Welcome 2017 Faculty Summit Attendees

Faculty Summit 2017
microsoftfacultysummit.com

Microsoft Research
Microsoft.com/research

Facebook
@microsoftresearch

Twitter
@MSFTResearch
#FacSumm
#EdgeofAI
Questions for today

1) What can AI learn from security?
2) What can security learn from AI?
3) What does security look like after AI happens?
Dawn Song
AI and Security

• Security enables better AI
 • Integrity: produces intended/correct results (adversarial machine learning)
 • Confidentiality/Privacy: does not leak users’ sensitive data (secure, privacy-preserving machine learning)
 • Preventing misuse of AI

• AI enables security applications
AI and Security: AI in the presence of attacker

• Important to consider the presence of attacker
 • History has shown attacker always follows footsteps of new technology development (or sometimes even leads it)

• The stake is even higher with AI
 • As AI controls more and more systems, attacker will have higher & higher incentives
 • As AI becomes more and more capable, the consequence of misuse by attacker will become more and more severe
AI and Security: AI in the presence of attacker

• Attack AI
 • Cause learning system to not produce intended/correct results
 • Cause learning system to produce targeted outcome designed by attacker
 • Learn sensitive information about individuals
 • Need security in learning systems

• Misuse AI
 • Misuse AI to attack other systems
 • Find vulnerabilities in other systems
 • Target attacks
 • Devise attacks
 • Need security in other systems
AI and Security: AI in the presence of attacker

• **Attack AI:**
 • Cause learning system to not produce intended/correct results
 • Cause learning system to produce targeted outcome designed by attacker
 • Learn sensitive information about individuals
 • Need security in learning systems

• **Misuse AI**
 • Misuse AI to attack other systems
 • Find vulnerabilities in other systems
 • Target attacks
 • Devise attacks
 • Need security in other systems
Deep Learning Systems Are Easily Fooled

Adversarial Examples Prevalent in Deep Learning Systems

• Most existing work on adversarial examples:
 • Image classification task
 • Target model is known

• Our investigation on adversarial examples:

- Generative Models
- Deep Reinforcement Learning
- Image Captioning/Image-to-code
- Blackbox Attacks
 - Weaker Threat Models (Target model is unknown)

Other tasks and model classes
Generative models

- VAE-like models (VAE, VAE-GAN) use an intermediate latent representation
- An encoder: maps a high-dimensional input into lower-dimensional latent representation z.
- A decoder: maps the latent representation back to a high-dimensional reconstruction.
Adversarial Examples in Generative Models

- An example attack scenario:
 - Generative model used as a compression scheme

- Attacker’s goal: for the decompressor to reconstruct a different image from the one that the compressor sees.
Adversarial Examples for VAE-GAN in MNIST

Original images

Reconstruction of original images

Adversarial examples

Reconstruction of adversarial examples

Target Image

Jernej Kos, Ian Fischer, Dawn Song: Adversarial Examples for Generative Models
Adversarial Examples for VAE-GAN in SVHN

Original images

Reconstruction of original images

Adversarial examples

Reconstruction of adversarial examples

Target Image

Jernej Kos, Ian Fischer, Dawn Song: Adversarial Examples for Generative Models
Adversarial Examples for VAE-GAN in SVHN

Original images

Reconstruction of original images

Adversarial examples

Reconstruction of adversarial examples

Target Image

Jernej Kos, Ian Fischer, Dawn Song: Adversarial Examples for Generative Models
Deep Reinforcement Learning Agent (A3C) Playing Pong

Original Frames

Jernej Kos and Dawn Song: Delving into adversarial attacks on deep policies [ICLR Workshop 2017].
Adversarial Examples on A3C Agent on Pong

FGSM Evaluation (0.005)

Training on non-noisy environment
Adversarial Evaluation

Score

No. of steps

Jernej Kos and Dawn Song: Delving into adversarial attacks on deep policies [ICLR Workshop, 2017]
Attacks Guided by Value Function

Blindly injecting adversarial perturbations every 10 frames.

