. Encarnación

exercise 4.6.2–4). We enhance the effectiveness of early factor detection by introducing
an efficient method for also testing combinations of modular factors to determine if they
have been lifted sufficiently high. We present heuristics that reduce the amount of time
spent on unsuccessful factor testing, or that increase the chance that testing will be
successful.

Crucial for early factor detection is a lifting method that lifts all the factors simulta-
neously, by which we mean that all factors are lifted to the next level before any factors
are lifted further. We describe a new lifting method that lifts factors simultaneously, and
which is faster than the classical quadratic lifting method. Wang (1992) also describes
a lifting method that lifts factors simultaneously. Our algorithm is faster than Wang’s,
provided we lift to sufficiently high levels.

In the next section we present our lifting method and compare its theoretical and
empirical computing times with those of the classical quadratic method and Wang’s
method. In Section 3 we describe the various techniques that we use to efficiently test
combinations of modular factors. The results of experiments with an implementation are
also presented in that section.

2. The New Lifting Method

The lifting method that we present in this section consists of small but important
changes to the usual linear Hensel lifting algorithm (see Miola and Yun (1974)) that
allow us to perform early factor detection efficiently. We will be comparing our lifting
method with the classical quadratic method, which does not allow efficient early factor
detection, as well as with a linear method due to Wang (1992), which does allow early
factor detection.

Let C ∈ Z[x] be a primitive and squarefree polynomial to be factored and let p be a
prime dividing neither the leading coefficient nor the discriminant of C. Let the complete
factorization of C modulo p be C ≡

∏r
i=1Ai (mod p), where the leading coefficients

satisfy ldcf(C) ≡ ldcf(A1) (mod p), and Ai is monic for i = 2, . . . , r. Using the classical
quadratic Hensel algorithm, as presented for example by Musser (1971, 1975), we lift this
factorization modulo p to a factorization modulo q, where q is the largest power of p that
is still single-precision, that is, fits in a single computer word. Let this lifted factorization
be C ≡

∏r
i=1Ai,1 (mod q), and in general let

C ≡
r∏
i=1

Ai,j (mod qj)

be the factorization lifted to one modulo qj . When lifting from modulus p to modulus q,
we also compute the lift basis polynomials Si, Ti ∈ Zq[x], i = 1, . . . , r− 1, which satisfy

Ai,1Si +Bi,1Ti ≡ 1 (mod q),

where Bi,j =
∏r
h=i+1Ah,j .

A key ingredient of our lifting method is that we compute the q-adic expansion of C;
this allows us to lift all the factors to modulus qj+1 before lifting any to modulus qj+2,
an essential requirement for early factor detection.

For each m ≥ 1, let Cm := C mod qm and

Cm =
m−1∑
j=0

Djq
j ,

Factoring Univariate Polynomials 315

with Dj ∈ Zq[x]. We start by lifting the factorization of C modulo q to a factorization
modulo q2 by the usual linear Hensel method, as follows. First compute

U1,2 := (C2 −A1,1B1,1)/q

and then Ũ1,2 := U1,2 mod q. Using the lift basis polynomials S1 and T1, solve the
congruence A1,1Y1,2 +B1,1Z1,2 ≡ Ũ1,2 (mod q) for Y1,2, Z1,2 ∈ Zq[x], with deg(Z1,2) <
deg(A1,1) and deg(Y1,2) < deg(B1,1), then set A1,2 := A1,1 + qZ1,2 and B1,2 := B1,1 +
qY1,2. Compute Ai,2 and Bi,2, for i = 2, 3, . . . , r − 1, in like manner, but with Bi−1,2 in
place of C2. Notice that C2 = B0,2 and Br−1,2 = Ar,2.

Lifting from modulus qj to modulus qj+1, for j ≥ 2, is similar but we compute

Ui,j+1 := (Bi−1,j+1 −Ai,jBi,j)/qj

differently. Let us first consider the case i = 1. Writing Cj+1 = Cj + qjDj , A1,j =
A1,j−1 + qj−1Z1,j , and B1,j = B1,j−1 + qj−1Y1,j , we find after some manipulation that

U1,j+1 = Dj − V1,j − qj−2Y1,jZ1,j ,

where

V1,j := (A1,j−1Y1,j +B1,j−1Z1,j − U1,j)/q.

(The division will be exact.) Therefore

Ũ1,3 ≡ D2 − V1,2 − Y1,2Z1,2 (mod q)

and

Ũ1,j+1 ≡ Dj − V1,j (mod q), j ≥ 3.

