
Lasso Detection using Partial-State Caching
Rashmi Mudduluru∗, Pantazis Deligiannis∗, Ankush Desai†, Akash Lal∗, Shaz Qadeer∗

∗Microsoft Research, {t-rasmud, pdeligia, akashl, qadeer}@microsoft.com
†UC Berkeley, ankushdesai@gmail.com

Abstract—We study the problem of finding liveness violations
in real-world asynchronous and distributed systems. Unlike a
safety property, which asserts that certain bad states should never
occur during execution, a liveness property states that a program
should not remain in a bad state for an infinitely long period of
time. Checking for liveness violations is essential to ensure that
a system will always make progress in production.

The violation of a liveness property can be demonstrated by
a finite execution where the same system state repeats twice
(known as lasso). However, this requires the ability to capture
the state precisely, which is arguably impossible in real-world
systems. For this reason, previous approaches have instead relied
on demonstrating a long execution where the system remains
in a bad state. However, this hampers debugging because the
produced trace can be very long, making it hard to understand.

Our work aims to find liveness violations in real-world systems
while still producing lassos as a bug witness. Our technique relies
only on partially caching the system state, which is feasible to
achieve efficiently in practice. To make up for imprecision in
caching, we use retries: a potential lasso, where the same partial
state repeats twice, is replayed multiple times to gain certainty
that the execution is indeed stuck in a bad state.

We have implemented our technique in the P# programming
language and evaluated it on real production systems and several
challenging academic benchmarks.

Index Terms—Liveness checking, Distributed systems, Lasso
detection, Testing

I. INTRODUCTION

Concurrent programming is essential in modern software
development, especially as the data and computing require-
ments grow beyond what is possible on a single processor core.
Concurrency can be found either in the form of multi-threaded
programs for multi-core processors, or as asynchronous dis-
tributed programs for multiple interconnected machines. In ei-
ther case, writing correct concurrent programs is challenging.
Subtle interactions between concurrently-running computa-
tions, such as thread interleavings or message reorderings, can
lead to unexpected behaviors. Further, the non-deterministic
nature of concurrency, often not controlled by the programmer,
makes testing for such erroneous behaviors very difficult.

The expectations of correct behavior for a concurrent pro-
gram (or any program for that matter) comes in two flavors:
safety and liveness properties. Safety properties assert that
a program never enters a bad or undesired state. The most
natural form of a safety property is an assertion, a construct
that is provided by most programming languages. Liveness
properties, which are the focus of this paper, assert that the
program does not stay in a bad state for an indefinite amount
of time. (We are going to use the term hot state instead of bad
state when discussing liveness properties.) Liveness properties

are used to ensure that the program always makes progress.
While safety specifications can be asserted and tested, there
is no natural way to express liveness properties in programs,
making it important to develop tools that help catch liveness
violations.

As an example, consider the design of the Azure Storage
vNext system [5]. As a typical cloud-storage system, vNext is
a distributed program that stores user data reliably even under
machine or disk failures. At a high level, it comprises of two
main components: an extent node, which stores data on the
local disk, and an extent manager that manages a set of extent
nodes making sure that each piece of data lives on at least
three extent nodes. Because machines or disks can fail at any
time, it is possible that an extent node goes down. In such
a case, the extent manager must detect the failure and use
one (or both) of the other replicas to recreate another extent
node with that data. Thus, while it is possible that the system
enters a state where user data is not present on three nodes
(a hot state), it must always eventually recover provided there
are no more failures. A liveness violation for vNext is that the
system remains in a hot state for an indefinite amount of time,
even when there are no additional failures. Such kinds of bugs
are very hard to find using traditional methods of testing [5].
The goal of our work is to build tools that help find liveness
violations.

The model checking community has long studied this prob-
lem. The work concentrates on finding a lasso: a program
execution that visits the same program state (say, s) twice. A
lasso indicates the presence of an infinite execution because
the execution from s to s can be repeated infinitely often.
If, further, the lasso is hot, i.e., it is continuously in a hot
state as it goes from s to s (including the state s itself) then
it indicates a violation of the liveness property. A hot lasso
naturally provides the user exact information on the execution
segment that fails to make progress, according to the definition
of what constitutes a hot state. For example, for vNext, the
cycle in a potential violation would indicate the steps that the
system is taking when some replica has gone down, but they
fail to create a new replica.

There are several algorithms in this space that look for
a hot lasso.1 These algorithms are either exhaustive [3] or
randomized [11], however they require access to the complete
state of the program to know that the cycle in a lasso can be
repeated indefinitely. For a distributed program, for instance,

1More generally, the algorithms look for violations of properties written in
a temporal logic like LTL.



the state would include the individual states of all concurrent
processes as well as all the messages on the network. It
may even have to include the state of the operating system
if the program uses system resources (e.g., disk). This is an
unrealistic task in a real-world setting, especially because it has
to be done at each step of the program’s execution. State-of-
the-art tools like SPIN [12] and ZING [1] thus work on models
of actual systems. The creation of the model is the user’s
responsibility. However, programmers are often reluctant to
write models or maintain them as the software evolves given
the time pressures of a fast-moving software industry.