Injecting adversarial perturbations guided by the value function.
Agent in Action

Jernej Kos and Dawn Song: Delving into adversarial attacks on deep policies [ICLR Workshop 2017].
Adversarial Examples Prevalent in Deep Learning Systems

• Most existing work on adversarial examples:
 • Image classification task
 • Target model is known

• Our investigation on adversarial examples:

- Generative Models
- Deep Reinforcement Learning
- Image Captioning/Image-to-code
- Other tasks and model classes

- Blackbox Attacks
- Weaker Threat Models (Target model is unknown)
Adversarial Machine Learning

• Adversarial machine learning:
 • Learning in the presence of adversaries

• Inference time: adversarial example fools learning system
 • Evasion attacks

• Training time:
 • Attacker poisons training dataset (e.g., poison labels) to fool learning system to learn wrong model
 • Poisoning attacks: e.g., Microsoft’s Tay twitter chatbot
 • Attacker selectively shows learner training data points (even with correct labels) to fool learning system to learn wrong model

• Adversarial machine learning particularly important for security critical systems
Security will be one of the biggest challenges in Deploying AI
Security of Learning Systems

• Software level

• Learning level

• Distributed level
Challenges for Security at Software Level

• No software vulnerabilities such as buffer overflows & access control issues
 • Attacker can take control over learning systems through exploiting software vulnerabilities
Challenges for Security at Software Level

• No software vulnerabilities (e.g., buffer overflows & access control issues)
• Existing software security/formal verification techniques apply

Progression of my approach to software security over last 20 years
Challenges for Security at Learning Level

• Evaluate system under adversarial events, not just normal events
Regression Testing vs. Security Testing in Traditional Software System

<table>
<thead>
<tr>
<th>Operation</th>
<th>Regression Testing</th>
<th>Security Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run program on normal inputs</td>
<td>Run program on abnormal/adversarial inputs</td>
<td></td>
</tr>
<tr>
<td>Goal</td>
<td>Prevent normal users from encountering errors</td>
<td>Prevent attackers from finding exploitable errors</td>
</tr>
</tbody>
</table>
Regression Testing vs. Security Testing in Learning System

<table>
<thead>
<tr>
<th></th>
<th>Regression Testing</th>
<th>Security Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>Train on noisy training data: Estimate resiliency against noisy training inputs</td>
<td>Train on poisoned training data: Estimate resiliency against poisoned training inputs</td>
</tr>
<tr>
<td>Testing</td>
<td>Test on normal inputs: Estimate generalization error</td>
<td>Test on abnormal/adversarial inputs: Estimate resiliency against adversarial inputs</td>
</tr>
</tbody>
</table>
Challenges for Security at Learning Level

- Evaluate system under adversarial events, not just normal events
 - Regression testing vs. security testing
- Reason about complex, non-symbolic programs
Decades of Work on Reasoning about Symbolic Programs

• Symbolic programs:
 • E.g., OS, File system, Compiler, web application, mobile application
 • Semantics defined by logic
 • Decades of techniques & tools developed for logic/symbolic reasoning
 • Theorem provers, SMT solvers
 • Abstract interpretation
Era of Formally Verified Systems

Verified: Micro-kernel, OS, File system, Compiler, Security protocols, Distributed systems

- sel4
- IronClad/IronFleet
- FSCQ
- CertiKOS
- miTLS/Everest
- EasyCrypt
- CompCert
Powerful Formal Verification Tools + Dedicated Teams

Coq

Isabelle

Why3

Dafny

Z3
No Sufficient Tools to Reason about Non-Symbolic Programs

• Symbolic programs:
 • Semantics defined by logic
 • Decades of techniques & tools developed for logic/symbolic reasoning
 • Theorem provers, SMT solvers
 • Abstract interpretation

• Non-symbolic programs:
 • No precisely specified properties & goals
 • No good understanding of how learning system works
 • Traditional symbolic reasoning techniques do not apply
Challenges for Security at Learning Level

• Evaluate system under adversarial events, not just normal events
 • Regression testing vs. security testing
• Reason about complex, non-symbolic programs
• Design new architectures & approaches with stronger generalization & security guarantees
Limitation of Existing Neural Architectures

- **Example learning system**: Neural architectures learning programs
 - Neural Turing Machine, Neural GPU, Neural Random Access Machine, Differentiable Neural Computer
 - Neural Programmer Interpreter [Reed-Freitas, ICLR-2016, Best Paper Award]
 - Learn neural programs for addition, sorting, etc.

