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Abstract

The Node.js runtime has become a major platform for de-

velopers building cloud, mobile, or IoT applications using

JavaScript. Since the JavaScript language is single threaded,

Node.js programs must make use of asynchronous callbacks

and event loops managed by the runtime to ensure appli-

cations remain responsive. While conceptually simple, this

programming model contains numerous subtleties and be-

haviors that are defined implicitly by the current Node.js

implementation. This paper presents the first comprehensive

formalization of the Node.js asynchronous execution model

and defines a high-level notion of async-contexts to formalize

fundamental relationships between asynchronous events in

an application. These formalizations provide a foundation

for the construction of static or dynamic program analysis

tools, support the exploration of alternative Node.js event

loop implementations, and provide a high-level conceptual

framework for reasoning about relationships between the

execution of asynchronous callbacks in a Node.js application.

CCS Concepts • Software and its engineering→ Gen-

eral programming languages; • Social and professional

topics → History of programming languages;

Keywords JavaScript, Asynchrony

1 Introduction

JavaScript is one of the most popular programming lan-

guages in use today and is rapidly expanding beyond its

traditional role of client-side scripting. Node.js is a major

platform for building JavaScript applications for the server,

cloud, mobile, and IoT platforms. This rapid growth in pop-

ularity and usage has resulted in a growing demand from

developers for information on how to best use the many

asynchronous API’s exposed by Node.js and for tools that

can help develop [15], debug [4], or monitor [10, 24] the

asynchronous behavior of their applications.

1.1 Semantics of Node Event Queues

A major challenge for research and tooling development for

Node.js is the lack of a formal specification of the Node.js

asynchronous execution model. This execution model in-

volves multiple event queues, some implemented in the na-

tive C++ runtime, others in the Node.js standard library

API bindings, and still others defined by the JavaScript ES6

var cb = function() { process.nextTick(cb); }
fs.write(process.stdout.fd, ’hi’, function() {

/*never printed*/
fs.writeSync(process.stdout.fd, ’done’);

});
cb();

Fig. 1. nextTick starvation of fs.write callback

var cb = function() { setImmediate(cb); };
fs.write(process.stdout.fd, ’hi’, function() {

/*printed in finite time*/
fs.writeSync(process.stdout.fd, ’done’);

});
cb();

Fig. 2. setImmediate scheduling setImmediate is fair

promise language feature. These queues have different rules
regarding when they are processed, how processing is inter-

leaved, and how/where new events are added to each queue.

These subtleties are often the difference between a respon-

sive and scalable application and one that exhibits a critical

failure.

Consider the following pair of programs that differ in only

the use of a single Node API – process.nextTick(cb) (in

Figure 1) vs. setImmediate(cb) (in Figure 2):

The first line of Figure 1 defines a function that, when

called, will register itself to be executed again “once the

current turn of the event loop turn runs to completion” [18].

The second line initiates an asynchronous write to stdout

which, when completed, will invoke the argument callback

which synchronously prints ‘done’ to stdout. Finally, the

function cb is invoked. At the end of this code block, Node

will return to the event loop and begin dispatching from the

various queues.

Based on the Node.js event loop implementation, the first

callback dispatched will be cb registered by nextTick even

though this was added to the event loops after fs.write

callback. Further, the code will never print ‘done’ to the

console. Each call to nextTick inserts the cb callback in a

special nextTick queue which is drained before any other

I/O events. This results in the starvation of any I/O tasks

including the callback that contains the fs.writeSync call.

If, instead of using nextTick, we use setImmediate as shown

in the code block in Figure 2, then we should see ‘done’
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printed in the first iteration of the event loop
1
. This differ-

ent behavior is due to the fact that setImmediate places the

callbacks in another special queue that is drained after some

(but perhaps not all) pending I/O based callbacks have been

executed. This interleaving ensures that both the I/O and

timer based callback computations will make progress thus

avoiding starvation.

As can be seen in this example, it is not possible to real-

istically model the semantics of a Node application using a

single queue or even a single queue draining rule [15]. Thus,

our first goal in this work is to construct a realistic formal-

ization of asynchronous execution in a Node application.

1.2 Asynchronous Execution Context

During the execution of a program there may be many asyn-

chronous callbacks simultaneously queued for execution.

These callbacks may be associated with different logical tasks

such as requests in the case of a web server. For many ap-

plications preserving the logical identity of a distinct asyn-
chronous execution chain is critical. For example a developer

debugging their application may want to see only logging

output associated with handling a single http request of in-

terest or to know both the wall time taken to respond to a

request as well as the cycles spent specifically processing

it (as opposed to being blocked on I/O or waiting for other

work to complete).

Given the importance of understanding and tracking asyn-

chronous execution context in Node.js applications the com-

munity has developed several frameworks for tracking asyn-

chronous callbacks including Zones [26], Hooks [12], and Stacks [25].

Fundamentally, each of these systems is based on an infor-

mally defined relation which associates the point where an

asynchronous callback is added to a worklist, and the point

where the callback is dequeued and invoked.

Despite the importance of the concept of an async-context
and the multitude of tools that provide some variation of

this context there is currently no widespread consensus be-

tween tools about what constitutes a link in an asynchronous

event chain. This situation is further exacerbated by a lack

of formalization about what async-context is and if the same

definition of context is sufficient for all applications or if

there is, in fact, more than one useful definition of context.

Thus, our second goal in this work is to formalize the no-

tion(s) of async-context in a manner that is independent of a

specific worklist implementation, such as the current Node

implementation, and show how this context can be computed

from the high-level language and API definitions.