A different approach of checking liveness is to directly exe-
cute the program (with some modifications to make executions
deterministic) instead of relying on a model of the program.
Without capturing the program state, these approaches are un-
able to find a lasso. Instead, they attempt to find a sufficiently
long execution with a hot suffix (i.e., all states in the suffix
are hot). Instances of this approach are implemented in the
MACEMC tool [13] for distributed programs and the CHESS
tool [15] for multi-threaded programs. We refer to this ap-
proach as the temperature method. (The system is additionally
tagged with a temperature property. The temperature goes up
by a unit when the system is in a hot state and it goes to zero
when it transitions to a non-hot state. When the temperature
exceeds a threshold, a violation is reported.) The temperature
method requires the user to set the temperature threshold.
Setting this threshold too low can result in false positives and
setting it too high will produce long and hard-to-understand
traces because there is no lasso or cycle that tells the user
where the program failed to make progress.

Our goal is to provide the user with a lasso without relying
on lengthy executions or the ability to cache the entire program
state. There are two key ingredients to our approach. First, we
use a partial-state caching mechanism that only captures a
small part of the program state. By default, we capture partial
details of each concurrently executing process and the types of
the messages currently in flight between the processes. (We do
provide convenient APIs so that users can optionally capture
additional state.) Second, we execute the program (not a
model) while taking over the program scheduling and message
delivery. In each execution, we use the partial-state cache to
find a repeating state. Because the caching is partial, we cannot
say for sure if we have found a lasso or not. We overcome
this limitation by taking the potential cycle and repeatedly re-
executing it. If we are able to successfully re-execute the cycle
(while continuing to stay in a hot state) for a large number of
iterations then we flag this as a liveness violation and show
the lasso (without subsequent re-executions) to the user.

We have implemented our approach and integrated it with
the P# suite [4], [17]. P# is an extension of the C# language
meant for developing asynchronous systems. P# comes with
tools for thorough systematic testing of programs written in
the language. P# is currently in use inside Microsoft for
developing production systems. Using a collection of chal-
lenging academic benchmarks as well as production systems,
we report on several interesting aspects of our approach and

its comparison against the temperature method:
• We present a case study (§V) to show the advantage of

inspecting a lasso, as compared to looking at a long trace.
• We evaluate and compare the algorithms on a set of

benchmarks (§VI). We find that our lasso detection is
more robust in terms of finding liveness violations; it has
higher number of true positives and fewer false positives.
The partial-state caching mechanism incurs an overhead
of 2X in the running time on average compared to the
temperature method which does not require any caching.

The rest of the paper is organized as follows. Section II sets
up the notation and Section III formally describes our liveness
checking algorithm. Section IV discusses our implementation
based on P#. Section V presents a case study on the utility of
having a lasso. Section VI presents our experimental results.
Section VII discusses related work.

II. NOTATION AND DEFINITIONS

We consider a program as consisting of concurrently exe-
cuting processes that communicate with each other via mes-
sage passing. We formally model a program as a transition
system. In particular, an asynchronous program P is a tuple
(S,Pid, T,Hot, s0) where:
• S is the set of states of P .
• Pid is the set of process identifiers in the system.
• T : Pid×S → S is the transition function of the program.
T is a partial function. If T (m, s) = s′, then the process
m can execute a step to take the program from state s to
s′. We also say in this case that (s, s′) is a transition of
P and m is the scheduled process of that transition.

• Hot: S → bool is a function that maps a state to a Boolean
indicating whether the state is hot.

• s0 is the initial program state.
For the sake of convenience (and without loss of generality)

we assume that for all states s1 and s2, if T (m1, s1) = s2 and
T (m2, s1) = s2 then m1 = m2. Thus, a transition is uniquely
identified by the source and target states. Let Scheduled be
a partial function that maps a pair of states (s1, s2) to the
unique process identifier that takes state s1 to s2. Formally, if
Scheduled(s1, s2) is defined then T (Scheduled(s1, s2), s1) =
s2. Let Enabled be a function that maps a state s to the set
of all processes enabled in that state. Formally, Enabled(s) =
{m | ∃s′.T (m, s) = s′}. An example depicting the transition
system of a program is shown in Figure 1. For instance,
Enabled(s5) = {p2, p3} and Scheduled(s1, s3) = p2.

An execution trace of P is a sequence of states
s0, s1, · · · , sn such that ∀i ∈ {0, 1, · · · , n − 1},∃m ∈ Pid :
T (m, si) = si+1. A lasso L is an execution trace s0, · · · , sn
such that for some i with 0 ≤ i < n, sn = si. In this case, the
execution trace s0, · · · , si−1 is called the stem of the lasso and
the sequence si, · · · , sn is the cycle of the lasso. The presence
of a lasso indicates an infinite execution because the cycle can
be repeated infinitely often. L is additionally a hot lasso if all
states in its cycles are hot. Formally, HotLasso(L) holds if
∀k : i ≤ k < n⇒ Hot(sk). Similarly, L is called a fair lasso



Fig. 1. A transition system. Nodes are program states and edges are transitions
labelled with scheduled process name. The shaded nodes depict hot states.

if all processes that are enabled at some point in the cycle are
scheduled in the cycle as well.2 Formally, FairLasso(L) holds

if
n−1⋃
k=i

Enabled(sk) ⊆ {Scheduled(sk, sk+1)|i ≤ k ≤ n − 1}.
A liveness violation of a program is a lasso that is both hot
and fair.