For i ≥ 2 the situation is virtually the same, but with Bi−1,j+1 in place of Cj+1.
This not really different since Cj+1 = B0,j+1. But whereas Cj+1 = Cj + qjDj , we have
Bi−1,j+1 = Bi−1,j + qjYi−1,j+1, so that Yi−1,j+1 plays the role of Dj . Indeed, if we define
Y0,j+1 to be Dj , and define

Vi,j := (Ai,j−1Yi,j +Bi,j−1Zi,j − Ui,j)/q,

then

Ui,j+1 = Yi−1,j+1 − Vi,j − qj−2Yi,jZi,j , (2.1)

and therefore

Ũi,3 ≡ Yi−1,3 − Vi,2 − Yi,2Zi,2 (mod q)

and

Ũi,j+1 ≡ Yi−1,j+1 − Vi,j (mod q), j ≥ 3,

for i = 1, . . . , r − 1.
Having computed Ũi,j+1, we proceed as in the usual linear Hensel algorithm: We solve

the congruence

Ai,1Yi,j+1 +Bi,1Zi,j+1 ≡ Ũi,j+1 (mod q) (2.2)

for Yi,j+1, Zi,j+1 ∈ Zq[x], with deg(Zi,j+1) < deg(Ai,1) and deg(Yi,j+1) < deg(Bi,1), and
then set Ai,j+1 := Ai,j + qjZi,j+1 and Bi,j+1 := Bi,j + qjYi,j+1.

316 G. E. Collins and M. J. Encarnación

2.1. theoretical computing time

For estimating the running time of this lifting method in number of word operations,
let c be the word length of the max norm of C, let n := deg(C) be the degree of C, let
ni := deg(Ai), for i = 1, . . . , r, and let mi := deg(Bi) =

∑r
j=i+1 nj , for i = 1, . . . , r− 1.

Computing Ui,j+1 in (2.1) takes O(jnimi) time. Solving the congruence (2.2) takes
O(n2

i +m2
i) time. Computing Dj takes O(jn+cn) time. The times for these computations

dominate the times for the others so the time for lifting all factors from modulus qj to qj+1

is O(jn2 + rn2 + cn). Summing on j, the total time for lifting from modulus q to qk is

O(k2n2 + rkn2 + kcn). (2.3)

Lifting quadratically from modulus p to q, as well as computing the lift basis polynomials,
takes O(rn2 + cn) time. Therefore, the total time for lifting the factorization modulo p
to one modulo qk is also given by (2.3).

In comparison, the classical quadratic method takes

O(rk2n2 + kcn)

time to lift the factorization modulo p to one modulo qk. (See Musser (1971) for a
detailed analysis.) We see that the time for quadratic lifting strictly dominates the time
for the new linear method.

Quadratic lifting methods are not well suited for early factor detection since there are
not enough opportunities for testing factors, or combinations thereof. This is especially
true of the latter lifting steps, when there is a higher chance of successful factor testing.
For this reason, we will be comparing our lifting method with the linear method of
Wang (1992), which we will now briefly describe.

Again let C ≡
∏r
i=1Ai,j (mod qj). Assume that we have lift basis polynomials Si ∈

Zq[x], for i = 1, . . . , r, such that

S1B1 + S2B2 + · · ·+ SrBr ≡ 1 (mod q),

where Bl =
∏
i6=lAi,1. (It should be clear that the lift basis polynomials in Wang’s

method are different from those in the new lifting method presented above.) Wang’s
method lifts a factorization modulo qj to a factorization modulo qj+1 by first computing
the residue

U :=
(
C −

r∏
i=1

Ai,j (mod qj+1)
)
/qj . (2.4)

The method then computes the correction coefficients Zi := USi (mod Ai,j). Finally
the factors are lifted by setting Ai,j+1 := Ai,j + qjZi.

The time to produce the lift basis for Wang’s method is O(rn2). Computing the residue
in (2.4) takes O(j2n2+jnc) time and this dominates the time for the other computations.
Hence the time to lift from modulus p to qk by Wang’s method is

O(k3n2 + rn2 + k2nc). (2.5)

Comparing (2.3) and (2.5), we can expect our lifting method to be faster than Wang’s
if we have to lift to a sufficiently high level (k is large). However, we can expect Wang’s
method to be faster if there are relatively many modular factors (r is large).

Factoring Univariate Polynomials 317

Table 1. Comparison of the three lifting methods.

f b k r Q W N

2 75 6 5 1.85 0.48 0.55
2 150 12 4 3.72 1.48 1.32
2 300 24 7 7.85 7.15 3.77
2 600 48 6 18.25 39.57 11.10
2 1200 96 3 46.60 160.90 31.68

4 75 6 10 2.32 0.68 0.87
4 150 12 6 3.07 1.72 1.67
4 300 24 9 9.25 9.60 5.13
4 600 48 7 17.45 40.15 12.22
4 1200 96 8 64.57 310.75 48.12

8 75 6 17 2.82 0.95 1.32
8 150 12 12 6.17 2.55 2.55
8 300 24 15 12.48 12.48 7.29
8 600 48 17 33.58 74.50 21.48
8 1200 96 18 88.40 407.54 70.12

2.2. empirical computing time

The three lifting methods—the classical quadratic method, Wang’s method, and the
new method—were implemented in saclib, a c-language library of algebraic algorithms
(Collins et al., 1993). We applied each of the methods to squarefree polynomials of de-
gree 40, which were constructed by multiplying together f randomly generated polyno-
mials of degree 40/f with coefficients having bit lengths at most b, where f = 2, 4, 8, and
b = 75, 150, 300, 600, 1200. These degree-40 polynomials were then factored modulo five
primes, none of which divided the leading coefficient or the discriminant of the polyno-
mial. Beginning with the prime 3, successively larger primes were used until five suitable
primes were found. The smallest prime yielding the fewest factors was then chosen as the
prime to use for lifting.