In summary this paper makes the following contributions:

• We introduce λasync which extends λjs with promise

semantics and microtask queue/event loops to enable

1
Assuming console I/O completes immediately which is not always true

but the callback will always be scheduled fairly with setImmediate once

it completes.

the formalization of Node.js asynchronous execution

semantics.

• Building on the λasync semantics we define the con-

cepts of causal context and linking context for reason-
ing about async-context in an application and present

context propagation rules for computing them.

• We illustrate how these concepts and formalization

support existing applications with race detection and

debugging examples.

• We show how our formalization of event-loop seman-

tics and asynchronous contexts enable further research

into the design and development of a resource-aware

priority scheduler for Node.js.

2 Node.js Asynchronous Event Loop

Semantics

In order to precisely define the semantics of asynchronous

context, we must first provide an accurate model for the

runtime behavior of the asynchronous primitives available

in Node.js. To address this, we define λasync which extends

λjs [11] with asynchronous primitives. In particular, we de-

fine both the asynchronous callbacks of Node.js and JavaScript

promises uniformly in terms of priority promises. A priority

promise has the core semantics of a JavaScript promise and

is augmented with a priority value. For this article we also

leave out many features of real JavaScript promises like ex-

ception handling and chaining which can be represented in

terms of the primitives we model. Similarly, we do not dis-

cuss the new ES2017 async/await syntax as these operations

can also be expressed in terms of regular promises.

2.1 Syntax

Figure 3 defines the extended syntax of λasync. For concise-
ness, we only present the extra constructs added over λjs.

Values v are either regular JavaScript values or a priority
promise. The ... stands for the definition in λjs as described
in [11], basically constants, functions, and records. The new

priority promise is a triple (n, r, fs) with a priority level n,
a value r that is either unres for an unresolved promise, or

res(v) for a resolved promise, and a list of pending callbacks

fs.
Expression e are extended with three operations for work-

ing with promises:

• Promise() creates a new promise (of priority 0).

• e1.resolve(e2) resolves promise e1 to the value of e2.
• e1.then(e2) schedules e2 for execution once promise e1
is resolved.

This interface deviates from regular promises where the

resolve method is (usually) hidden and where the construc-

tor function for a promise takes a function as an argument:

A JavaScript Promise(f ) creates a new promise that executes

f asynchronously and when it returns a value, the promise

resolves to that value. In our model this can be expressed as:
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v ∈ Val ::= . . .

| (n, r, fs) promise tuple

r ::= unres unresolved

| res(v) resolved to v
fs ::= [f1, ..., fm] callbacks

n priority levels

e ∈ Exp ::= . . .

| Promise() create a promise

| e.resolve(e) resolve a promise

| e.then(e) add a listener

| • the event loop

Fig. 3. Syntax of λasync.

function Promise(f) {
var p = Promise();
process.nextTick( function() {

p.resolve(f());
});
return p;

}

Finally, the special • expression is used to allow the execu-

tion of callbacks associated with asynchronous computation.

Javascript has ‘run to completion’ semantics, meaning that

once a Javascript function is called, that function as well as

any other functions invoked synchronously are run without

preemption until they terminate. When the special • expres-

sion is reached, control returns to the runtime allowing it to

flush its work queues according to the semantics described

in Section 2.3.

2.2 Priorities

We use priorities to enable the modeling of asynchronous

semantics in Node.js using a single abstraction. We are es-

pecially interested in the behavior of a regular promise,

.then, setTimeout, setImmediate, regular asynchronous I/O,
and process.nextTick. It turns out we can model all these

concepts using a single priority mechanism. We assign the

following priorities to the various operations:

0. For process.nextTick and regular promises, i.e. the mi-
crotask queue;

1. For setImmediate;
2. For setTimeout;
3. For all other asynchronous I/O, e.g. readFile etc.

To model all operations as priority promises, we assume an

initial heap H0 that contains the following global promises

that are always resolved:

H0 = [nexttick 7→ (0, res(undef ), []),
immediate 7→ (1, res(undef ), []),
timeout0 7→ (2, res(undef ), [])]

With these promises we can define various primitives simply

as a call to .then on one of these predefined promises:

process.nextTick(f ) = nexttick.then(f )
setImmediate(f ) = immediate.then(f )
setTimeout(f , 0) = timeout0.then(f )

In Section 2.4 we show how general timeouts and I/O is

handled.

2.3 Semantics

Figure 4 defines the asynchronous semantics of λasync using
priority promises. Reduction rules have the form H ⊢ e →
H ′ ⊢ e′ which denotes an expression e under a heap H evalu-

ating to a new expression e′ and heap H ′
. We write H [p] to

get the value that an address p points to in the heap H , and

H [p 7→v] to update the heap H such that p points to value v.
The evaluation context E is defined by λjs [11] and basi-

cally captures the current execution context. The E-Ctx rule

denotes that in any λjs evaluation context E we can evaluate

according to λjs (note: in λjs they use σ to denote a heap

H ), e.g. the premise H ⊢ e ↪→∗ H ′ ⊢ e denotes that if we can
evaluate and expression e under a heap H to e′ with a new

heap H ′
using λjs semantics, we can apply that rule in any

evaluation context in our semantics too. All the other rules

now deal with just the extension to priority promises.

The E-Create rule creates a fresh promise p in the heap.

The priority of a priority promise corresponding to a regular

JavaScript promise is always 0, and starts out unresolved

with an empty list of callbacks.

The E-Then simply adds a new callback f to the tail of

the current list of (as yet unexecuted) callbacks of a promise,

where ⊕ denotes list append. Note that it doesn’t matter

whether the promise is currently resolved or not. This behav-

ior corresponds to the promise specification that requires

that such function f is never immediately executed even if

the promise is already resolved [13, 25.4, 22, 2.2.4].