Fairness is an important criteria while considering liveness
properties. For unbounded runs, it is unlikely that a real system
will starve an enabled process from executing. Programmers
expect fairness and design their progress guarantees under this
assumption. Thus, a hot lasso that is unfair will be a false
positive from the user’s perspective.

The example of Figure 1 has multiple lassos, for example
L1 = s0, s1, s3, s5, s3, L2 = s0, s1, s3, s5, s5, and L3 =
s0, s2, s4, s6, s6. All of these are hot lassos but only L1 is
fair. Lassos L2 and L3 are not fair because their cycles have
p2 enabled but it is never scheduled. For the purpose of this
paper, only L1 constitutes a liveness violation.

III. LIVENESS CHECKING ALGORITHMS

This section outlines the two algorithms used for exploring
the state space of a program in an attempt to find a liveness vi-
olation. We present the algorithm for the temperature method,
inspired by previous work [13], [15]. Though this algorithm
is not one of our contributions, we have implemented and
presented it here mainly for the purpose of comparison. We
then present our algorithm based on partial-state caching. A
key hurdle in these algorithms is that, unlike a typical model-
checking scenario, we cannot capture or store the entire state
of a program. Instead, we only have the ability to inspect
the current state, identify enabled processes and schedule an
enabled process to make the program take a step. We cannot
checkpoint the state, thus, we cannot identify a lasso by
detecting a state seen previously in the execution.

Our algorithms will be parameterized by a scheduler,
represented as a method GETNEXT that takes a state s as
input and returns a process m ∈ Enabled(s) that should
be scheduled next. This method may have its own internal

2This property is usually termed as strong fairness.

Algorithm 1 EXECPROGRAM

Input: Initial State s0
Input: Scheduler method GETNEXT
Input: Method M ∈ {TempMethod,PartialCaching},
Input: Maximum steps B: Int,
Input: Temperature threshold TT : Int
Input: Replay threshold RT : Int

1: s← s0
2: n← 0
3: Temp← 0
4: Trace← []
5: while Enabled(s) 6= ∅ ∧ n < B do
6: m← GETNEXT(s)
7: s′ ← T (m, s)
8: Trace← Trace + (m,Enabled(s),Hot(s),Hash(s))
9: s← s′

10: n← n+ 1
11: if M == TempMethod then
12: Temp← CHECKTEMP(s,Trace,Temp, TT )
13: else if M == PartialCaching then
14: s,Trace← CHECKLASSO(s,Trace, RT )
15: end if
16: end while

logic to decide which process to schedule next. One can use
different implementations of GETNEXT that will, for instance,
do a depth-first or a breadth-first exploration of the program
by keeping track of previous decisions made. A GETNEXT
implementation can also be randomized. It can, for example,
pick and return a random element of Enabled(s) to do a pure
random exploration.

Each of the two liveness detection methods repeatedly run
EXECPROGRAM (Algorithm 1) up to a user-specified bound
on the maximum number of executions to explore. Each run
of EXECPROGRAM generates a program execution, according
to the GETNEXT scheduler, and the execution is monitored
for possible liveness violation. The two methods differ in how
they perform the detection.

EXECPROGRAM takes as input the initial state of the
program s0, a scheduler GETNEXT, the method to use for
detecting violations, the maximum length of an execution B
(after which exploration is truncated), and two threshold values
TT and RT that we explain later.

The main loop of EXECPROGRAM (line 5) runs as long
as there are processes available to be scheduled or until the
maximum length of the execution is reached. Each iteration
of the loop executes the program for one step according to the
scheduler (line 7) and then calls the selected detection method
(lines 12 and 14).

Algorithm 2 describes the CHECKTEMP method. It simply
increases the temperature value (line 2) if the current state is
hot and checks if the threshold has been reached. If the current
state is not hot, then the temperature is reset (line 7). It is easy
to see that this method reports a liveness violation on a trace
if the last TT steps of the trace were in a hot state.



