ResearchGate

See discussions, stats, and author profiles for this publication at:

Reward Shaping for Statistical Optimisation of
Dialogue Management

Conference Paper - July 2013

DOI: 10.1007/978-3-642-39593-2_8

CITATIONS READS
7 44
3 authors:
Maluuba Microsoft Maluuba
18 PUBLICATIONS 68 CITATIONS 58 PUBLICATIONS 185 CITATIONS
SEE PROFILE SEE PROFILE

Google DeepMind

203 PUBLICATIONS 1,330 CITATIONS

SEE PROFILE

All content following this page was uploaded by on 07 January 2014.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/259582439_Reward_Shaping_for_Statistical_Optimisation_of_Dialogue_Management?enrichId=rgreq-9d0db8812016176a0abf8fd20a6e7e62-XXX&enrichSource=Y292ZXJQYWdlOzI1OTU4MjQzOTtBUzo5OTM0MDI2MTUyNzU4NEAxNDAwNjk1OTczNDUz&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/259582439_Reward_Shaping_for_Statistical_Optimisation_of_Dialogue_Management?enrichId=rgreq-9d0db8812016176a0abf8fd20a6e7e62-XXX&enrichSource=Y292ZXJQYWdlOzI1OTU4MjQzOTtBUzo5OTM0MDI2MTUyNzU4NEAxNDAwNjk1OTczNDUz&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9d0db8812016176a0abf8fd20a6e7e62-XXX&enrichSource=Y292ZXJQYWdlOzI1OTU4MjQzOTtBUzo5OTM0MDI2MTUyNzU4NEAxNDAwNjk1OTczNDUz&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Layla_El_Asri?enrichId=rgreq-9d0db8812016176a0abf8fd20a6e7e62-XXX&enrichSource=Y292ZXJQYWdlOzI1OTU4MjQzOTtBUzo5OTM0MDI2MTUyNzU4NEAxNDAwNjk1OTczNDUz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Layla_El_Asri?enrichId=rgreq-9d0db8812016176a0abf8fd20a6e7e62-XXX&enrichSource=Y292ZXJQYWdlOzI1OTU4MjQzOTtBUzo5OTM0MDI2MTUyNzU4NEAxNDAwNjk1OTczNDUz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Layla_El_Asri?enrichId=rgreq-9d0db8812016176a0abf8fd20a6e7e62-XXX&enrichSource=Y292ZXJQYWdlOzI1OTU4MjQzOTtBUzo5OTM0MDI2MTUyNzU4NEAxNDAwNjk1OTczNDUz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Romain_Laroche?enrichId=rgreq-9d0db8812016176a0abf8fd20a6e7e62-XXX&enrichSource=Y292ZXJQYWdlOzI1OTU4MjQzOTtBUzo5OTM0MDI2MTUyNzU4NEAxNDAwNjk1OTczNDUz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Romain_Laroche?enrichId=rgreq-9d0db8812016176a0abf8fd20a6e7e62-XXX&enrichSource=Y292ZXJQYWdlOzI1OTU4MjQzOTtBUzo5OTM0MDI2MTUyNzU4NEAxNDAwNjk1OTczNDUz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Romain_Laroche?enrichId=rgreq-9d0db8812016176a0abf8fd20a6e7e62-XXX&enrichSource=Y292ZXJQYWdlOzI1OTU4MjQzOTtBUzo5OTM0MDI2MTUyNzU4NEAxNDAwNjk1OTczNDUz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Olivier_Pietquin?enrichId=rgreq-9d0db8812016176a0abf8fd20a6e7e62-XXX&enrichSource=Y292ZXJQYWdlOzI1OTU4MjQzOTtBUzo5OTM0MDI2MTUyNzU4NEAxNDAwNjk1OTczNDUz&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Olivier_Pietquin?enrichId=rgreq-9d0db8812016176a0abf8fd20a6e7e62-XXX&enrichSource=Y292ZXJQYWdlOzI1OTU4MjQzOTtBUzo5OTM0MDI2MTUyNzU4NEAxNDAwNjk1OTczNDUz&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Olivier_Pietquin?enrichId=rgreq-9d0db8812016176a0abf8fd20a6e7e62-XXX&enrichSource=Y292ZXJQYWdlOzI1OTU4MjQzOTtBUzo5OTM0MDI2MTUyNzU4NEAxNDAwNjk1OTczNDUz&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Layla_El_Asri?enrichId=rgreq-9d0db8812016176a0abf8fd20a6e7e62-XXX&enrichSource=Y292ZXJQYWdlOzI1OTU4MjQzOTtBUzo5OTM0MDI2MTUyNzU4NEAxNDAwNjk1OTczNDUz&el=1_x_10&_esc=publicationCoverPdf

Reward Shaping for Statistical Optimisation of
Dialogue Management

Layla El Asril2, Romain Laroche!, and Olivier Pietquin?