- **Problem**:
 - Neural architectures that learn programs currently do not generalize well (e.g., to problems of longer input length)
 - No provable guarantees about the generalization of the learned programs
Our Approach: Making Neural Programming Architectures Generalize via Recursion

- **Our Approach:**
 - Introduce notion of recursion to neural programs: *Recursive neural programs*
 - Using recursion, a problem is reduced to *sub-problems*
 - Base cases and reduction rules
 - Learning recursive neural programs

Our Approach: Making Neural Programming Architectures Generalize via Recursion

- **Proof of Generalization:**
 - Recursion enables provable guarantees about neural programs
 - Prove perfect generalization of a learned recursive program via a verification procedure
 - Explicitly testing on all possible base cases and reduction rules (Verification set)
 \[\forall i \in V(S), M(i) \Downarrow P(i) \]

- Learn & generalize faster as well
 - Trained on same data, non-recursive programs do not generalize well

<table>
<thead>
<tr>
<th>Length of Array</th>
<th>Non-Recursive</th>
<th>Recursive</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>5</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>7</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>11</td>
<td>73.3%</td>
<td>100%</td>
</tr>
<tr>
<td>15</td>
<td>60%</td>
<td>100%</td>
</tr>
<tr>
<td>20</td>
<td>30%</td>
<td>100%</td>
</tr>
<tr>
<td>22</td>
<td>20%</td>
<td>100%</td>
</tr>
<tr>
<td>25</td>
<td>3.33%</td>
<td>100%</td>
</tr>
<tr>
<td>30</td>
<td>3.33%</td>
<td>100%</td>
</tr>
<tr>
<td>70</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Lessons

• Program architecture impacts provability:
 • Similar in program verification for symbolic programs
 • Well-designed programs with good architectures are easier to prove properties of
 • Arbitrary programs (bad code) are difficult to prove properties of

• Caution for end-to-end monolithic neural networks
 • Harder to train
 • Harder to generalize
 • Harder to interpret

• Recursive, modular neural architectures are easier to reason, prove, generalize

• Explore new architectures and approaches enabling strong generalization & security properties for broader tasks
 • For complex perception tasks, what should we do?

• Can we have provable guarantee of generalization & security properties for general learning systems?
Challenges for Security at Learning Level

• Evaluate system under adversarial events, not just normal events
• Reason about complex, non-symbolic programs
• Design new architectures & approaches with stronger generalization & security guarantees
• Reason about how to compose components
Compositional Reasoning

• Building large, complex systems require compositional reasoning
 • Each component provides abstraction
 • E.g., pre/post conditions
 • Hierarchical, compositional reasoning proves properties of whole system

• How to do abstraction, compositional reasoning for non-symbolic programs?
Security of Learning Systems

• Software level

• Learning level
 • Evaluate system under adversarial events, not just normal events
 • Reason about complex, non-symbolic programs
 • Design new architectures & approaches with stronger generalization & security guarantees
 • Reason about how to compose components

• Distributed level
 • Each agent makes local decisions; how to make good local decisions achieve good global decision?
AI and Security

- Security enables better AI
 - Integrity: produces intended/correct results (adversarial machine learning)
 - Confidentiality/Privacy: does not leak users’ sensitive data (secure, privacy-preserving machine learning)
 - Preventing misuse of AI
- AI enables security applications
Deep Learning Improving Security Capabilities

DeepFace
When/where is machine learning applicable in security applications?
Learning is Most Needed When No Precise Formal Property Specification

• Example:
 • Spam filtering
 • Fraud detection
 • Account compromise
 • Bots vs. human
 • In contrast to memory-safety exploits detection & defense, etc.