Algorithm 2 CHECKTEMP(s,Trace,Temp, TT )
Input: Current state s
Input: Current trace Trace
Input: Current temperature Temp: Int
Input: Threshold TT : Int
Output: Updated temperature value

1: if Hot(s) then
2: Temp← Temp + 1
3: if Temp = TT then
4: REPORT-LIVENESS-BUG(Trace)
5: end if
6: else
7: Temp← 0
8: end if
9: return Temp

Algorithm 3 CHECKLASSO(s,Trace, RT )

Input: Current state s
Input: Current trace Trace
Input: Threshold value RT : Int
Output: New current state
Output: Updated trace

1: for all i: Hash(s) = hash(Trace[i]) do
2: C ← Trace[i..length(Trace)]
3: if Hot(C) ∧ Fair(C) then
4: return REPLAYCYCLE(s, C,Trace, RT )
5: end if
6: end for

Algorithm 4 REPLAYCYCLE(s, C,Trace, RT )

Input: Current state s
Input: Potential cycle C
Input: Current trace Trace
Input: Threshold RT : Int
Output: New current state
Output: Updated trace

1: Trace′ ← Trace
2: for j = 0 to RT × length(C)− 1 do
3: i← j mod length(C)
4: m← scheduled(C[i])
5: if m 6∈ Enabled(s) then
6: return (s,Trace)
7: end if
8: s′ ← T (m, s)
9: Trace← Trace + (m,Enabled(s),Hot(s),Hash(s))

10: s← s′

11: if Enabled(s) 6= enabled(C[i + 1 mod length(C)]) ∨
¬Hot(s) then

12: return (s,Trace)
13: end if
14: end for
15: REPORT-LIVENESS-BUG(Trace′)

The Trace variable captures a summary of the cur-
rent execution. It is a list of trace events. For a pro-
gram transition T (m, s1) = s2, we record the trace event
(m,Enabled(s1),Hot(s1),Hash(s1)) capturing the process m
that was scheduled and information about the source state
s1: the set of enabled machines in the state, if the state
is hot or not, and a hash of the state. The function Hash
computes a fingerprint of a state by hashing partial information
gleaned from the program state. The next section details the
information that we hash by default in our implementation,
but users also have access to convenient APIs for hashing
additional program state that is relevant to their own program.
For the purpose of our algorithm, we only assume that Hash
is indeed a function, i.e., identical states must be mapped to
the same value. But the more information that is hashed about
a state, the less likely it becomes that two different states are
mapped to the same value.

The temperature method uses Trace for reporting a viola-
tion. A user can use the list of scheduled processes to replay
the execution. Our implementation of the temperature method
optimizes Trace by only keeping the process names in the
trace events. The PartialCaching method, however, makes full
use of trace events.
The PartialCaching Algorithm. For a trace event e, let
scheduled(e) be its first element, enabled(e) be its second
element, hot(e) be its third element and hash(e) be its last
element. For a trace t (a list of trace events), let t[i] be its
ith trace event. Let length(t) be the length of the trace. Let
t[i..j] be a sub-trace consisting of trace events t[i], · · · , t[j−1].
We say that a trace t is hot (Hot(t)) if for each trace event
e ∈ t, hot(e) is true. We say that a trace t is fair (Fair(t)) if⋃

e∈t enabled(e) ⊆ {scheduled(e) | e ∈ t}.
The CHECKLASSO method (algorithm 3) works as follows.

For each new state s in the execution, it checks if Hash(s)
has been seen earlier in the trace (line 1). A hit in the trace
corresponds to a potential cycle, however, we cannot be sure
because the hashing was only partial. It first checks if the
potential cycle is hot and fair (line 3). If not, then it considers
some other cycle. If it finds a hot and fair (potential) cycle,
then to make sure, the method tries to replay the cycle.

The method REPLAYCYCLE(s, C,Trace, RT ) (algorithm 4)
takes over the scheduling of the execution and instead of
calling GETNEXT, it uses C to make scheduling decisions. It
attempts to replay C for RT number of times. If successful,
the input Trace is reported as a liveness violation, with C
marked as the hot and fair cycle of the lasso. The method
proceeds as follows. Line 2 is the replay loop (for RT number
of times). At line 4, the process to schedule is chosen from
C. If m is not currently enabled (line 5), then the replay fails.
Otherwise a step is executed by scheduling m (line 8). Next,
line 11 checks if the new state matches the corresponding
step (i+ 1 mod length(C)) of C. If not then the replay fails,
otherwise it keeps going.

Remarks. First, REPLAYCYCLE does not check that the state
hash matches with C during replay. We are only interested
in replaying the scheduling decisions in C while making