The results of our experiments are given in Table 1. The modular factors were lifted
to factors modulo qk, where q is the largest single-precision power of the prime used for
lifting, and k is approximately the level at which we will be able to recover the coefficients
of the true factors (see Section 3), assuming q is about 25 bits long. (Because of the way
in which saclib handles memory management, the largest single-precision integer in our
implementation on a 32-bit machine is 229 − 1.) The values of k are given in the third
column. (Notice that k need not be a power of 2 even when quadratic lifting is used,
since for the final quadratic lifting step we can reduce the lift basis polynomials by an
appropriate power of q so that the final lifting step lifts to precisely qk.) The column
labeled r gives the number of modular factors being lifted. The columns labeled Q, W,
and N give the times for the classical quadratic algorithm, Wang’s linear method, and
our new method, respectively. These times, measured on a decstation 5000/240, are in
seconds and do not include the time needed for garbage collection.

For these examples, we see that the new method is universally faster than the quad-

318 G. E. Collins and M. J. Encarnación

ratic method. Compared to Wang’s method, the new method is faster when we lift to
sufficiently high levels, as predicted by the theoretical analysis presented above.

3. Early Factor Detection Revisited

The technique of early factor detection was introduced by Wang (1979, 1983) with the
goal of reducing the number of lifting steps that are performed. During the lifting process,
the monic lifted factors are converted, if possible, to congruent monic polynomials with
rational number coefficients, which are then used as trial divisors of C, the polynomial
being factored. For reconstructing a rational number from its modular residue, an adap-
tion of the extended Euclidean algorithm can be used (Wang, 1981; Wang et al., 1982).
The authors have recently described a more efficient algorithm for reconstructing rational
numbers (Collins and Encarnación, 1996).

Few of the true factors of C will be found unless products of lifted modular factors
are also tested: A random irreducible polynomial of degree n will remain irreducible
modulo a prime p with probability only 1/n, and will split into an average of about Hn

irreducible modular factors. (The number Hn is the harmonic number 1+1/2+· · ·+1/n;
see Knuth (1981), exercise 4.6.2–5.) Our algorithm factors C modulo five primes and
chooses the smallest prime that produced the fewest modular factors, but this improves
the odds only slightly. Therefore, early factor detection can be made more effective by
testing not only single modular factors but also products of these factors.

Our algorithm tests single factors, then products of pairs of factors, and so on, up
to products of any specified number of modular factors. However, we avoid actually
computing these products in almost all cases except those where the product yields a
true factor. First of all, we check whether the sum of the degrees of the modular factors
being tested is a possible factor degree. We determine a superset of the set of true factor
degrees—henceforth referred to as the factor degree set—using the method in Musser
(1978). If the degree sum is in the factor degree set, then we compute the product of the
trailing coefficients of the modular factors being tested. (When forming this product, we
make use of partial products from previous computations. For instance, if we are testing
the product of the modular factors A1, A2, and A4, and we have already tested the
product of A1, A2, and A3, we would already have computed the product of the trailing
coefficients of A1 and A2. Therefore, forming the product of the trailing coefficients of A1,
A2, and A4 will require only one more multiplication, rather than two.) We then attempt
to convert this trailing coefficient to a rational number using the algorithm described in
Collins and Encarnación (1996). If the conversion is successful, then we check, as Wang
(1983) does, if the denominator divides the leading coefficient of C. If the division is
exact, then we compute the product of the modular factors being tested and attempt to
convert each of the coefficients of the product into rational numbers. If all the coefficients
are successfully converted, then we trial divide C by the primitive integral polynomial
similar to the rational polynomial.

It should be noticed that the time required for each rational number reconstruction
is O(j2), where qj is the current modulus. If there are r modular factors, and we test
combinations of up to s factors, s < r, then the time required isO(rsj2). Since the time for
lifting at level j using the method described above in Section 2 is only O(jn2 +rn2 +cn),
there is the danger that if s is too large, then the time spent on early factor detection
will be larger than the lifting time saved. But if s is too small, then some factors will not
be recovered as soon as would otherwise be possible, and lifting time will be wasted.