Rule E-Resolve resolves an unresolved promise by updat-

ing its status to resolved (res(v)).

2.3.1 Scheduling

The final rule E-Tick is the most involved and the core of our

semantics as it models the scheduler. It takes the ‘event loop’

expression • and reduces to a sequence of new expressions

to evaluate, ending again in •. We discuss each of the three

premises in detail:

1. The premise, R ⊑ {p 7→ (n, f1(v); ...; fm(v)) | ∀p ∈ H ,
H [p] = (n, res(v), [f1, ..., fm]) } selects a set of resolved
promises in the set R. The relation ⊑ can be defined

in different ways and allows us to discuss different

scheduling semantics. For now, we assume ⊑ denotes

equality which means we select all resolved promises

to be scheduled. The resolved promise set R maps

each promise to an expression, namely a sequence

of each callback fi applied to the resolved value v.
3



H ⊢ e ↪→∗ H ′ ⊢ e

H ⊢ E[e] → H ′ ⊢ E[e′]
[E-Ctx]

fresh p

H ⊢ Promise() → H [p 7→ (0, unres, [])] ⊢ p
[E-Create]

H [p] = (n, r, fs)

H ⊢ p.then(f ) → H [p 7→ (n, r, fs ⊕ [f ])] ⊢ undef
[E-Then]

H [p] = (n, unres, fs)

H ⊢ p.resolve(v) → H [p 7→ (n, res(v), fs)] ⊢ undef
[E-Resolve]

R ⊑ {p 7→ (n, f1(v); ...; fm(v)) | ∀p ∈ H , H [p] = (n, res(v), [f1, ..., fm]) }
H ′ = H [p 7→ (n, res(v), []) | ∀p ∈ R, H [p] = (n, res(v), _ )]
R � [p1 7→ (n1, e1), ..., pm 7→ (nm, em)] with nk ⩽ nk+1

H ⊢ • → H ′ ⊢ e1; ...; em; •
[E-Tick]

Fig. 4. Priority Semantics of λasync

Note that callbacks are composed in order of regis-

tration [22,2.2.6.1].

2. Next, the premise H ′ = H [p 7→ (n, res(v), []) | ∀p ∈ R,
H [p] = (n, res(v), _ )] clears all the callbacks for all

the promises in the set R so we ensure that a callback

never evaluated more than once.

3. Finally, R � [p1 7→ (n1, e1), ..., pm 7→ (nm, em)]with nk ⩽ nk+1
denotes that the set R is isomorphic to some list with

the same elements but ordered by priority. This de-

notes the order of the final expressions that are sched-

uled for evaluation next, namely e1; ...; em; •. It gives
implementation freedom to schedule promises of the

same priority in any order.

The scheduling relation ⊑ is a parameter to allow for various

different scheduling strategies. Clearly the⊑ relationmust at

least be a subset relation ⊆ but by making it more restrictive,

we obtain various scheduler variants:

All

By having⊑ be equalitywe schedule all resolved promises

at each event loop tick (in priority order). This is a nice

strategy as it has simple declarative semantics and also

prevents I/O starvation that we saw in earlier examples:

even when we recurse in a process.nextTick
Micro

Generally, promises (and process.nextTick) are implemented

using queues independent of the I/O event manager and

programmers can rely on those being evaluated before

the callbacks associated with any other I/O operations.

We can model this by having a more restrictive ⊑ :

1. If there are any resolved promises of priority 0,

select just those.

2. Otherwise select all resolved promises as in All.

This strategy already nicely explains the behavior of

the two examples given in Section 1.1: the first example

uses process.nextTick recursively and thus the I/O ac-

tion never gets executed since there is always a resolved

promise of priority 0. However, the second example with

a recursive setImmediate leads to just promises of prior-

ity ⩾ 1 and the I/O action can execute too.

Edge

The Edge browser implements promises using the timer

queue. Thismeans it is likeMicro except that the timeout0
promise has priority 0 too (and immediate does not exist).

Node

Node.js is a further restriction of the Micro strategy

where micro tasks can run even in between other tasks:

1. If there are any resolved promises of priority 0,

select one of those.
2. Otherwise select one other resolved promise (re-

gardless of its priority).

2.3.2 Node.js Scheduling

The Node scheduling strategy describes strictly more pos-
sible schedules than are observable in the actual Node.js

implementation. In particular, Node.js picks a bit more spe-

cific than just any resolved promise in case 2. After studying
the documentation [18], the actual implementation code, and

running several tests, we believe Node.js currently schedules

using 3 phases:

1. run all resolved immediates (i.e. promises of priority

1);

2. run all resolved timers (i.e. promises of priority 2);
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3. run a fixed number of resolved I/O tasks (i.e. promises

of priority 3).

and keep running recursively all resolved priority 0 promises

in between each phase. However, the process.nextTick and

.next callbacks are scheduled in order. So in between each

phase:

a. run all resolved process.nextTick promises recursively

b. run all resolved .next promises recursively

c. keep doing this until there are no resolved priority 0

promises left

TheNode scheduling strategy always includes this more con-

strained scheduling as implemented by Node.js (but allows

more possible schedules). One point where the difference

shows up is when there are several resolved promises of

different priorities. In that case Node.js will always run them

in priority order according to the phases while our Node

scheduling allows any order. However, this cannot be reli-

ably observed since the resolving of promises with priority

⩾ 1 is always non-deterministic. As such, we believe that

Node faithfully models any observable Node.js schedule.