sure that the same set of processes are enabled (to ensure
fairness). Second, when replay fails, we simply continue the
program execution (in algorithm 1) from where the replay
failed. This is because we cannot checkpoint state to rollback
the execution from where the replay had started. We can
potentially re-execute the program from the beginning to
simulate rollback, but it adds extra cost to the algorithm. Third,
in CHECKLASSO there may be many potential cycles on line
1. In our implementation, we go through these in a random
order. Only the first hot and fair (potential) cycle is replayed
and not the rest (line 4 executes a return) because the trace
gets extended by the time replay fails.
A comparison of the two methods. Note that the temperature
method does not have a fairness check. This is not possible
because it does not produce a cycle that can be checked.
To avoid false positives, previous work has relied instead on
the scheduler to generate executions without starvation. For
instance, MACEMC uses a randomized scheduler that picks
a process randomly from the set of enabled processes; this
makes it probabilistically unlikely that an enabled process
will be starved in a long execution. For example, in the
transition system of Figure 1, it is unlikely that a random
scheduler will generate the execution s0, s1, s3, s5, s5, s5, · · · .
The randomness will ensure that p2 is scheduled in state s5 at
some point; and likely the execution will have some alternation
between states s3 and s5. Thus, in our experiments we limit the
temperature method to use the random scheduler, whereas our
partial-state caching method can use any scheduler. Random
scheduling helps guard against unfairness, but it can also
reduce bug-finding capabilities as illustrated by the following
example.
A Dining Philosophers example. Consider a program with
multiple processes, playing the role of a philosopher or a fork,
arranged in a ring with alternating philosophers and forks.
Each philosopher tries to acquire the fork on her left followed
by the fork on her right. If she succeeds in getting both forks,
she (eats and) releases both forks and quits. If she does not
succeed in getting both the forks, she releases any fork with
her and tries over again. This program has an infinite fair
execution where each philosopher first gets the fork on their
left, then they release them all realizing that the fork on the
right is unavailable and so on.

The temperature method, with a randomized scheduler, is
unable to detect the liveness violation: the ability to generate
a particular trace decays roughly exponentially with the length
of the trace, thus the method is unable to generate long traces.
However, our partial caching method is able to find the viola-
tion, even while using a randomized scheduler. The reason is
that it only needs to find the first iteration of a cycle after which
replay will take over the scheduling. Even chances of hitting
the first iteration decays exponentially with the number of
philosophers. For example, for 2 to 5 philosophers, our partial-
state caching method reports a (correct) liveness violation in
17.3%, 4%, 0.4%, 0.03% of the executions, respectively. The
temperature method is not able to find a violation even for
two philosophers (we used TT = 50).

IV. IMPLEMENTATION

We have implemented our techniques in the P# language
[4], [17]. P# is designed for writing asynchronous programs.
A P# program is a collection of state machines that run
concurrently and communicate with each other by passing
messages. A P# state machine (or machine for short) has an
input queue that stores received messages and it can have
an arbitrary number of fields of any C# type, just like a
regular C# object. A machine can have multiple states in the
sense of a finite-state-machine. (To avoid ambiguity with the
multiple uses of the word “state”, we will refer to this as a
MachineState.) The messages are handled in a FIFO order.
The user defines, separately for each MachineState, how the
machine will handle a message of a particular type. It can
execute a handler or transition to another MachineState. A
handler can execute arbitrary (but sequential) C# code that
may create more machines, send messages to other machines,
block until it receives a specific message, or update the internal
fields of the machine.

A P# program can run inside a single process (using a
thread pool) or be deployed on a cluster of interconnected
machines. P# is being used internally inside Microsoft to
develop production services for Azure.

A liveness property in a P# program is specified with the
help of a monitor. A monitor is a state machine that can receive
but not send messages and whose MachineStates are optionally
annotated as hot.3 A monitor essentially observes the execution
of the program. A liveness violation occurs if the program has
a monitor in a hot state for an indefinite amount of time (for
fair executions).

The P# runtime has a bug-finding mode that serializes
the program execution on a single thread and systematically
explores different interleavings of the program. P# has several
scheduling strategies that can be used for exploration [8]. P#
recommends a portfolio mode where testing is done in parallel,
with each parallel instance using a different scheduler.

Our formalism in Section II assumed that the transition
system of the program is deterministic except for the choice
of which process to schedule next, i.e., given a program state
s and an enabled process m, the state resulting from the
execution of m was fixed (T (m, s)). A P# program, however,
can have other sources of non-determinism, such as generating
non-deterministic values. Our implementation is able to handle
this non-determinism in data as well by generating these values
randomly and capturing the generated value in the trace to
allow for replay.

By default, we compute the fingerprint of a program state
by hashing together the fingerprints of each machine. For a
machine, we only look at the information that is directly visi-
ble to the P# runtime: this includes the name of MachineState
that the machine is in currently and the sequence of message
types in its inbox. We do not take into account the internal
fields of the machine or payloads of the messages, each of

3P# also has the notion of cold and warm states but we do not discuss this
feature in this paper.



Environment NM SN 1 SN 2 SN 3

SN 4

FaultInject

NotifyFailure

SyncReport

RepairNodes

SyncReport

SyncReport

SyncReport

RepairNodes

H Halt

Create 

new SN

C

Fig. 2. ReplicatingStorage liveness bug

which can be of an arbitrary C# type, thus, hard to capture
efficiently and automatically. P# offers an API by which a user
can provide a more precise hash of a machine or of a message.

V. CASE STUDY

This section compares the violations reported by the tem-
perature method and our partial-state caching method on
one benchmark. We find that a lasso expresses the liveness
violation very naturally, and offers information that would
otherwise be hard to deduce from a long trace.

It is important to note that even the MACEMC work [13]
acknowledged that a user must be given more information
than just a trace for identifying a liveness bug. MACEMC
finds and displays a critical transition of the trace: a step of
the program execution after which the program is doomed to
violate the liveness property. In practice, this transition is one
after which several random explorations fail to reach a non-hot
state. A critical transition need not always exist (an example
is the dining philosophers program), but it was present in the
benchmark that follows.