1 Orange Labs, 38-40 rue du Général Leclerc 92794 Issy-les-Moulineaux, France,
2 SUPELEC Metz Campus, IMS-MaLIS Research group, UMI 2958 (CNRS -
GeorgiaTech), 2 rue Edouard Belin 57070 Metz, France
layla.elasri@Qorange.com, romain.laroche@orange.com,
olivier.pietquin@supelec.fr

Abstract. This paper investigates the impact of reward shaping on a
reinforcement learning-based spoken dialogue system’s learning.

A diffuse reward function gives a reward after each transition between
two dialogue states. A sparse function only gives a reward at the end
of the dialogue. Reward shaping consists of learning a diffuse function
without modifying the optimal policy compared to a sparse one.

Two reward shaping methods are applied to a corpus of dialogues eval-
uated with numerical performance scores. Learning with these functions
is compared to the sparse case and it is shown, on simulated dialogues,
that the policies learnt after reward shaping lead to higher performance.

Keywords: Spoken Dialogue Systems, Evaluation, Reinforcement Learning

1 Introduction

Dialogue management is one of the core functionalities of a Spoken Dialogue
System (SDS) along with automatic speech recognition, natural language un-
derstanding, natural language generation and speech synthesis. The Dialogue
Manager (DM) sequences the interaction with the user. It chooses the action
to perform according to its beliefs about the current state of the dialogue. Ac-
tions the DM can perform might be: asking for a piece of information, asking
the user to confirm a statement, etc. Hand-coding the behaviour of the DM is
time consuming and results in a specific implementation difficult to transfer to
other domains. Therefore, statistical learning of the DM’s behaviour through
Reinforcement Learning (RL) [22] has become a popular technique: the DM is
modelled as a sequential decision making agent and it selects actions in order to
maximise a numerical return. This return is computed from a reward function
provided by the SDS designer [10]. Ideally, the reward function is to be conceived
as the most succinct, robust and transferable representation of the system’s task
[19].

However, it is common to define this function based on SDS designer intuition
and experience, not relying on any data. Only a few studies have been conducted
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to learn a reward function from data. Among them, Walker et al [24] proposed
a PARAdigm for DIalogue System Evaluation (PARADISE), modelling system
performance as a linear function of task completion and dialogue costs (duration
of the dialogue, number of speech recognition rejections...). Walker et al. [23] as
well as Rieser and Lemon [18] evaluated the performance of different systems
using the PARADISE framework and used this evaluation as a reward function.
Yet, PARADISE requires to automatically compute task completion, which is
not always possible. Besides, the linear representation of system performance has
been criticised for not having a strong theoretical nor experimental grounding
[7]. Another methodology was proposed, which consists of learning, from exam-
ples of expert behaviour, the reward function that describes best the task being
completed by that expert. This approach is known as Inverse Reinforcement
Learning (IRL) [19]. It was first suggested for dialogue management by Paek
and Pieraccini [15] who thought of using IRL on Human-Human dialogues to
learn a reward function enabling the SDS to mimic human operators behaviour.
Following this idea, Boularias et al. [2] learnt a reward function from dialogues
collected in a Wizard-of-Oz (WOZ) setting where a human expert replaces the
DM. However, it is not always possible to learn from a human expert. For ex-
ample, a DM could have to choose between different speech styles and these
choices can only be made statistically. Besides, it is difficult to transpose speech
recognition issues to WOZ experiments. IRL has also been used to model user
behaviour for dialogue simulations [4].

In previous work, we proposed two algorithms using a corpus of manually
evaluated dialogues (with numerical performance scores) to compute a reward
function [5]. It was shown that a reward function that predicts accurately the
subjective performance for a given dialogue could be learnt, even from a corpus
of small size. Sample efficiency has been an important subject of research in the
field of dialogue management [11,16]. A learning algorithm is said to be sample
efficient if it can learn a near-optimal policy with only a few dialogues, meaning
that it optimises data exploitation. It is costly to conduct evaluation campaigns
on an SDS and most of the time, only a few number of evaluated dialogues can
be collected, hence the importance of optimal data exploitation.