An example of a program that could exhibit an observable

difference is:

function rec() { setImmediate(rec); }
setImmediate(rec);
setTimeout(f,0);

The above program calls setImmediate recursively. In the

Node.js implementation the timeout will at some point be

scheduled and f will run. According to our Node strategy

this is one possible strategy, but it is also possible to keep

recursing on setImmediate forever.

A dual situation where the difference is apparent is in the

phased scheduling of process.nextTick and regular promises.

For example:

var p = Promise.resolve(42).then( function(v) {
console.log(v);

});
function rec(){ process.nextTick(rec); }
rec()

In Node.js this recurses indefinitely in rec and never prints

42 to the console. Under the Node semantics this is a le-

gal strategy but it is also allowed to pick the promise for

scheduling and interleave it with the nextTick.

We believe that the current situation is not ideal where

the actual scheduling strategy of Node.js is too complex

and where it is not clear what invariants programmers can

expect. In our opinion it would help the community to clar-

ify what invariants can be expected from the schedule. In

particular, we feel that theMicro strategy could be a good

candidate to consider for helping programmers to reason

about scheduling behavior: this is a relatively simple strategy

that clearly explains all tricky examples presented in this

paper, preserves high-priority scheduling for the micro task

queue and promises, and still allows for efficient scheduling

implementations.

2.4 Modeling Asynchronous I/O

Up till now we have only modeled deterministic operations

like process.nextTick, setImmediate, setTimeout(f,0), and

.then, but we did not model arbitrary timeouts or other I/O

operations such as readFile. We can model this formally

with an extra map O of outstanding I/O events that maps ex-

ternal I/O events ev to a list of waiting promises. Figure 5 adds

three new transition rules of the formO,H ⊢ e −→ O′,H ′ ⊢ e.
We assume that the initial O contains all possible events

mapped to an empty list of promises.

The first rule E-Events extends all our previous transi-

tion rules to also apply under an event map O of outstanding

events and that those rules always leave the event map un-

changed.

The next rule E-Register defines register(ev, n), which
creates a new promise p of priority n that is resolved when-

ever the event ev occurs. It extends the mapping of I/O events

O with [ev 7→ ps ⊕ [p]] to remember to resolve p when ev
happens.

The final rule E-Oracle is an oracle and can be applied

at will to resolve any event ev with some fresh value v, and
resolves all promises waiting for ev to value v. This is the rule
that basically models the external world as we can trigger it

at any time with any resolved value.

We can now implement various primitives as instances of

register as:

readFile(name, f ) = register(readFile(name), 3).then(f )
setTimeout(f ,ms) = register(timeout(now() + ms), 2).then(f )

where readFile(name) and timeout(ms) are event ev instances.

3 Example Application – Race Detection

To illustrate the importance of accuratelymodeling the event-

loop execution semantics we examine the design of an async-

race detector. Although Node programs always run on a sin-

gle thread and run each callback to completion it is still pos-

sible to create data-races between several callbacks [8], [17]

that all access the same resource and may have their ex-

ecutions interleaved. To check for races we combine our

semantics of async scheduling from Section 2 with a method

for exploring possible execution interleavings which could

be either static [15] or dynamic such as [16], [8], or [9]. If

we find a case with a use/mod or mod/mod conflict we can

report it to the user. In such a tool it is critical to have a

correct and precise model of the underlying async sched-

uling semantics to avoid either missing potential issues or

reporting many spurious warnings. The following example

shows a case where using a simplified model of the Node.js

event scheduling will result in a spurious warning:

var x = undefined;
setImmediate(function() {
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H ⊢ e → H ′ ⊢ e′

O,H ⊢ e → O,H ′ ⊢ e′
[E-Events]

fresh p O[ev] = ps

O,H ⊢ register(ev, n) → O[ev 7→ ps ⊕ [p]], H [p 7→ (n, unres, [])] ⊢ p
[E-Register]

O[ev] = [p1, ..., pm] fresh v some ev

O,H ⊢ e → O[ev 7→ []], H ⊢ p1.resolve(v); ...; pm.resolve(v); e
[E-Oracle]

Fig. 5. Modeling asynchronous I/O events.

console.log(x.f);
});
process.nextTick(function() {

x = { f: ’hello world’ };
});

If we were to use a simple model for possible async call-

back scheduling in Node, say where there is a single task

queue, then for the following code we would report that the

nextTick and setImmediate callbacks could happen in either

order. Clearly, executing the setImmediate callback first will

result in a property access to an undefined value. However,

from our semantics in Section 2 we know that the microtask

queue with the nextTick callback must always be drained
before the regular timer events where the setImmediate call-

back is placed. Thus, using the semantics in Section 2 we will

correctly conclude there are no data-races in this example,

and also, if the nextTick is replaced by a setImmediate then

correctly report that there is a potential race.

4 Asynchronous Execution Context

Definition

This section defines generalized concepts around asynchro-

nous execution that abstract many of the low-level queuing

and dispatch details in Section 2 and simplify reasoning about

the relationships between the executions of asynchronous

callbacks.

4.1 Context Definitions

In practice there are multiple distinct concepts of asynchro-
nous context that developers use to understand the behavior

of an application.

We begin with a basic definition of invocation indexing
that allows us to distinguish between multiple dynamic call-

back invocations of the same function definition. Given a

function definition f we denote the ith dynamic callback in-

vocation of any function during the programs execution with

fi. This invocation index notation allows us to distinguish

between invocations of the same function definition at dif-

ferent points in a single asynchronous execution chain or in

distinct execution chains such as in:

let ctr = 0;
function f() { console.log(ctr++ === 0 ? ’hi’ : ’bye’); }
setTimeout(f, 10);
setTimeout(f, 20);

Using the invocation index notation on this code produces

global1 for the first and only execution of the global scope

code, produces f2 on the execution of f that results from the

setTimeout with delay of 10 which prints “hi”, and finally

produces f3 on the second execution of f that results from

the setTimeout with delay of 20 which prints “bye”.