The ReplicatingStorage benchmark is a simplified version
of Azure Storage vNext (described in §I) that manifests a
known real bug of the system. The P# program consists of
a Node Manager (NM) that is responsible for handling the
failure of Storage Nodes (SN) by creating new replicas. The
SNs periodically send a SyncReport to the NM reporting a
summary of the data that they currently store. We model the
environment as a P# machine that randomly induces a failure
to help us test the system. The program has a bug that is
triggered when a SN sends a SyncReport to NM and then
fails; the NM detects the failure, but just before it starts the
repair, it gets the SyncReport. This causes the repair to not
happen and the system continues without enough replicas. The
fix is for NM to ignore SyncReport messages from nodes that
it believes have failed.

Figure 2 shows the sequence of events that trigger the
liveness bug. The Environment machine induces a node failure
by sending a FaultInject message to SN-1. At this point,
SN-1 simply enqueues this message. The Environment also

sends a NotifyFailure to NM, which results in the creation
of SN-4. Next, SN-1 sends a SyncReport to NM just before
it handles the pending FaultInject message. Handling Fault-
Inject causes the SN-1 machine to halt. When NM receives
the SyncReport from SN-1, it updates its internal structures
and (incorrectly) assumes that all replicas have the latest
data. Subsequently, upon receipt of a periodic RepairNodes
message (simulating a periodic callback), NM does not start
a repair action and does not send the latest data to SN-4. It
also ignores all the SyncReport messages that it receives from
SN-4. As a result the system is stuck in a hot state from which
it cannot recover.

In the scenario described above, the liveness monitor enters
a hot state when SN-1 halts and the system never recovers
after this. Therefore, the termination of SN-1 is the critical
transition of this bug. However, this transition does not convey
any useful information by itself: any liveness violation of this
spec must start with a node failure.

In contrast, the states and messages in the cycle detected by
our approach reflect the following information: NM repeatedly
receives a RepairNodes message, which it handles, but NM
does not send the latest data to any node and the SNs keep
generating and sending SyncReport messages to NM. This
information is more relevant to a user who knows that the
newly created SN-4 needs to receive the latest data from NM,
but it never does.

VI. EXPERIMENTS

We experimented with a number of challenging academic
benchmarks (which were authored by us), as well as pro-
duction systems (for which we were not involved in their
development). All benchmarks are written in P# 4 and are
summarized in Table I, which shows lines of code (LoC), total
number of machine types, total number of MachineStates and
total number of message types5.

The production systems include PoolServer and
Azure Storage vNext. For the former, we picked
two versions where the developers found interesting live-
ness violations. Proposers is a simplified version of
the Paxos protocol obtained from previous work [9].
Chord [18] is a protocol implementing a distributed key-
value store. ReplicatingStorage was described ear-
lier (§V). FailureDetector is a failure detection pro-
tocol. Process Scheduler, Leader Election, and
Sliding Window are P# versions of SPIN benchmarks [12].

All benchmarks have a liveness bug, except for Leader
Election and Sliding Window. A description of the
bugs can be found in our technical report [14]. The production
systems are proprietary; their liveness bugs were found using
P# for the first time. We performed all our experiments on
a 64-bit Windows Server machine with 64 GB RAM and 16
logical cores.

Table II reports results from our experiments. All bench-
marks were executed with maximum steps set to 500 (variable

4https://github.com/p-org/PSharp
5https://github.com/p-org/PSharpLab/tree/master/FMCAD17

https://github.com/p-org/PSharp
https://github.com/p-org/PSharpLab/tree/master/FMCAD17


TABLE I
BENCHMARK CHARACTERISTICS

Benchmark LoC #Machines #States #Messages
Proposers 176 3 3 5
Chord 762 3 7 22
ReplicatingStorage 757 7 20 41
FailureDetector 436 4 10 19
Process Scheduler 641 7 7 27
Leader Election 340 3 4 9
Sliding Window 344 3 4 8
PoolServer - v1 12160 10 54 49
PoolServer - v2 27908 18 139 94
Azure Storage vNext 22967 6 15 27

B in Algorithm 1). The temperature threshold (TT ) was set
to 250. This value was chosen after initial experimentation
which revealed that smaller values led to many false positives.
The threshold on cycle replay (RT ) was set to 10. It is
interesting to note that our algorithm was robust with respect
to this value though it was set arbitrarily: there were no false
positives among the traces that we manually inspected; for the
remaining traces, we confirmed that once a cycle was replayed
for 10 iterations, it could be also replayed for at least 10K
iterations. If replay failed, it would almost always fail in the
first iteration of the cycle. Each benchmark was tested for
10K executions, with 1K executions performed in parallel with
10 parallel instances. As mentioned in Section III, we use a
random scheduler for the temperature method, whereas we ran
a portfolio of schedulers (suggested as default to P# users) for
the partial-state caching method.