Factoring Univariate Polynomials 319

Table 2. Estimates for two-factor polynomials.

f 10 20 30 f 10 20 30

1 13 8 3 1 17 10 2
2 76 89 95 2 73 86 96
3 11 3 2 3 10 4 2

time 2.2 5.5 10.1 time 5.5 13.8 25.2

degree-10 factors degree-25 factors

Table 3. Estimates for three-factor polynomials.

f 10 20 30 f 10 20 30

2 20 15 5 2 22 17 6
3 62 71 88 3 55 70 87
4 17 14 7 4 23 13 7
5 1 0 0

time 11.5 26.2 47.3
time 4.4 10.4 19.0

degree-10 factors degree-25 factors

Another concern is to begin testing at a level at which we have a reasonable expectation
that testing will be successful. If we start too early, then we waste time on unsuccessful
testing. If we start too late, then we defeat the purpose of early factor detection, which is
to avoid unnecessary lifting. We will presently investigate three heuristics to guide us in
choosing how many (and which) factors to combine, and at which lifting level to perform
factor testing; before doing so, we will first discuss various topics that relate to early
factor detection.

Table 4. Estimates for four-factor polynomials.

f 10 20 30 f 10 20 30

2 16 0 0 2 1 0 0
3 53 12 13 3 20 19 13
4 53 71 74 4 55 64 74
5 24 17 13 5 18 17 13
6 5 0 0 6 6 0 0

time 8.0 17.2 30.4 time 19.7 43.8 75.4

degree-10 factors degree-25 factors

320 G. E. Collins and M. J. Encarnación

3.1. estimating the number of true factors

The heuristics discussed below rely on an estimate of the number of true factors;
computing such an estimate is the topic of this section.

The average number of linear factors of C modulo a random prime p is equal to the
number of true factors of C, as p→∞ (see Knuth (1981), exercise 4.6.2–38). Although
this is an asymptotic statement, we will proceed as if it were true also for small primes;
the experimental results described below suggest that this is not unreasonable. We thus
take f , our estimate of the number of true factors, to be the average number of linear
factors of C modulo several small primes. We compute the number of linear factors of C
modulo a prime p by simply counting the number of roots of C in the field of integers
modulo p, which we can do by evaluation at a cost of O(nw+np), where n = deg(C) and
w is the word length of the max norm of C. The number of true factors can be determined
exactly if we compute the average number of linear factors modulo sufficiently many
primes (Weinberger, 1984). Unfortunately, “sufficiently many” is much too large to be
practical. The question then is: How many primes do we use?

To help answer this question, we generated six sets of 100 polynomials having two,
three, or four true factors, each factor having degree 10 or 25, respectively, and coefficients
at most 100 bits long. We computed the number of linear factors of each polynomial
modulo 10, 20, and 30 successively larger primes beginning with the prime 3. Primes
dividing the leading coefficient of the polynomial were skipped. To avoid problems arising
from the presence of multiple roots, we discarded and replaced those primes for which
the polynomials had multiple roots. The results of our experiments are displayed in
Tables 2, 3, and 4, the entries of which are the number of times, out of 100, that we
estimated that we had f true factors, where the values of f are given in the first column.
These values of f were obtained as the average number of linear factors rounded to the
nearest integer, with round-to-even breaking ties. The headings of the second, third, and
fourth columns give the number of primes that were used for the estimate. The italicized
entries in the last row are the times, in seconds, required by the computations. Based
on these tables, we decided to use 25 primes for estimating the number of true factors;
using 25 primes seems to be a reasonable compromise between accuracy of the estimate
and efficiency.

3.2. computing a lifting bound

Let C = C1C2 · · ·Ct be a factorization of C, where t ≥ 2. Beauzamy et al. (1993) show
that at least one of the factors, say C1, satisfies

|C1|∞ ≤
25/8

π3/8
e1/4n 2n/2

n3/8
[C]1/t2 , (3.1)

where [C]2 is the weighted norm

[C]2 =
(n∑
i=0

|ci|2(
n
i

))1/2

,

in which ci is the ith coefficient of C. The algorithm for reconstructing rationals requires
that the modulus be larger than twice the square of |C1|∞, so we are interested in twice

Factoring Univariate Polynomials 321

the square of the right-hand side of inequality (3.1), which we overestimate with⌈
(6/5)2n+1

⌈(n∑
i=0

⌈ |ci|2(
n
i

) ⌉)1/t
⌉/
bn3/4c

⌉
, (3.2)

avoiding rational arithmetic in the sum. In deriving this overestimate we assumed that
n ≥ 3 since quadratic polynomials can be factored using the quadratic formula. We will
refer to (3.2), evaluated at t = 2, as the two-factor lifting bound for the polynomial C.

Beauzamy et al. (1993) suggest using a method based on Pascal’s triangle to compute
the binomial coefficients

(
n
i

)
. However, that method requires O(n2) additions. Instead,

we use a method that is based on the recurrence(
n

i+ 1

)
=
n− i
i+ 1

(
n

i

)
, i = 0, . . . , n− 1,

which requires only n multiplications and n divisions.