The reward function learnt with the methods we previously proposed gives
a reward after each transition between two dialogue states while keeping the
optimal policy unchanged compared to a sparser reward. We will call such a
function diffuse in contrast with the sparse case where a reward is only received
at the end of the dialogue. In this paper, it is shown, on a simulated corpus with
user behaviour inferred from real dialogues, that the policy learnt with diffuse
rewards entails higher performance than the one learnt with sparse rewards.

2 Reinforcement Learning for Dialogue Management

Dialogue management is cast as a sequential decision making problem, mod-
elled by a Markov Decision Process (MDP) (S, A, T, R,~) where S is the state
space, A the action space, T the transition probabilities: V (s = s;,a = a4, 8" =
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st+1), T(s,a,8") = P(s' | s,a) € [0,1], R the reward function: V(s = s;,s" =
st+1), R(s,s") € R and v €]0,1[ a discount factor. A similar MDP without a
reward function is denoted MDP\ R.

A deterministic policy 7 is a function mapping each state to a unique action:
Vs € S m(s) =a € A. The immediate reward received after a transition (s¢, s¢41)
is Ry = R(st,st+1) € R. The cumulative reward (or return) at time ¢ is the
discounted sum of immediate rewards: r, = >, <, v*Ry4 . Given a policy 7, V™
is the state value function, the value V7 (s) of a state s being the expected return
E[r: | st = s,m] over all possible trajectories starting in state s; and following
7. Likewise, Q™ is the state-action value function, the value Q™ (s, a) of a state-
action couple (s,a) being Elr; | s; = s,a; = a,w]. The dialogue manager aims
to find an optimal policy: a mapping selecting actions maximising the expected
return for every state. An optimal policy 7* is thus such that V 7,V s, V7™ (s) >
V7™ (s). Although uniqueness of the optimal policy is not guaranteed, all optimal
policies share the same state and state-action value functions noted V* and Q*
and thus perform comparatively. In the context of this paper, time is measured
in number of dialogue turns, each dialogue turn occurring in between two results
of automatic speech recognition.

If many dialogue parameters are taken into account, the state space can
become computationally intractable so designers usually define a summary state
space instead. A summary state is an agglomerate of states with similar features.
For example, for the SDS described in [8] which provides information about local
restaurants, the current state can be summed up in terms of empty, filled and
confirmed items (location, price range, type of food) instead of listing the current
values of all items (e.g. location=city center, price range=cheap, type=Italian).

The reward function is hard to define ex nihilo as one should be able to
numerically translate and appropriately distribute qualitative requirements. For
instance, one has to decide which prevails between task completion and speech
recognition rejections, when should the rewards be given during the dialogue,
which numerical range, and so forth. Our approach to this problem is given in
the following section which briefly presents two algorithms computing, from a
corpus of manually evaluated dialogues, a diffuse reward function, defined over
a summary state space S [5]. These algorithms solve the problem introduced in
Definition 1. The manual evaluations in question are based on dialogue features
representative of system usability such as dialogue length, task completion,...
They can be computed from user answers to a Likert-scale questionnaire. In this
paper, dialogues are simulated and the scores are a linear combination of such
dialogue features.

Definition 1 (Reward inference problem) Infer a reward function from a
corpus of N dialogues (D;)ic1.. v among which p dialogues have been manually
evaluated with a numerical performance score P; € R.
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3 Learning Rewards from Data

This section presents three different approaches to the problem issued in Defi-
nition 1. The first two algorithms infer diffuse reward functions. Details can be
found in [5]. The third one, which will serve as a baseline, gives a reward equal
to system performance at the end of the dialogue.

3.1 Reward Shaping

This first algorithm is named Reward Shaping in reference to the line of research
which aims to include, without modification of the optimal policy, immediate
rewards as progress estimators instead of having to wait until the end of an
episode to receive a reward [12]. Ng et al. [14] proved that the optimal policy of
an MDP would not be changed by adding to the reward function a potential-
based reward function U such that U(s, s") = v@(s") — &(s) and experimentally
validated that, if @ is equal to the value function, learning speed is increased.
In our case, reward shaping consists of using performance scores to evaluate
each state and then defining the reward associated to a given transition as the
difference of potential between the arrival and the initial state.

The value function V7 is estimated according to the performance scores:
the return used to estimate the value of each summary state V7(§) is V D,
ry = v~ tP;. Thus, the global return rq is equal to P;.