Table II shows the total time taken by the two approaches
(in seconds); the percentage of executions that reported bugs
(along with false positive ratio, when present); and the average
length of reported traces. For PartialCaching, we report the
average length of the trace (LT ) along with the average
length of the cycle (LC). We also show the number of times
replay failed for potential cycles that were fair and hot (D).
For PoolServer-v2, we were surprised to not find any
bugs; when we checked with the developers, we found that
they were using a maximum step bound of 5000. The row
Poolserver-v2-5k uses this setting.

The results show that the extra information tracked by the
PartialCaching method incurs an overhead over the tempera-
ture method (3.5X maximum, 2X on average). The overhead
is mostly due to cycle detection in the trace, but also because
of the partial hash computation and failed replay attempts.
However, PartialCaching method has no false positives and
has consistently better bug-finding capabilities, except for
ReplicatingStorage.

In the case of Azure Storage vNext, the temperature
method reports nearly 88% of the executions to be buggy,
whereas our partial-state caching approach reports just 0.02%.
To investigate the stark difference in the number of bugs
reported by both approaches, we placed checks to see if the
known buggy code was reached in the executions. It turns
out that in nearly 82% of the executions, the bug was never
triggered. These were all false positives. The temperature

threshold was reached prematurely and the execution did not
get sufficient time to do the repair. We also note that this
is a lower bound on the number of false positives because
triggering the buggy code is a necessary but not a sufficient
condition for the liveness violation. The actual number of false
positives may be higher. Setting the temperature threshold to
450 still reports over 80% false positives.

PartialCaching is able to find a bug in Proposers and
Poolserver-v2-5k that is not found otherwise. The for-
mer is similar to the dining philosophers example (see §III); it
requires the proposer machines to continuously out-bid each
other in alternation. Thus, generating long traces is probabilis-
tically unlikely. For Poolserver-v2-5k, its because one
of the portfolio schedulers (based on priority-based scheduling
[2]) exposed the corner case, which the random scheduler is
unable to find. Additional experiments, which use just the
random scheduler or improved state hashing, can be found in
our technical report [14].
Discussion and Summary. The temperature method is easy to
implement. It has been shown to work well in past work [13],
and our experiments confirm this to some extent. However,
initial experience with the developers using P# indicated
two shortcomings. First, it required an understanding of the
temperature threshold; one must give the system enough time
to recover from a hot state. Like in the case of vNext, a low
value can result in false positives. Second, when a trace was
reported, developers had to spend time identifying a “loop”
in their logic to see why the system failed to make progress.
Our work on the partial-state caching algorithm was directly
inspired by these shortcomings, under the constraint that full-
state caching would not be possible in a real setting.

Our method finds a short cycle in most cases, usually
much shorter than the trace itself and points directly to why
the execution failed to make progress. Further, the technique
is more robust, with fewer false positives and higher true
positives. It is able to find bugs (e.g., Poolserver-v2-5k)
that would be missed otherwise, which is invaluable to the
user. We believe these advantages justify the relative modest
runtime overhead of the approach. It also has the added
advantage of supporting multiple schedulers, which we knew
from past reported experience with safety properties, that it
will be useful in exposing interesting behaviors [8].

VII. RELATED WORK

Formal methods for checking liveness properties on pro-
grams is a widely studied area. The properties themselves
are expressed in a temporal logic, most commonly in Linear
Temporal Logic (LTL). These are compiled to a Buchi au-
tomaton, which is complemented and then intersected (via a
cross-product construction) with the program. In the resulting
system, the problem is then to find a lasso where the cycle
contains an accepting state. The problem of limiting attention
to fair traces is then just a matter of encoding fairness in LTL.
The classical algorithm for finding such a lasso is the Nested
Depth First Search (NDFS) algorithm [3]. State-of-the-art
implementations of this algorithm, with various improvements



TABLE II
MAX STEPS: 500, ITERS:10000 (LT : TRACE LENGTH; LC : CYCLE LENGTH; D: DISCARDED CYCLES)

Benchmark Time taken % of Buggy Schedules Trace length
Temperature PartialCaching Temperature PartialCaching Temperature PartialCaching (LT , LC ) D

Proposers 5.87 10.23 0 1.16 - 21.9, 13 237
Chord 5.95 6.20 6.02 6.03 280.2 36.4, 3.2 0
ReplicatingStorage 45.80 160.76 13.78 11.96 367.7 295.4, 72.3 238
FailureDetector 48.17 74.34 0.03 0.6 254 78.1, 8 10076
Process Scheduler 36.77 117.3 0.33 11.7 411.5 236.1, 12.4 94671
Leader Election 6.83 7.38 0 0 - - 60921
Sliding Window 35.95 125 0 0 - - 0
PoolServer-v1 11.6 24.53 1.5 2.57 250.4 287.6, 26.6 14442
PoolServer-v2 46.63 68.85 0 0 - - 0
PoolServer-v2-5k 28.75 64.11 0 0.03 - 624.2, 10.6 2
Azure Storage vNext 80.5 139.8 88.95 | 82.21 FP 0.02 309.6 235, 24 50

[7], [10], can be found in tools such as SPIN [12] and ZING [1].
However, this methodology requires the ability to cache the
entire state (or a fingerprint of it). Consequently, both SPIN and
ZING support their own input languages for writing models of
actual systems. This is not readily possible in our setting.