3.3. ensuring irreducibility

One problem that we have when testing products of two or more modular factors
that we do not have when testing only single modular factors is that of ensuring the
irreducibility (over the integers) of the product. It may happen, albeit rarely, that some
reducible proper factor A of the polynomial we are factoring has an irreducible factor B
with some coefficients that are larger than any coefficient of A. In this case, the factor A
may be recoverable at a lower lifting level than B. To solve this problem, our algorithm
computes the two-factor lifting bound for the product before doing the trial division
(cf. Beauzamy et al. (1993)). If the current modulus is larger than this bound, then we
know that the product must be irreducible over the integers, should it be a divisor of
the polynomial we are factoring. For quadratic factors, the algorithm uses the quadratic
formula to ensure irreducibility, or to factor the polynomial when appropriate.

3.4. recomputing the factor degree set

When a true factor is found, we recompute the factor degree set for the remaining
polynomial to be factored as follows. Let G1G2 · · ·Gt ≡ C (mod p) be the distinct-
degree factorization of C modulo p, where Gi is the product of all the irreducible factors
of C modulo p of degree i. Let C∗ := C/C̃, where C̃ is the true factor we found. Then
the distinct-degree factorization of C∗ modulo p will be H1H2 · · ·Ht ≡ C∗ (mod p),
where Hi := Gi/ gcd(Gi, C̃). We thus compute the distinct-degree factorization of the
remaining polynomial modulo each of the five

primes used for the modular factorizations in the manner just described, and determine
the factor degree set of the remaining polynomial using the method in Musser (1978).

3.5. termination

The algorithm will terminate when it determines that the remaining factor (after di-
viding out any true factors that are found) is irreducible. This will happen in one of three
ways: (a) The current modulus is larger than the two-factor lifting bound of the remain-
ing polynomial, and the algorithm has tested all combinations of up to r − 1 modular
factors, where r is the number of remaining modular factors. (We may need to combine

322 G. E. Collins and M. J. Encarnación

as many as r− 1 modular factors since it could happen that the factor with the smallest
coefficients factored into r−1 modular factors.) (b) The factor degree set contains only 0
and the degree of the remaining polynomial. (c) The remaining polynomial is quadratic,
in which case the quadratic formula is applied. Our experience with numerous examples
indicates that termination is effected by method (b) more often than not.

3.6. heuristics for factor testing

In the descriptions of the heuristics we will be comparing we often refer to unsuccessful
testing time, which we define as follows. When we perform factor testing at any particu-
lar level, we will either find true factors or we will not. If no true factors are found, then
all the time spent on factor testing will be added to the unsuccessful testing time. This
time includes the time for forming products of modular trailing coefficients, reconstruct-
ing rationals, dividing the leading coefficient by denominators, and possibly doing trial
divisions that fail, though such trial divisions are rare. If at least one true factor is found
at a certain level, then none of the time spent on factor testing at that level is added to
unsuccessful testing time.

We assume that we have computed an estimate f of the number of true factors as
discussed above, with the modification that if f < 2, then we set f := 2. Given this
estimate, we can get an estimate s of the average number of modular factors of each true
factor by setting s := r/f , rounded to the nearest integer, with round-to-even to break
ties, where r is the total number of modular factors.

We will compare empirically the following three heuristics:
Heuristic 1. Combine as many as s modular factors. Perform factor testing on the factors
modulo q, and start factor testing again as soon as the modulus is larger than twice the
square of the fth root of the max norm of C.
Heuristic 2. Combine as many as s + 2 modular factors. Test after each lifting step as
long as the time spent on unsuccessful factor testing is no larger than a fourth of the
total time spent on linear lifting. If the unsuccessful testing time becomes larger than a
fourth of the lifting time, then refrain from testing until the testing time again drops to
at most a fourth of the lifting time. However, regardless of the time spent on unsuccessful
testing, test at the first level for which the modulus is larger than twice the square of the
fth root of the max norm of C.
Heuristic 3. Let c be the max norm of C and let k be the smallest integer such that qk ≥
2c2. At level j, that is, when the current modulus is qj , test all products of modular factors
that are such that the degree d of the product satisfies d ≤ (j/k)n, where n = deg(C).
As in the previous heuristic, we refrain from testing whenever unsuccessful testing time
becomes larger than a fourth of total linear lifting time, but we test at the first level for
which the modulus is larger than twice the square of the fth root of the max norm of C,
regardless of unsuccessful testing time.
Each heuristic will be in force only until we have lifted to the two-factor lifting bound
of C, at which point we test all possible combinations of modular factors.