The reward function (denoted Rpg) is then defined as ¥V (5, 5"), Rrs(5,5) =
YV™(§) = V™(8) 4+ 0525,V " (30) with ¢ the Kronecker symbol (d5—5, = 1 if § = 3¢
and 0 otherwise). In other words, the reward function is modelled as the sum of an
offset Cyp = V™ (30) and the potential-based function U (3, §") = AV™(5') = V™(3).
With Rgg, the global return rq for a given dialogue D (lasting from turns 0
to ty) is: rg = P = A% V7(8,). Since V™ is estimated according to the returns
ry = LR, A V7 (8,) is an estimation of the performance of the dialogues
ending with state ;, and ro is an estimation of the performance of the system
during D.

3.2 Distance Minimisation

Instead of evaluating states, distance minimisation evaluates transitions. This
algorithm directly aims to cut the performance evaluations into local rewards
over the transition space. The distance minimisation problem is formalised in
Definition 2.

Definition 2 Let an MDP\R. Let ¢ = [¢;]i=1,....m be a vector of features over
the transition space (¥ i € [1,m],V (8,8,

$:(5,5") €[0,1]). The immediate reward Ry following transition (3¢, 5}) is
modelled as a linear sum of these features: Ry = > ., wipi(5,8;). Let P =
[Pili=1,...p be a performance score vector such that each dialogue D; is associated
with a performance P;, and let dp be a distance measure between P and the
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return vector ro'. The distance minimisation problem consists of finding the
weight vector w* such that w* = argmin,, dp(w).

Here, Euclidean distance minimisation is solved. The problem issued in Defini-
tion 2 can be cast as a quadratic optimisation problem and solved with well-
known direct or iterative methods (resolution details can be found in [5]). The
resulting reward function is denoted Rpa;.

3.3 Performance Scores

Rgrs and Rpjs are compared to the sparse reward function which gives the
performance score at the end of each dialogue. This function (denoted Rpg) is
defined as follows: V D;,V (5,5"), Rpg(8,5) = 0if § # 57 and Rpg(5,5') =
~~ts~1 P, otherwise?.

In the following section, the performance of the policies learnt with Rpg,
Rprs and Rpjs on the same corpus of dialogues are compared.

4 Experimental Setting

4.1 System Overview

We used the TownInfo system, based on the DIPPER architecture [1]; it pro-
vides informations about restaurants in a given city depending on three criteria:
location, price range and type of food [9]. At each time step, a slot corresponding
to one of these criteria can either be empty, filled or confirmed. We defined a
summarised state space which counts the number of empty, filled and confirmed
slots. We also defined a summary action space which does not differentiate the
actions according to the position of the slot involved (for instance, AskSlotl,
AskSlot2 and AskSlot3 are summarised into AskASlot). Nevertheless, to assure
dialogue coherence and avoid e.g. asking for a slot that has already been con-
firmed, when an action is chosen and has to be mapped to a slot, for example,
AskASlot, we first check the current value of the slots and then force this action
to be mapped only to empty slots. The state and action spaces were voluntarily
made simple as the main objective of this paper is to validate the diffuse rewards
approach.

4.2 Dialogue Simulations

The three reward functions were applied to a corpus of 600 simulated dialogues.
User was simulated according to the Bayesian method proposed in [17]. It con-
sists of modelling user behaviour as a Bayesian network to simulate dialogues

! (ro)i<i<p, Vi, ro; = Z’Yth = Z Y ij(bj(ghg;)
t>0 5,5, =1
2 so that 7o = P;
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at the intention level, including grounding behaviours. The parameters of the
Bayesian network were trained on the 1234 human-machine dialogues which are
described in [25].

As for system policy, it was set to be uniform to collect as much information
as possible for every state-action pair.

After each dialogue, a performance score was computed according to dialogue
features, in a PARADISE-like manner. Once again, since our aim was to validate
the diffuse rewards approach, a simple, automatically computed scoring function
was sufficient. With nbEmpty the number of empty slots, nbRight, the number
of slots that were correctly filled, nbWrong, the number of incorrectly filled slots
and nbTurns, the number of dialogue turns, the score was:

score = — 3 x nbEmpty + 0.25 x nbRight
—0.75 x nbWrong — 0.015 x nbTurns (1)

4.3 Learning a Diffuse Reward Function

We simulated 2300 dialogues in total but we only used 600 dialogues to learn Rrg
and Rpys since it is difficult, in real-life experiments to obtain as many as 2300
dialogues. The proximity between Rgrs, Rpy and the simulated performance
scores (see Equation 1) was assessed by Spearman’s rank correlation coefficient
[20]. The closer to 1 the correlation coefficient, the stronger the relationship
between the corresponding rankings.