Using this indexing we can define two fundamental con-

text relations, linking context and causal context, on invoca-

tions of functions, f and g, in an asynchronous execution as

follows:

• linking context: relates fi links gj if during the execu-
tion of fi the function gj is linked to a priority promise

via an E-Then rule application.

• causal context: relates fi causes gj if during the ex-

ecution of fi the function gj is enabled for execution

via an E-Then rule application on an already resolved

priority promise or via an E-Resolve rule application

on a previously un-resolved priority promise.

For programs that do not use JavaScript promises and rely

on raw callbacks the linking context and causal context will

be the same at all program points. However, promises can be

linked and resolved at different points in the code and thus

the context relations may differ:

function f(val) { console.log(val); }
let p = new Promise();
p.then(f);

function resolveIt() { p.resolve(’hi’); }
setImmediate(resolveIt);

In this case we will have global1 links f3 due to the .then in

the global scope execution but resolveIt2 causes f3 since it
does the actual resolution that results in the f being enabled

for execution and, eventually, executed.

Finally, we note that due to the definition of invocation
indexing we have a total order for the temporal happens
before relation on functions where fi happens before gj iff
i < j.
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4.2 Lifting Context Relations to Chains

In the previous section we defined the binary relations for

linking context and causal context in asynchronous exe-

cution flows. We note that the linking context and causal

context relations are both transitive. That is, if fi causes gj

and gj causes hk then we can infer fi causes hk as well with
the same property holding for linking context and links. Sim-

ilarly, we note that both relations form a tree structure over

the indexed invocations in the program. As a result, applica-

tions that require global information about an asynchronous

execution chain, or multiple links in a relation, can walk the

relation tree to extract the desired information.

Analyzing the transitive closure of these relations pro-

vides important diagnostic information such as counting the

number of CPU cycles used to service a single http request or

computing long call stacks [25]. Starting from the top-level

request handler of a web application, we can recursively ag-

gregate all of the CPU time of functions that are transitively

related to the handler by the causal context relation to com-

pute the total time used to handle the request. To compute

the long call-stack at a particular program point, we can

traverse the inverse linking context relation (traverse up the

tree) stitching together the call-stacks at each point to pro-

duce the long call-stack for that point in the execution. In our

example program above, if we want a long call-stack starting

at the console.log(val) statement, we would first collect

the short call stack at that point which includes console.log

and f. Then, because global1 links f3 in the linking context

relation so wewould follow the inverse up the tree to find the

stack associated with the global1 invocation. This short call

stack would include global as well as p.then. These two call-

stacks can then be stitched together to produce the desired

long call-stack.

4.3 Computing Context Relations

To compute the linking context and causal context relations

we begin by introducing the following helper functions to

handle the management of relational information during the

processing of async callbacks.

let currIdxCtx = undefined;
let linkRel = new Map();
let causalRel = new Map();

bindLink(e) {
return {exp: e, linkCtx: currIdxCtx};

}

bindCausal(linke) {
return Object.assign({causalCtx: currIdxCtx}, linke);

}

unpack(bounde) {
currIdxCtx = genNextCtxIdx(bounde.exp);

let lr = linkRel.get(bounde.linkCtx) || [];
lr.push(currIdxCtx);

linkRel.set(bounde.linkCtx, lr);

let cr = causalRel.get(bounde.causalCtx) || [];
cr.push(currIdxCtx);
causalRel.set(bounde.causalCtx:, cr);

return bounde.exp;
}

These functions use a global currIdxCtx to track the invo-

cation index of the currently executing code. The bindLink

function takes an expression being passed .then and cre-

ates a new record with the expression value being linked

and sets the linking context to the invoke index of the cur-

rently executing code. Similarly, bindCausal which can only

happen after the linking has occurred, takes the record and

updates it with the index of the currently executing code as

the causalCtx value. Finally, the unpack function sets a fresh

invocation index for the code that is about to be executed

and unpacks the link and causal invoke index values to up-

date the corresponding linking context and causal context

relations for the callback.

These helpers can be integrated into the E-Then and E-

Resolve rules from Figure 4 to produce the rules shown in

Figure 6. We begin by altering the list of pending callbacks,

fs, from Figure 4 to instead be a list of bound records. We

also explicitly split out the cases of a .then into E-Then-

Unresolved which triggers when a callback is linked with

an unresolved promise via then and E-Then-Resolvedwhich

triggers when a callback is linked to a promise that has

already resolved. In the first case the priority promise is

unresolved so we only set the context record with the invoke

index for the link time using the bindLink helper function.

In the case where the priority promise is already resolved

we update the link and the causal context since the callback

is immediately eligible for execution. The E-Resolve-Ctx

rule is updated to fill in the empty causal record field, using

the current invoke index, using the bindLink function.

The E-Tick rule is updated to set the asynchronous context

to the appropriate value and to update the linking context

and causal context relations. To accomplish the updates the

E-Tick-Ctx rule sets each expression to be evaluated as

unpack(bei)(v), which when evaluated, will perform the up-

date to the current execution index, update the relations as

needed, and the invoke the desired callback function with

the resolved priority promise value.