Before presenting the results of our comparison, we will first give the rationale behind
these heuristics. In the first heuristic, we suppose that the max norms of the true factors
do not differ by much. The factors modulo q are tested to detect early in the lifting
process small factors, such as x − 1, which are not uncommon in applications. In the
second heuristic, we combine two more modular factors than the estimated average since

Factoring Univariate Polynomials 323

Table 5. Comparison of the heuristics for two-factor polynomials.

heuristic 1 heuristic 2 heuristic 3
(d1, d2) (c1, c2) testing lifting testing lifting testing lifting

(10, 10) (10, 10) 2 195 8.0 32 198 8.0 17 192 8.0
(20, 20) (20, 20) 12 1648 15.3 321 1660 15.3 137 1655 15.3
(30, 30) (30, 30) 10 6158 23.5 1217 6159 23.5 776 6087 23.5

(10, 20) (10, 10) 2 342 8.1 64 336 8.0 32 330 8.0
(15, 30) (15, 15) 17 1222 11.7 164 1248 11.8 74 1234 11.7
(20, 40) (20, 20) 7 3108 15.3 493 3074 15.3 195 3081 15.3

(10, 20) (10, 20) 3 582 11.3 40 355 8.2 10 362 8.2
(15, 30) (15, 30) 28 2270 17.5 222 1277 11.7 52 1270 11.7
(20, 40) (20, 40) 63 5861 23.2 668 3454 16.2 211 3183 15.4

Table 6. Comparison of the heuristics for three-factor polynomials.

heuristic 1 heuristic 2 heuristic 3
(d1, d2, d3) (c1, c2, c3) testing lifting testing lifting testing lifting

(10, 10, 10) (10, 10, 10) 5 535 8.8 126 467 8.2 62 486 8.1
(15, 15, 15) (15, 15, 15) 3 1525 11.7 432 1522 11.7 117 1543 11.7
(20, 20, 20) (20, 20, 20) 13 4291 16.4 1042 3944 15.6 473 3950 15.6

(5, 10, 15) (10, 10, 10) 5 434 8.3 121 444 8.3 40 445 8.3
(10, 20, 30) (20, 20, 20) 40 4005 16.2 1072 3932 15.9 640 3725 15.4
(15, 30, 45) (30, 30, 30) 58 14522 23.3 5866 14477 23.3 3310 14487 23.3

(5, 10, 15) (5, 10, 15) 7 512 9.0 72 423 8.0 10 427 8.0
(10, 20, 30) (10, 20, 30) 37 4920 19.2 642 3652 15.7 148 3626 15.6
(15, 30, 45) (15, 30, 45) 657 18118 27.2 2647 13479 22.8 793 13490 22.8

we can expect that some true factors will have more than the average number of modular
factors. To prevent too much time being spent on unsuccessful factor testing, we place a
cap on this time relative to the total lifting time; the ratio 4 was somewhat arbitrarily
chosen. We test at the first level for which the modulus is larger than twice the square
of the fth root of the max norm of C since the stipulation that unsuccessful testing
time be no more than a fourth of lifting time may otherwise force us to lift well beyond
this level, a level at which we are likely to find true factors. In the third heuristic, we
suppose that the coefficient sizes of the true factors are roughly proportional to their
degrees. For example, polynomials arising in the projection phase of cylindrical algebraic
decomposition (Collins, 1975) behave in this way.

Each of the three heuristics was implemented in saclib and applied to randomly
generated polynomials that were products of either two or three true factors. Table 5
gives the unsuccessful testing time and the lifting time for each of the three heuristics
applied to polynomials with two true factors, which had degrees d1 and d2 and coefficients
at most 10c1 and 10c2 bits long. The times, given in milliseconds, are averages for ten

324 G. E. Collins and M. J. Encarnación

Table 7. Detail of heuristic 1 for (d1, d2, d3) = (15, 30, 45), (c1, c2, c3) = (30, 30, 30).

mod. prod. rat. recon.
r s count time count time testing lifting level total

1 12 4 1075 66 783 50 267 14379 22 23832
2 9 3 172 0 129 0 50 13832 22 21667
3 9 3 143 0 105 0 17 11851 22 19266
4 10 3 228 0 175 0 50 17733 25 25117
5 8 3 111 0 79 0 33 12383 22 19532
6 9 3 172 17 129 0 67 16267 24 24183
7 7 2 34 17 28 0 17 14202 24 22565
8 9 3 172 0 129 0 50 14331 23 22315
9 12 4 1088 51 793 17 267 17300 24 26949

10 8 3 126 17 92 0 34 13835 25 22068

polynomials. The italicized entries are the average maximum lifting levels. Table 6 gives
similar data for polynomials with three true factors.

The average lifting times and levels in rows 1 through 6 of Table 5 do not suggest any
significant differences between the heuristics, but we see that heuristics 2 and 3 spend
more time on testing than heuristic 1, with heuristic 3 spending less time on testing than
heuristic 2. For rows 7 through 9, however, we see that heuristics 2 and 3 are significantly
better than heuristic 1, and, again, heuristic 3 is spending less time on unsuccessful testing
than heuristic 2. Similar remarks apply to Table 6.