• Property specification depends on fuzzy concepts & world model
• Symbolic reasoning does not apply
• Need learning-based approach
AI and Security

• Security enables better AI
 • Integrity: produces intended/correct results (adversarial machine learning)
 • Confidentiality/Privacy: does not leak users’ sensitive data (secure, privacy-preserving machine learning)
 • Preventing misuse of AI

• AI enables security applications
AI and Security: AI in the presence of attacker

• Attack AI
 • Cause learning system to not produce intended/correct results
 • Cause learning system to produce targeted outcome designed by attacker
 • Need security in learning systems

• Misuse AI
 • Misuse AI to attack other systems
 • Find vulnerabilities in other systems
 • Target attacks
 • Devise attacks
 • Need security in other systems
Misused AI can make attacks more effective

Deep Learning Empowered Bug Finding

Deep Learning Empowered Phishing Attacks
Misused AI for large-scale, automated, targeted manipulation
Consumer-grade BCI Devices

- Price: ≈ 300 USD
What if an EEG gaming app is malicious?

Secretly reading your mind?
On the Feasibility of Side-Channel Attacks with Brain-Computer Interfaces [USENIX Security’12]
Attack Stimuli

Information tested & learned:
• First digit of PIN
• Do you know this person?
• Do you have an account at this bank?
• What month were you born in?
• Where do you live?

On the Feasibility of Side-Channel Attacks with Brain-Computer Interfaces [USENIX Security’12]
The Dual

The More Powerful Consumer-grade BCI devices are

The More Powerful AI technology is

The More Powerful the attacks are
With great power comes great responsibility
Lessons from Medical Device Security

• First medical device security analysis in public literature:
 – *The case for Software Security Evaluations of Medical Devices [HRMPFS, HealthSec’11]*

• FDA issues guidance recommendation on medical device security [2016]
Security will be one of the biggest challenges in Deploying AI

Important to consider security for AI from early on

Secure AI is important and necessary for future advancement of AI

Secure AI is an interdisciplinary, community effort
Future of AI and Security

How to better understand what security means for AI, learning systems?

How to detect when a learning system has been fooled/compromised?

How to build more resilient systems with stronger guarantees?

How to mitigate misuse of AI?

What should be the right policy to ensure secure AI?
Let’s tackle the big challenges together!
Taesoo Kim
About Myself

Taesoo Kim (taesoo@gatech.edu)

• 14- : Assistant Professor at Georgia Tech
• 11-14: Ph.D. from MIT in CS

Research interests:

Operating Systems, Systems Security, Distributed Systems, Programming Languages, Architecture

https://taesoo.kim
Clarification: Security and AI

• Security → Software or Computer Security
 • In particular, attacker’s perspectives
 • Excluding the security issues that involved human (e.g., fraud, phishing …)

• AI → ML or Deep Learning
 • In particular, training-based, stochastic approaches
 • It works well in practice, but too complex to understand why? or how?
Three Key Points

• Part 1. What AI can learn from Security?
 → Thinking like an adversary

• Part 2. What Security can learn from AI?
 → Measuring the progress of research

• Part 3. Security after AI?
 → New Era for Advanced Persistent Threats (APT)
Part 1. What AI can learn from Security? Thinking Like an Adversary

How to hijack this self-driving car?

- Putting wall?
- Attacking sensors?
- Put STOP signs?
Part 1. What AI can learn from Security? Thinking Like an Adversary

Laying a trap for self-driving cars

Posted Mar 17, 2017 by Devin Coldewey
Adversary? Meeting with the Best Hacker!

Full-chain exploitation on all major browsers and platforms!

$225,000 in Pwn2Own’15
$300,000 in PwnFest’16
...

Now in Google’s Project Zero Team
First Public Talk @Zer0Con’17

Conference for Exploit Developers & Bug Hunters

A medley of modern web browser exploits

This talk introduces the various web browser vulnerabilities I've found and reported, and how I exploited those vulnerabilities. I will discuss not only just web browser vulnerabilities, but also various logical bugs and kernel bugs.
Lots of (even) Hackers are Curious..

Could you explain how you found bugs in Pwn2Own’16?
Lots of (even) Hackers are Curious ..

Could you explain how you found bugs in Pwn2Own’16?

Umm .. what? (his friend translated ..)
Lots of (even) Hackers are Curious..

Could you explain how you found bugs in Pwn2Own’16?

“Intuition ...”
Lots of (even) Hackers are Curious..

