
Demonstration of interactive dialog teaching for learning a practical
end-to-end dialog manager

Jason D. Williams
Microsoft Research

jason.williams@microsoft.com

Lars Liden
Microsoft

laliden@microsoft.edu

1 Introduction

This is a demonstration of a platform for build-
ing practical, task-oriented, end-to-end dialog sys-
tems. Whereas traditional dialog systems consists
of a pipeline of components such as intent detec-
tion, state tracking, and action selection, an end-
to-end dialog system is driven by a machine learn-
ing model which takes observable dialog history
as input, and directly outputs a distribution over
dialog actions. The benefit of this approach is
that intermediate quantities such as intent or dia-
log state do not need to be labeled – rather, learn-
ing can be done directly on example dialogs.

In practice, purely end-to-end methods can re-
quire large amounts of data to learn seemingly
simple behaviors, such as sorting database re-
sults. This is problematic because when build-
ing a new dialog system, typically no in-domain
dialog data exists, so data efficiency is crucial.
Moreover, machine-learned models alone cannot
guarantee practical constraints are followed – for
example a bank would require that a user must
be logged in before they are allowed to transfer
funds. For these reasons, in past work we intro-
duced Hybrid Code Networks (HCN) (Williams
et al., 2017). HCNs make end-to-end learning
practical by combining a recurrent neural network
(RNN) with domain-specific software provided by
the developer; domain-specific action templates;
and a conventional entity extraction module for
identifying entity mentions in text. Experiments
on the public bAbI corpus (Bordes et al., 2017)
have shown that HCNs can reduce the number of
training dialogs required by an order of magnitude
compared to state-of-the-art end-to-end learning
methods which do not employ domain knowledge.

This demonstration shows a practical imple-
mentation of HCNs, as a web service for building
task-oriented dialog systems. Once the developer

has provided their domain-specific software, they
can add training dialogs in several ways. First, the
developer can simply upload dialogs to the train-
ing set. Second, the developer can interactively
teach the HCN, and making on-the-spot correc-
tions. Finally, as the HCN interacts with end-
users, the developer can inspect logged dialogs,
make corrections if needed, and add the dialogs
to the training set.

The next section describes the architecture and
operation of the platform, and the final section de-
scribes how the developer uses the service – i.e.,
what the demonstration shows.

2 Dialog learning platform

The practical operation of the HCN is shown in
Figure 1, where the left-hand block in white shows
a messaging client used by an end user, the center
block in blue shows a web service implemented
by the system developer that hosts domain-specific
logic, and the right-hand block in green is the
HCN web service. A software development kit
(SDK) facilitates using the HCN web service.

When interacting with end users, the process
begins when the end user provides input text, such
as “What’s the 5 day forecast for Seattle?”, shown
as item 1 in Figure 1. This text is passed to the de-
veloper’s web service, which in turn calls the HCN
service to perform entity extraction (item 2). The
HCN service then returns entity mentions detected
in text, such as “location=Seattle” (3). Domain-
specific code on the developer’s service the runs to
resolve entity mentions to a canonical form, such
as a latitude/longitude pair, and to store entities for
use in later turns in the dialog (4). The developer’s
code then calls the HCN service again, optionally
passing in context which can include which en-
tities have been recognized so far in the dialog,
as well as an action mask that limits which action

WeatherBot

What’s the 5 day
forecast for Seattle?

Anything else?

Weather bot
service

Dialog learning serviceSDK

Entity
extraction

(CRF)

Action
selection

(RNN/
LSTM)

Logged
dialogs

entity
callback

action
callback

text text

entities

context

actionaction

resultresult

actionaction

Provided by platformProvided by weather bot developer

1

10

2

3

5

6

8

7

9

4

Figure 1: Development platform for interactive dialog learning. See text for details.

templates are available at the current step (5).
The HCN service returns a distribution over

all un-masked action templates, and the developer
code executes the highest-ranked action (6). If this
action template is an API call – such as displaying
rich content to the user, executing a transaction in
a database, or raising a robot’s arm – that API is
invoked (7), and the HCN service is called again
to choose the next action. If the API call returns
features, those can be passed to the HCN service
as context features (8). If the action template is a
textual action, the developer’s code can substitute
in entity values such as a weather forecast before
the text is rendered to the end user (9). The cycle
then repeats.