We used the remaining 1700 dialogues to measure this proximity. We drew
100 times 600 dialogues from the corpus of simulations and computed the mean
correlation coefficient on these runs for both Rrg and Rpjs. The mean correla-
tion coefficient was equal to 0.81 for Rrg and 0.84 for Rp . Here, the coefficients
are high because the scoring function in equation 1 can be approximated on the
state space presented in Section 4.1 as the only non-observable parameter is the
number of correctly filled slots.

4.4 Learning a Near-Optimal Policy

Policies were learnt on the 600 dialogues with Rrg, Rpy and Rpg using Least-
Squares Policy Iteration (LSPI, [6]). LSPI is an approximate policy iteration
algorithm involving LSTDQ 2 which learns an approximate state-action value
function for a given policy from a fixed data set. After a policy was learnt with
LSPI, 200 new dialogues were generated with this policy and the dialogues were
automatically evaluated according to Equation 1. We also applied LSPI to the
whole corpus of 2300 dialogues and compared the three resulting policies on 200
dialogues. Our aim is to show that learning with Rrs and Rpjs leads to higher
performance no matter the size of the training corpus.

3 an extension to control problems of Least-Squares Temporal Differences, LSTD [3]
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Table 1. 95% confidence interval for the mean performance, mean number of dialogue
turns and mean number of empty and confirmed slots on 200 dialogues simulated with
the policies learnt with Rrs, Rpym and Rps after 600 and 2300 dialogues.

Learning on 600 dialogues |Performance|Turns|Empty|confirmed
Rrs 0.13£0.09 | 11.6 0 3
Rpwm 0.062 +0.10| 7.72 0 0
Rps 0.007 £0.10| 8.55 0 0.8

Learning on 2300 dialogues|Performance| Turns| Empty |confirmed
Rrs 0.13+£0.09 | 11.6 0 3
Rpwm 0.08 £0.10 | 7.28 0 0.23
Rps 0.04£0.11 | 7.95 0 1.22

5 Results

Table 1 shows that though the policy learnt with Rrg leads to longer dialogues,
it has the best evaluation. This can be explained by the fact that this policy
has a better success at confirming slots than the other two. A great number of
confirmed slots implies a limited risk of getting one value wrong and since filling
and having the right value for each slot have a greater weight in the scoring
function (see Equation 1) than having short dialogues, the policy learnt with
Rps achieves better performance than the ones learnt with Rpas and Rpg. For
RpRs, the results are the same after 600 and 2300 dialogues because the policies
learnt with LSPI on these two corpora are similar.

Rpgs gives the exact scores as rewards which makes it more accurate than
Rps and Rpys but this accuracy is counterbalanced by the fact that the rewards
are only given at the end of each dialogue. The policy learnt with Rpg is the least
competitive because it more poorly balances the trade-off between the number
of confirmed slots and dialogue length than the other two policies.

6 Relation to Prior Work

Walker et al. [23] used performance evaluation to learn a policy for an SDS
with Q-Learning [22], giving a reward equal to the evaluation at the end of
each dialogue. This SDS granted a vocal access to the user’s e-mail account and
could summarise and read messages. Walker et al. showed that about hundred
dialogues were sufficient to learn the best strategy between system and mixed
initiative yet it was not enough for the summary strategy to achieve conver-
gence. We showed, on a different dialogue task, that it is possible to shape a
reward function based on performance evaluation in order to optimise corpus
exploitation. We believe that reward shaping is a promising method for statis-
tical dialogue management optimisation as it is often difficult to obtain corpora
of great size.

Meguro et al. [13] designed a listening-oriented dialogue system and inferred
a reward function from third-party evaluation of user satisfaction. In order to
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counter inter-annotators ambiguity concerning the interpretation of the Likert
scale, Sugiyama et al. [21] introduced Preference-based Inverse Reinforcement
Learning (PIRL): performance scores are used to deduce the best of two dialogues
and then a reward function that classifies dialogues respecting the same order is
learnt. Contrary to our reward inference algorithms, this method does not enable
to use directly performance scores given by users. Indeed, each user would have
to interact several times with the system for us to infer a ranking from their
evaluation, otherwise a third-party annotator would be required.

7 Conclusion

This paper provided some empirical results on the issue of reward function design
for spoken dialogue systems. A diffuse reward function was learnt from a corpus
of evaluated dialogues. It was shown that diffuse rewards enabled to learn a
policy leading to a better performance on new dialogues.

Future work will include defining a compatible active learning framework
and proposing a method to optimise the conception of the summary state space.
We will also compare our reward inference methods to Preference-Based Inverse
Reinforcement Learning on dialogues evaluated by a third-party annotator.
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