Could you explain how you found bugs in Pwn2Own’16?

Intuition ...
except one bug that I had to open IDA for reverse engineering.
Approaches to Security vs. ML

• Security:
 (Translating) Intuition → Methodologies

 VS.

• ML:
 (Inferring) Training data → Parameters
Take-away Messages from Security

• Attackers target a single, weakest component
• Rethinking of your assumption (aka, threat model)
• Increasing #features \rightarrow larger attack surface
• Focusing on directly translating intuition to models
• Making the design iteration comprehensive (ie., explainable)
Part 2. What Security can learn from AI? Measuring the Progress of Research

1950
Turing Test

1985-1996
Chess
Deep Blue

2004-2007
Driving
DARPA Grand Challenge

2011
Jeopardy
Watson

2016
Go!
AlphaGo
Electronic Frontier Foundation (EFF) announces:

https://www.eff.org/ai/metrics

(e.g., handwritten digit recognition)
What happens to Security (and Privacy)?

• Perhaps, too subject?
• What do you even mean by measuring “security”?

• In terms of exploit/defenses:

CTF games
(human vs. human)

DARPA Cyber Grand Challenge
(computer vs. computer)
Take-away Messages from AI

• AI fields drive research as various landmark competitions
• Public resources for quantifying the progress (e.g., data sets)
• Perhaps, people tend to “hide” security-related data
• Too subjective, but we might be able to tackle subfields of security?
• So we can objectively measure pros/cons of security mechanisms

"It works, but I don’t know why?"

• AI takes off → “unknown” software everywhere!
• In particular, when Security relies on AI-based approaches

(APT = Advanced persistent threat, or targeted attack)
Take-away Messages (once AI takes off)

• More attack surface for attackers: impl, algorithm, data, etc.

• What if attackers understand more deeply than you?
• What if attackers can influence your data set?
• What if we don’t even observe attacks (i.e., accountability)?
On-going Efforts at Georgia Tech

• Intel Science and Technology Center (ISTC) for Adversary-Resilient Security Analytics (MLsploit)

• NSF/SaTC: CORE: Medium: Understanding and Fortifying Machine Learning Based Security Analytics

• Security: Wenke Lee, Taesoo Kim
• ML: Polo Chau, Le Song
“What can AI learn from security”?
1996

.oO Phrack 49 Oo.
Volume Seven, Issue Forty-Nine
File 14 of 16
BugTraq, r00t, and Underground.Org bring you

by Aleph One
aleph1@underground.org

2011

Memory Corruption (19)
- Defeated by DEP 14
- Defeated by ASLR 17
- Defeated by EMET 19

Logic Flaws (8)
- No Java in Internet Zone 4
- No EXEs in PDFs 1
- No Firefox or FoxIt Reader 2

$114B

Right: Dan Guido, Exploit Intelligence Project
Left: Aleph One, Phrack 49
The Honeymoon Effect

Bugs: Starts fast, then slows down

Vulnerabilities: Starts slow, then speeds up!

Frei, Clark, Blaze, Smith: Familiarity Breeds Contempt
No Reports of Attacks

Mandiant, APT1 Report
Golden Opportunities in AI Security

• Any software that serves as a gatekeeper to valuable IP, wealth, or life safety must consider the eventual arrival of an expert adversary

• Attack detection is not free; it requires active research & sensors

• No reports of attacks != no attacks

• Techniques to defeat security properties must be discovered & published in the open first (Fun) or be exploited (Profit)
“What can security learn from AI?”
Machine Learning versus Sensors

SandPrint:

“we can use those inherent features to detect sandboxes using supervised machine learning techniques [...] an attacker can reveal characteristics of publicly available sandboxes and use the gathered information to build a classifier that can perfectly distinguish between a user PC and an appliance”

AFL vs. djpeg

Michal Zalewski, Google, on AFL
“Security & AI”
Discussion
“What can AI learn from security”?
“What can security learn from AI?”
“What does security look like after AI ‘happens’?”
Wrap-up and next steps

• What can AI learn from security?
• What can security learn from AI?
• What does security look like after AI happens?

New techniques, new problems to solve, new collaborations
Find someone to work with today!
Thank you