Dialogs conducted with users are logged by the
HCN service, and can later be reviewed and cor-
rected by the system developer through a web user
interface (9). Also, the cycle can be augmented
to support interactive teaching. These aspects are
described in the next section.

3 Illustrative interactions

When creating a new dialog system, typically no
in-domain data exists. To address this, the dialog
learning platform supports interactive teaching. In
interactive teaching, the developer alternates be-
tween the role of the end user, and the role of the
teacher. The operational loop shown in 1 is mod-
ified so that results of entity extraction and action
selection can be corrected before being executed.

Figure 4 shows an example of interactive teach-

ing for pizza ordering. The developer – playing
the part of the user – enters “medium pizza with
olives”. The current entity extraction model finds
entity mentions for the $pizza and $size entities,
but not the “olive” $topping. So, the developer
corrects this by adding a corrected entity label, and
this corrected label is used going forward. The in-
terface then displays the contents of the developer-
defined state, and provides a list of actions, each
with their score under the current RNN model. In
this example, all of the actions are shown as “dis-
qualified”, meaning that the action mask prohibits
them. For example, the action “Would you like
a Small, Medium, or Large $crust pizza ...” is
masked because the pizza size is already known.
The developer enters the index of the action to
take (“1”) and the dialog continues. At this point,
the developer could have alternatively entered a
new action – for example, by typing “So you want
$toppings, is that right?”. As each correction is
made, the model is re-trained.

Once a rudimentary model is in place, end-
users can start using the system. An example dia-
log with an end-user is shown in Figure 2, which
shows an error at the last system turn. Figure 3
shows how this dialog appears to the developer,
and how a correction can be made. Each system
utterance is shown in a drop-down box. If the
developer identifies a turn where the system out-
put the wrong action, the developer can select the
correct action from the drop-down. When an ac-
tion which differs from the action in the log is se-

Figure 2: Example interaction with an end user.
Note the system mistake after the user enters
“search for sushi restaurants”.

lected, the remainder of the dialog is discarded,
since it is no longer known how the user would
have responded. If none of the actions is appro-
priate, the developer can choose “new action...”,
and enter a new action into a provided text box.
When the dialog has been corrected, the devel-
oper clicks on “submit”, which saves the labeled
dialog to the training set, re-trains the model, and
re-deploys the new model. In the example in Fig-
ure 3, the user’s fourth input was “search for sushi
restaurants”, and the system had answered with a
weather forecast. The developer changed this re-
sponse to “new action...” and typed in the new
action “Sorry, I can’t help with that”.

In the demonstration, we have three working di-
alog systems available, for pizza ordering, restau-
rant information, and weather forecasts. The
demonstration shows applying the two interactive
methods above to each of these three domains.

Drop-down menus with
existing actions, plus “new

action…” choice

New action
entry textbox

Figure 3: Example of off-line dialog correction,
showing the dialog collected in Figure 2. After the
user says “search for sushi restaurants”, the devel-
oper changed the action “$forecast” to “new ac-
tion...” and typed in “Sorry, I can’t help with that”.

References
Antoine Bordes, Y-Lan Boureau, and Jason Weston.

2017. Learning end-to-end goal-oriented dialog. In
Proc Intl Conf on Learning Representations, Toulon,
France.

Jason D Williams, Kavosh Asadi, and Geoffrey Zweig.
2017. Hybrid code networks: practical and efficient
end-to-end dialog control with supervised and rein-
forcement learning. In Proc Association for Compu-
tational Linguistics, Vancouver, Canada.

User input

Entity label

Action selection

Entity detection
under current

model

Defined actions
and scores

Developer-
defined dialog

state

System output

Figure 4: Example of interactive dialog teaching. The developer’s input is in blue boxes on the right
side, and the system’s responses are in grey and white boxes on the left side. The developer alternates
between playing the role of an end user, and providing corrective input.