4.4 Example

(function foo() {
const p = new Promise(function promise1(res) {

setTimeout(function timeout1() {
res(42);

}, 200);
});

setImmediate(function immediate1() {
p.then(function then1(val) {
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H [p] = (n, unres, fs)

H ⊢ p.then(f ) → H [p 7→ (n, unres, fs ⊕ [bindLink(f )])] ⊢ undef
[E-Then-Unresolved]

H [p] = (n, res(v), fs)

H ⊢ p.then(f ) → H [p 7→ (n, res(v), fs ⊕ [bindCausal(bindLink(f ))])] ⊢ undef
[E-Then-Resolved]

H [p] = (n, unres, fs)

H ⊢ p.resolve(v) → H [p 7→ (n, res(v), [bindCausal(linke) | linke ∈ fs])] ⊢ undef
[E-Resolve-Ctx]

R ⊑ {p 7→ (n, unpack(be1)(v); ...; unpack(bem)(v)) | ∀p ∈ H , H [p] = (n, res(v), [be1, ..., bem]) }
H ′ = H [p 7→ (n, res(v), []) | ∀p ∈ R, H [p] = (n, res(v), _ )]
R � [p1 7→ (n1, e1), ..., pm 7→ (nm, em)] with nk ⩽ nk+1

H ⊢ • → H ′ ⊢ e1; ...; em; •
[E-Tick]

Fig. 6. Introduction of Linking and Causal Context

console.log(’Hello Context World!’);
});

});
})();

First, we observe that as a result of the event loop priorities

described earlier in this paper, this code will result in the

invocation indexed sequence (where→ indicates direct in-

vocation and ⇒ indicates a fresh turn of the event loop):

global
1 → foo→ Promise→ promise1→ setTimeout→ se-

tImmediate ⇒ immediate1
2 → Promise.then⇒ timeout1

3

→ res ⇒ then1
4 → console.log

We assume that the first turn of the event loop has con-

text global1. From program start, execution will proceed

synchronously until setTimeout is reached. At this point,

timeout1 is both causal and link bound to produce the record

{exp: timeout1, linkCtx: global1, causalCtx: global1}. Ex-

ecution then continues to setImmediate where immediate1

will be similarly causally and link bound produce the record

{exp: immediate1, linkCtx: global1, causalCtx: global1}. On

the next turn of the event loop, we unpack and execute

the bound immediate1 function setting the current context

to immediate12 and adding global1 links immediate12 and

global1 causes immediate12 to the relations. Next we reach

the call to p.then which performs only the link binding,

since p is unresolved, to produce the record {exp: then1,

linkCtx: immediate12}. Once the timer fires, timeout1 will

be unpacked setting the current context to timeout13 and

adding global1 links timeout13 and global1 causes timeout13

to the relations. Promise p then resolves updating the record

for then1 with causal context timeout13. Finally, then1 is un-

packed introducing context then14 and adding immediate12

links then14 and timeout13 causes then14 to the relations.

The linking context and causal context relation trees for

the examples are shown in Figure 7. The figure shows that

Fig. 7. Linking and Causal Context trees produced for

JavaScript example code.

for code callback based API’s the linking and causal con-

text relations are the same, in contrast to the promise based

operation for then1, which has immediate12 for the linking

context and timeout13 for the causal context. If we start from

the console.log statement in the code, in then14, and build

the linking context chain by traversing the parent links we

get then14 → immediate12 → global11 while building the

causal context chain by traversing the parent links we get

then14 → timeout13 → global11.

4.5 Userspace Queuing

One challenge to providing a comprehensive asynchronous

context tracking system inNode.js is the presence of userspace

queuing of callbacks. A library writer may want to queue

up requests from many different contexts to batch the work

for processing. An example of this is a database module that

provides access to a remote database and wants to serve

all requests through a single connection. In this case all of

the callbacks associated with any database request would

be stored in the same worklist and then invoked from the

shared database context:

var pending = [];
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function query(q, cb) {
pending.push({query: q, cb: cb});
if (pending.length === BUFFER_SIZE) {

dbConn.sendQueries(pending);
pending = [];

}
}

function process(results) {
for (var i = 0; i < results.length; i++) {

var res = results[i];
res.cb(res.data);

}
}

var dbConn = openDB(’database’);
db.on(’response’, process);

In this case, the databasewrapper holds callbacks in a userspace

queue until enough queries have been buffered at which

point it sends them to the database. When the database sends

back a response, the wrapper directly invokes all of the call-

backs with their associated database results. Unfortunately,

this common pattern will result in every cb invocation being

associated with the same context (the context of the process

callback).

Fortunately, our design of the helper functions for context

tracking in Section 4.3 provides a simple API for develop-

ers to use when implementing custom userspace asynchro-

nous queuing. In our example this we would replace the line

with pending.push( {query: q, cb: cb} ) with calls to bind

the causal and link contexts pending.push( {query: q, cb:

bindCausal(bindLink(cb))} ). When this bound callback in

invoked later, res.cb(res.data), it will need to be invoked

with the unpack helper, unpack(res.cb)(res.data), to set

the appropriate information into the current context.

5 Example Application – Time-Travel

Debugging

To illustrate how a tool writer can utilize causal context we

look at the application of navigating asynchronous context in

a time-travel debugging system for Node.js. Operations like

reverse-continue are very useful but they move back linearly

in time instead of back through the logical execution of calls

associated with an asynchronous execution chain which is

often what a developer is trying to understand. Consider the

example:

function tryReadFile(file) {
fs.readFile(file, function read1(err, data) {

if(err) /*reverse to here*/
setTimeout(function timeout1() {

console.error(’error’); /*break*/
}, 100);

else
console.log(data);

});
}

tryReadFile(’foo.txt’);
tryReadFile(’bar.txt’);

If the developer is at a breakpoint on the console.log(’error’)

line labeled with /*break*/then a natural question to ask is

"what was the value of file that lead to the error". How-

ever, since this variable is not closure captured, it is not

available when the setTimeout callback is executing. If the

developer sets a breakpoint at the enclosing if-statement (la-
beled /*reverse to here*/) and executes a reverse-continue

then they may hit that breakpoint on either the async chain

resulting from the read of foo.txt or bar.txt. Thus, in [4],

a reverse-callback-origin operation, based on custom async

tracking code, is introduced that reverse executes to “the

point in time where the currently executing callback was

registered”.