Presenting only averages, Tables 5 and 6 do not reveal the variation from polynomial
to polynomial. To illustrate this variation we display in Tables 7, 8, and 9, respectively,
the performance of the three heuristics on each of the ten polynomials corresponding
to row 6 of Table 6. Each row in the tables gives data for one polynomial. For all ten
polynomials, we correctly estimated that there were 3 true factors. Column r gives the
number of factors that the polynomial had modulo the prime used for lifting. Column s
(column s+ 2) in Table 7 (Table 8) gives the maximum number of modular factors that
were combined. The columns labeled ‘mod. prod. count’ give the total number of products
of trailing coefficients that were computed, and those labeled ‘mod. prod. time’ give the
corresponding computing time. The columns ‘rat. recon. count’ and ‘rat. recon. time’,
respectively, give the total number of rational reconstructions of products of modular
trailing coefficients that were performed and the total computing time required for these
reconstructions.

We chose heuristic 3 as the best strategy for our purposes, but a word of caution is
in order: If one expects that the true factors of the polynomial one is factoring deviate
significantly from the presupposition that coefficient sizes are proportional to degrees,
then one is probably better off using a different heuristic.

In Tables 10 and 11, respectively, we give the results of our experiments comparing
single- and multiple-factor testing applied to two- and three-factor polynomials. Single-
factor testing is performed after each lifting step until we reach the single-factor bound
of the polynomial, when we test all possible combinations of modular factors. Multiple-
factor testing is performed using heuristic 3.

In the first six rows of Table 10 we do not see a significant difference between single-

Factoring Univariate Polynomials 325

Table 8. Detail of heuristic 2 for (d1, d2, d3) = (15, 30, 45), (c1, c2, c3) = (30, 30, 30).

mod. prod. rat. recon.
r s+ 2 count time count time testing lifting level total

1 12 6 8152 1847 4998 1501 4765 14665 22 28598
2 9 5 3792 1673 2286 2014 4285 13950 22 25817
3 9 5 3432 1682 2010 1238 3833 11616 22 22868
4 10 5 5090 2888 3185 2496 6566 17490 25 31436
5 8 5 3177 1326 1773 1388 3383 12384 22 23000
6 9 5 3792 1949 2286 1754 4498 16270 24 28484
7 7 4 2844 1162 1764 1449 3365 14218 24 25751
8 9 5 3792 1546 2286 1739 4200 14150 23 26616
9 12 6 8178 1787 5018 1833 5367 17098 24 31915

10 8 5 3008 1479 1744 1626 3885 13848 25 26051

Table 9. Detail of heuristic 3 for (d1, d2, d3) = (15, 30, 45), (c1, c2, c3) = (30, 30, 30).

mod. prod. rat. recon.
r count time count time testing lifting level total

1 12 4264 2769 2291 2500 6431 14500 22 29265
2 9 2097 1676 1150 1777 3800 13751 22 25099
3 9 2241 1662 1161 1239 3268 11801 22 22584
4 10 2655 1879 1471 2090 4533 17269 25 29169
5 8 1163 914 600 801 2082 12202 22 21533
6 9 1870 1599 1124 1720 3850 15962 24 27266
7 7 617 333 370 500 1003 14279 24 23182
8 9 2323 1681 1266 1604 3834 13947 23 25934
9 12 3692 2018 2024 2029 4965 16984 24 31150

10 8 1659 1314 927 1152 2849 13634 25 24583

Table 10. Single- vs. multiple-factor testing for two-factor polynomials.

single-factor testing multiple-factor testing
(d1, d2) (c1, c2) testing lifting total testing lifting total

(10, 10) (10, 10) 12 177 8.0 432 17 188 8.0 508
(20, 20) (20, 20) 44 1780 16.3 2775 158 1612 15.3 2888
(30, 30) (30, 30) 164 6459 24.5 9016 746 6010 23.5 9474

(10, 20) (10, 10) 14 355 8.4 785 30 333 8.0 877
(15, 30) (15, 15) 35 1416 12.9 2605 90 1224 11.8 2620
(20, 40) (20, 20) 81 3470 16.8 5745 208 3054 15.3 5600

(10, 20) (10, 20) 20 524 10.4 1012 15 365 8.2 952
(15, 30) (15, 30) 73 2057 16.7 3307 54 1246 11.7 2627
(20, 40) (20, 40) 163 5668 22.7 8225 205 3146 15.4 5918

326 G. E. Collins and M. J. Encarnación

Table 11. Single- vs. multiple-factor testing for three-factor polynomials.

single-factor testing multiple-factor testing
(d1, d2, d3) (c1, c2, c3) testing lifting total testing lifting total

(10, 10, 10) (10, 10, 10) 40 637 10.0 1278 65 460 8.1 1255
(15, 15, 15) (15, 15, 15) 100 2340 15.7 3745 135 1510 11.7 3152
(20, 20, 20) (20, 20, 20) 245 7158 23.3 10175 473 3874 15.6 7388