The P programming language [6], [16] was co-designed
with P#. It carries the same state-machine and message-passing
structure as P#. However, unlike P# which is an extension of
the C# language, P is its own programming language with its
own data types and type system, designed in a manner that a P
program can be compiled directly to ZING’s input language.
(A P program can interface with external C procedures for
deployment in production, but the programmer is required
to provide P models of any external procedure.) Thus, a P
program can be analyzed using ZING. We coded some of our
simpler benchmarks in P, where it was possible to capture
the entire program state. However, ZING was often unable
to find the bug in the program. This was because of two
main reasons. First, the encoding of fairness in the translation
to ZING introduced a lot of non-determinism in the model.
Second, NDFS insists on a DFS order to explore the state
space. Our benchmarks have infinite state spaces (or very
large, even when the execution depth is constrained [7]). We
found NDFS often getting lost in exploring sub-regions of
the state space that did not have bugs and not being able to
exhaustively cover the sub-region before it timed out.

Previous work on stateless techniques, which do not capture
the program state, is usually restricted to safety properties.
They advocate encoding liveness properties as safety assertions
that check for progress explicitly [19]. Our approach instead
automatically reports a lasso as a proof of “no progress”.
MACEMC [13] and CHESS [15] are stateless approaches that
directly look for liveness violations. They have already been
covered in the paper.

REFERENCES

[1] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing:
Exploiting program structure for model checking concurrent software.
In Conference on Concurrency Theory (CONCUR), pages 1–15, 2004.

[2] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A
randomized scheduler with probabilistic guarantees of finding bugs.
In Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 167–178, 2010.

[3] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory
efficient algorithms for the verification of temporal properties. In
Computer Aided Verification (CAV), pages 233–242, 1990.

[4] P. Deligiannis, A. F. Donaldson, J. Ketema, A. Lal, and P. Thomson.
Asynchronous programming, analysis and testing with state machines.
In Programming Language Design and Implementation (PLDI), pages
154–164, 2015.

[5] P. Deligiannis, M. McCutchen, P. Thomson, S. Chen, A. F. Donaldson,
J. Erickson, C. Huang, A. Lal, R. Mudduluru, S. Qadeer, and W. Schulte.
Uncovering bugs in distributed storage systems during testing (not in
production!). In File and Storage Technologies (FAST), pages 249–262,
2016.

[6] A. Desai, V. Gupta, E. K. Jackson, S. Qadeer, S. K. Rajamani, and
D. Zufferey. P: safe asynchronous event-driven programming. In
Programming Language Design and Implementation (PLDI), pages 321–
332, 2013.

[7] A. Desai, S. Qadeer, S. Rajamani, and S. Seshia. Iterative cycle detection
via delaying explorers. Technical report, March 2015.

[8] A. Desai, S. Qadeer, and S. A. Seshia. Systematic testing of asyn-
chronous reactive systems. In Foundations of Software Engineering
(FSE), pages 73–83, 2015.

[9] M. Emmi and A. Lal. Finding non-terminating executions in distributed
asynchronous programs. In Static Analysis Symposium (SAS), pages
439–455, 2012.

[10] P. Godefroid and G. J. Holzmann. On the verification of temporal
properties. In Protocol Specification, Testing and Verification (PSTV),
pages 109–124, 1993.

[11] R. Grosu and S. A. Smolka. Monte carlo model checking. In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 271–286, 2005.

[12] G. J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley, 2003.

[13] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, death, and the
critical transition: Finding liveness bugs in systems code. In Networked
Systems Design and Implementation, 2007.

[14] R. Mudduluru, P. Deligiannis, A. Desai, A. Lal, and S. Qadeer. Lasso
detection using partial-state caching. Technical Report MSR-TR-2017-
37, Microsoft Research, July 2017.

[15] M. Musuvathi and S. Qadeer. Fair stateless model checking. In
Programming Language Design and Implementation (PLDI), pages 362–
371, 2008.

[16] P: Safe asynchronous event-driven programming. https://github.com/
p-org/P.

[17] P#: Safe asynchronous event-driven .NET programming. https://github.
com/p-org/PSharp.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In Applications, Technologies, Architectures, and Protocols for Com-
puter Communications, pages 149–160. ACM, 2001.

[19] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,
L. Zhang, and L. Zhou. Modist: Transparent model checking of
unmodified distributed systems. In Networked Systems Design and
Implementation (NSDI), pages 213–228, 2009.

https://github.com/p-org/P
https://github.com/p-org/P
https://github.com/p-org/PSharp
https://github.com/p-org/PSharp

	Introduction
	Notation And Definitions
	Liveness Checking Algorithms
	Implementation
	Case Study
	Experiments
	Related Work
	References