If the async call chain for ’foo.txt’whenwe hit the break-

point is, timeout14 → read12 → global11, then we know we

must reverse-execute to the time when we hit the breakpoint

at /*reverse to here*/ and the currently executing callback

currIdxCtx is read12. If we hit the breakpoint in another con-

text then we know we are encountering this breakpoint on a

different async call chain, in our example corresponding to

the read from ’bar.txt’, and should ignore the breakpoint.

6 Example Application – Resource &

Priority Scheduling

As Node applications become more sophisticated there is an

increasing need for more powerful scheduling mechanisms

than the assortment of special purpose queues currently pro-

vided. It is common for Node.js web-servers to intermittently

download updated content from a master source and upload

telemetry data to a centralized server. These actions are low-

priority and do not have hard deadlines. However, servicing

a user request for content is both high-priority and must be

low latency to ensure a good experience. Currently, there

is no mechanism to specify that a task is low priority or

that it may involve heavy I/O activity. Thus, programs risk

blocking high priority activity, seriously impacting service

quality. While some scheduling behavior can be controlled

using carefully written yields to manually spread out back-

ground processing workloads, others cannot be expressed at

all today in Node.js.

To address these scenarios and simplify the semantics of

the multi-queue implementation in Section 2 we propose a

resource & priority aware soft-realtime implementation for

the Node.js event loop using the following design goals:

1. Priority based scheduling using a single priority-ordered

event queue and an extended range of priorities.
2. Support for task deadlines to enable soft realtime sched-

uling, and promotion of priorities to prevent starvation

of background tasks.

3. Support for manual priority specification as well as

automatic priority inheritance. We extend core Node
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API’s to take optional explicit priorities and support

automatic propagation of priorities via async-context.
4. Resource awareness and scheduling using expected

I/O, including network and disk, plus time information.

5. Online learning of resource use for async-calls. We

dynamically build an estimate of the CPU and I/O re-

sources used by each individual callback and, using

async-context, the total cost of each request (http re-

quests or other labeled request trigger).

Priority and Deadline. Our first task is to extend the rep-

resentation of priority promises from Section 2 with an basic

set of soft-priority levels:

’high’ > ’low’ > ’background’

These new priority levels allow us to add additional con-

straints to the scheduling relation such that we will schedule

higher priority tasks before lower levels.

Next we extend the representation with information on

an optional target completion deadline by which the task

should be completed. This allows the scheduler to perform

soft-realtime scheduling. Further, we can ensure that a low

or background task is not starved as we can look at the

deadline and promote the priority if needed.

This design allows us to define existing API’s and new

API’s in a uniform manner for the scheduler as:

runTask(cb, level) //priority=level, deadline=0
runSchedule(cb, time) //priority=high, deadline=time
runBackground(cb, time) //priority=background, deadline=time

The new classes of tasks include running multiple tasks of

different priority via runTask, running a task with a soft com-

pletion deadline via runSchedule, and running a background

task that will increase in priority once the given deadline

expires via runBackground.

One challenge is that in order to allow mixing of new con-

text aware and old context unaware API’s we need to sup-

port automatic propagation of priority levels across async-

callbacks. In cases of simple callbacks, such as setImmediate

or setTask without providing a priority level there is a sin-

gle choice of taking the priority of the currently executing

callback since the causal context and linking context contexts
are the same. However, in the case of promises these parent

contexts are different and we could could choose to inherit

priority from either. Consider the example:

let p = new Promise((resolve, reject) => {
//Low priority promiseified file read
fs.readFile(’foo.txt’, function(err, data) {

resolve(data);
}, ’low’);

});

//Inherit from link parent (high) or from causal parent (low)?
p.then((data) => { console.log(data); });

Using causal context would result in the then function being

run in low priority regardless of how the priority is setup

when the .then is registered. Thus, our design uses priority

inheritance based on linking context to avoid unintentionally

lowering the priority of a callback.

Resource Use andAutomatic Learning. Scheduling re-

quires an estimate of the time and I/O resources needed by

a task. Instead of requiring a developer to explicitly provide

this we can automatically gather this by dynamically moni-

toring execution behavior and aggregating resource usage.

Our proposed design uses a distribution, mean and standard

deviation, for the expected time, network, and disk loads of a

callback. We compute both the inclusive and exclusive values

so the scheduler can use both the immediate and overall cost

of a task to make a decision.

type dist = { mean: number, stdev: number };

type resourceEstimate = {
time: { inclusive: dist, exclusive: dist },
network: { inclusive: dist, exclusive: dist },
disk: { inclusive: dist, exclusive: dist }

}

To compute these resource requirements we use causal con-

text semantics from Section 4 to aggregate the various costs

to the parent callbacks. In this model each callback tracks

time & I/O when it is directly executing to compute the ex-

clusive distribution. At then end of an async execution we

can use the async causal context tree to aggregate for the

inclusive resource use distribution.