(5, 10, 15) (10, 10, 10) 32 540 9.5 1153 43 442 8.3 1207
(10, 20, 30) (20, 20, 20) 226 6290 21.8 9281 649 3670 15.4 7250
(15, 30, 45) (30, 30, 30) 627 25199 33.0 33767 3483 14382 23.3 25700

(5, 10, 15) (5, 10, 15) 34 572 9.9 1174 16 424 8.0 1123
(10, 20, 30) (10, 20, 30) 221 7069 24.2 10060 185 3671 15.6 6830
(15, 30, 45) (15, 30, 45) 731 27357 35.8 36146 837 13583 22.8 22081

and multiple-factor testing. This is to be expected since an exhaustive search for true
factors will be performed by either algorithm as soon as the modulus becomes larger
than the two-factor lifting bound of the polynomial, which, for these polynomials, is not
much larger than the square of the max norms of the two true factors. Looking at the
other rows in Table 10 and those in Table 11, we see that multiple-factor testing can be
noticeably better than single-factor testing.

4. Conclusions

We presented a new linear lifting method that allows efficient early factor detection
and showed that the new method is theoretically and empirically faster than both the
classical quadratic method and Wang’s method, provided we lift sufficiently high. We
improved early factor detection by introducing an efficient method for testing products
of modular factors; this allows us to find true factors that have split into more than
one modular factor. To reduce factor-testing time, we investigated three heuristics for
choosing which products of factors to test. We found that for our purposes the best
heuristic tests all products whose degrees are less than a certain bound that increases
with the lifting level. Our heuristic uses an estimate of the number of true factors, and we
presented a method for computing such an estimate. Another contribution that helped
reduce the total factorization time is a method for recomputing the factor degree set
after a true factor has been found.

Numerous univariate factorization problems are generated by many methods for fac-
toring multivariate polynomials and for factoring univariate polynomials over algebraic
number fields. Therefore our work has quite broad applicability. Also, we speculate that
our new lifting method can be generalized for application to early factor detection for
multivariate integral polynomial factorization.

Acknowledgements

The authors would like to thank Wieb Bosma, John Cannon, and Allan Steel for
carefully reading a preliminary draft of this paper.

Factoring Univariate Polynomials 327

References

Beauzamy, B., Trevisan, V., Wang, P. S. (1993). Polynomial factorization: Sharp bounds, efficient
algorithms. J. Symbolic Computation 15, 393–413.

Collins, G. E. (1975). Quantifier elimination for the elementary theory of real closed fields by cylindrical
algebraic decomposition. In Automata Theory and Formal Languages, 2nd GI Conference, Lecture
Notes in Computer Science 33, 134–183, Berlin, Springer-Verlag.

Collins, G. E. et al. (1993). SACLIB 1.1 User’s Guide. Technical Report 93-19, RISC-Linz, Johannes
Kepler University, A-4040 Linz, Austria.

Collins, G. E., Encarnación, M. J. (1995). Efficient rational number reconstruction. J. Symbolic Com-
putation, 20, 287–297

Knuth, D. E. (1981). Seminumerical Algorithms: The Art of Computer Programming 2. Addison-Wesley.
Miola, A., Yun, D. Y. Y. (1974). Computational aspects of Hensel-type univariate polynomial greatest

common divisor algorithms. In Proceedings of EUROSAM ’74, SIGSAM Bulletin 8, 46–54.
Musser, D. R. (1971). Algorithms for Polynomial Factorization. Ph.D. thesis, University of Wisconsin,

Madison.
Musser, D. R. (1975). Multivariate polynomial factorization. J. ACM 22(2), 291–308.
Musser, D. R. (1978). On the efficiency of a polynomial irreducibility test. J. ACM 25(2), 271–282.
Wang, P. S. (1979). Parallel p-adic construction in the univariate polynomial factoring algorithm. In

Proceedings of the 1979 MACSYMA Users’ Conference, 310–318, Cambridge, MA, MIT.
Wang, P. S. (1981). A p-adic algorithm for univariate partial fractions. In Proceedings of the 1981

Symposium on Symbolic and Algebraic Computation, 212–217. ACM Press.
Wang, P. S. (1983). Early detection of true factors in univariate polynomial factorization. In Proceedings

of the 1983 European Conference on Computer Algebra, Lecture Notes in Computer Science 162,
225–235. Springer-Verlag.

Wang, P. S. (1992). Parallel univariate p-adic lifting on shared-memory multiprocessors. Tech. Rep.
ICM-9201-25, Institute for Computational Mathematics, Kent State University, Kent, OH 44242.

Wang, P. S., Guy, M. J. T., Davenport, J. H. (1982). p-adic reconstruction of rational numbers. SIGSAM
Bulletin 16, 2–3.

Weinberger, P. J. (1984). Finding the number of factors of a polynomial. J. Algorithms 5, 180–186.