This design proposal demonstrates how the semantics de-

fined in this paper (1) can be used in the design of a new

async execution implementation that preserves fundamen-

tal Node semantics while enabling new functionality and

(2) how our definitions of context can be used in this de-

sign process to inform the behavior and design of the new

implementation.

7 Related work

The Node.js runtime is a relatively new platform and, as a

result, there is limited prior work on the semantics of the

Node.js execution model and diagnostic tools for it. For the

most part academia has focused on the idea of race-detection

in asynchronous code while industry has tended to focus

on the topic of application performance management (APM)

tooling.

JavaScript and Node.js Semantics. [11] presents a core

calculus for the procedural JavaScript language λjs which
is extended by [15] to include a partial formalization of the

asynchronous semantics for Node.js but omits the recently

added ES6 Promise semantics and uses a simplified model

for the drain rules for the event queues in Node.js. Work

in [3], uses an implicitly defined model for asynchronous

execution that is encoded in the dynamic analysis and rules

for ‘’Callback scheduling’’ and ‘’Callback invocation’’. Other

work has utilized concrete implementation details of a spe-

cific version of LibUV and Node.js, [8] uses the deprecated
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v0.12.7 version of Node.js, and the details of the event-loop

semantics are implicitly encoded in the tool implementation.

Asynchronous Semantics. There is muchwork on coop-

erative threads going from concurrency primitives in ML [5]

to mixing cooperative threads with preemptive ones [7]. A

recent semantics for cooperative threads was described by

Boudol [6] and later by Abadi and Plotkin [1] in terms of

algebraic effects [20, 21]. Leijen [14] describes an implemen-

tation of async/await in terms of algebraic effects on top of

Node.js asynchrony.

Race Detection.Data races in Node.js are of particular in-

terest to the academic community and have been approached

from both a static [15] and dynamic analysis viewpoint [17],

[8]. The work in [15] presents a number of case studies for

identifying race conditions in real-world bug reports but, as

shown in Section 3 the simplified model of asynchronous

execution semantics can lead to false positives. From the

dynamic viewpoint [8] uses a model of the event loop im-

plementation in Node.js v0.12.7 to fuzz possible execution

schedules to expose race related bugs. However, as explored

in [17], certain data races may be benign and the ability to

focus on what are likely to be important issues is critical, e.g.,
by focusing on fuzzing certain categories of non-determinism

as discussed in Section 4 of [8], and is a topic that requires

more investigation. Going beyond simply detection the work

in [2] looks at forcing an application to use a known good

schedule to prevent race related failures from manifesting

themselves.

ApplicationPerformanceMonitoringTooling. Indus-

trial users of Node.js place a high value of the availability

and performance of their services. As a result there is a large

investment in application performance monitoring (APM)

tooling including [10], [19], [24], and [23]. These systems

will dynamically instrument running applications to track

errors, upload logging output, and extract information on re-

quest handling time statistics among other performance and

stability data. A key component in these systems is correlat-

ing data with the request (usually http) that was responsible

generating it. For example if a request generates an error or

takes an abnormally long time then they want to show all

the log statements or time-stamps from the async-contexts
associated with that request. Thus, tracking async-context is

critical for all of these systems but, in the absence of a formal

definition, all of these systems implement custom ad-hoc

tracking based on the particular needs of their tooling.

Asynchronous Context Tracking Although asynchro-

nous context is a fundamental concept in Node.js program-

ming it has not previously been explicitly formalized. Prior

research work such as [3], tooling such as [10] or [25], and

runtime enhancement proposals such as [12] or [26] have

all informally defined and used a notion of asynchronous

context. In many cases this definition was closely tied to the

specifics of the problem they were addressing, [25], or as

in the case of the initial [12] proposal, closely tied to the

specifics of a particular implementation feature.

The concept of an Event-Based Call Graph is introduced

in [15] to track relations between callback definitions and

their invocation, listener registration, or scheduling. How-

ever, in contrast to the linking context/causal context defi-

nitions for asynchronous context in this work, event-based

call graphs do not differentiate between different dynamic

execution chains over the same set of asynchronous function

declarations. The example in Section 5 illustrates this via

the two different calls with different argument data to the

readFile function which, from a developer perspective, rep-

resent two logically distinct asynchronous execution chains.

The definitions in [15] Section 4.1 create a single node cor-

responding to the callback declaration passed to readFile

with a single call edge for both the foo.txt and bar.txt invo-

cations which result in the asynchronous execution chains

through the setTimeout callback being merged as well. Con-

versely, as described in Section 5, the distinct asynchronous

execution chains for these two calls are preserved by the

linking context/causal context relations defined in this work.

8 Conclusion

This paper presented a formalization of the Node.js event-

loop and asynchronous execution semantics in Section 2 as

well as the definition of high-level concepts around asyn-

chronous execution context in Section 4. Beyond the utility

of providing a well defined model for other researchers or

practitioners to use, the formalization of these definitions

provides insight into key features of the Node.js execution

model. Our formulation of the Node.js event-loop demon-

strates that by adopting a novel priority promise based view

we can cast the multiple event-queues in the current Node.js

implementation as a single work-list with a parameterizable

set of scheduling constraints. This view allows us to easily

express and compare several schedule models and leads nat-

urally to the more sophisticated fully priority and resource

aware scheduling design we explored in Section 6. This work

also defines the distinct but related types of context – causal

context and linking context – that are fundamental to un-

derstanding asynchronous program execution. Thus, the

formalizations presented in this paper provide a founda-

tion for research into static and dynamic program analysis

tools, support the exploration of alternative Node.js event

loop implementations, and provide a high-level conceptual

framework for reasoning about relationships between the

execution of asynchronous callbacks in a Node.js application.
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