COMPRESSION OF QUANTUM MULTI-PROVER INTERACTIVE PROOFS

ZHENGFENG JI

UNIVERSITY OF TECHNOLOGY SYDNEY

MY LAST SLIDE FOR LAST YEAR'S QIP

- Approximation of the entangled game value to inverse polynomial precision is QMA-hard
- A connection between Bell inequalities and Hamiltonian complexity
- How about approximation to constant precision?

[Natarajan, Vidick 15]

- Can we reduce the number of players down to 2?
- Beyond QMA-hardness?

OUTLINE

- 1. Motivations
- 2. Proof
 Overview
- 3. Techniques
- 4. Conclusions

MOTIVATIONS

How Hard are Nonlocal Games?

You can't put a limit on anything.
The more you dream, the farther you get.
— Michael Phelps

NONLOCAL GAMES

Nonlocal games

Bell inequalities + Multi-prover proofs

Distribution π over S imes T

Function
$$V: A imes B imes S imes T
ightarrow [0,1]$$

The nonlocal value ω^*

The Nonlocal Game problem

Nonlocal games vs. quantum multi-prover interactive proofs

Message size: $\log(n)$ vs. $\operatorname{poly}(n)$

IN LAST YEAR'S QIP

- A 4-player protocol for the Local Hamiltonian
 Problem
- Nonlocal games are QMA-hard
- Rigid nonlocal games for quantum error correcting codes
- Quantum complexity for quantum (nonlocal) games
- Dark cloud

Unlike classical games which are NP-complete, there are no upper bounds known for nonlocal games!

MY LAST SLIDE FOR LAST YEAR'S QIP

- Approximation of the entangled game value to inverse polynomial precision is QMA-hard
- A connection between Bell inequalities and Hamiltonian complexity
- How about approximation to constant precision?

[Natarajan, Vidick 15]

- Can we reduce the number of players down to 2?
- Beyond QMA-hardness?

HOW FARTHER CAN WE GET?

QMA(2)?

PP?

QAM?

PSPACE?

EXP?

NEXP?

QMIP*?!

PROOF OVERVIEW

A Combination of Good Old Ideas from Quantum Proofs

there is no such thing as a new idea. It is impossible. We simply take a lot of old ideas and put them into a sort of mental kaleidoscope.

— Mark Twain

PSPACE?

An intermediate goal to illustrate the ideas

FROM QMA TO QMAM (QMA MODIFIED)

• QMA

A quantum analog of NP.

• QMAM

Merlin sends the first half of the proof state to Arthur; Arthur sends a random bit b to Merlin; Merlin sends the second half; Arthur decides acceptance.

A quantum characterization of PSPACE.

· Uhlmann's theorem

Merlin applies unitary transform W if b=1.

Are we done?

[Marriott and Watrous '05]

[Kitaev '99]

TRANSVERSALITY VERSUS UNIVERSALITY

- Need rigid nonlocal games that can enforce the players to first perform the unitary W and then measure X, Z
- The encoding and distribution of quantum proofs
 - Need transversality even for the honest players to follow the protocol
- But no universal set of transversal gates exists for any quantum code!

[Zeng, Cross and Chuang '07], [Eastin and Knill '09]

TWO IDEAS FOR THE TRANSVERSALITY PROBLEM

1. The computation can be classical on the prover side for QIP(3)

[Watrous '99]

No transversal gates known even for universal classical computation on quantum codes

2. A new distribution of the proof state without encoding

Propagation games and constraint propagation games

Rigidity without encoding

STEP 1. AN HONEST-PLAYER GAME FOR QIP(3)

- Plays the role of the Local Hamiltonian Problem for QMA
- History state of the interaction

$$\sum_{t=0}^{2T+1} \ket{t} \otimes U_t U_{t-1} \cdots U_1 \ket{\psi}$$

Referee possesses the clock and the verifier register, prover possesses a copy of clock and both the message and prover register

- Verifier propagation check: Both the Hadamard and Toffoli propagations can be checked by Pauli X and Z measurements
- Prover propagation check: Extended EPR game

STEP 2. AN EXTENDED NONLOCAL GAME FOR QIP(3)

Use the rigidity of a constraint propagation game to remove the requirement that the prover measures honestly in the honest-player game for QIP(3)

STEP 3. A NONLOCAL GAME FOR QIP(3)

Make sure that the referee only performs Pauli X, Z measurements and delegate the measurements to additional provers

BEYOND PSPACE AND IMPLICATIONS

 Parallelization works for quantum multiprover interactive proofs

[Kempe, Kobayashi, Matsumoto and Vidick '08]

- The Nonlocal Game problem (with inverse polynomial precision) is QMIP*-complete, and hence NEXP-hard.
- Nonlocal games are provably harder than classical games (NP-hard).
- A strong indication that approximation precision matters for the complexity of Nonlocal Games.

TECHNIQUES

Rigidity by Extended Nonlocal Games

Example is leadership.

— Albert Schweitzer

THE POWER OF EXTENDED NONLOCAL GAMES

- Easier and more flexible to achieve rigidity with Extended Nonlocal Games
 - Allow the distribution of raw qubits (without encoding) to the players while retaining control over the players' behavior (rigidity)
 - Check the prover's propagation in QIP(3)

EXTENDED NONLOCAL GAMES

Nonlocal Games and Extended Nonlocal Games

Question sets S,T, answer sets A,B, distribution π over $S\times T$ and a function V that specifies the acceptance rule of the referee

Nonlocal Games	V:A imes B imes S imes T o [0,1]
Extended Nonlocal Games	V:A imes B imes S imes T o [0,I]

[Johnston, Mittal, Russo and Watrous '16] [Tomamichel, Fehr, Kaniewski and Wehner '13]

- Equivalently, the referee possesses a quantum system which the players choose how to initialize; the referee may measure and then decide
- Single-player extended nonlocal games are already interesting

PROPAGATION GAMES (SIMPLE VERSION)

Reflections R_1,R_2,\ldots,R_n . A sequance $\mathfrak{R}=(R_{\zeta_i})_{i=1}^N$ of reflections with indices $\zeta_i\in[n]$

The propagation game is an extended nonlocal game in which the referee possesses a quantum system \mathbb{C}^{N+1} and

- 1. Selects an $i \in [N]$ uniformly at random and sends the index $j = \zeta_i \in [n]$ to the player and receives an answer bit a;
- 2. Performs the projective measurement Π_i on his system and accepts if the outcome is 2 or equals to a.

RIGIDITY FOR PROPAGATION GAMES

The history state isometry for sequence $\mathfrak R$ is defined as

$$V_{\mathfrak{R}} \propto \sum_{t=0}^N \ket{t} \otimes R_{\zeta_t} R_{\zeta_{t-1}} \cdots R_{\zeta_1}.$$

History states are states for the form $V_{\mathfrak{R}} \rho V_{\mathfrak{R}}^*$.

Theorem. Any strategy that has value at least $1-\epsilon$ must use shared state that is $N^{3/2}\epsilon^{1/2}$ -close to a history state for $\hat{\Re}$ in trace distance.

CONSTRAINT PROPAGATION GAMES

ullet Reflections R_1,R_2,\ldots,R_n ; Constraints C_1,C_2,\ldots,C_m $R_{j_1}R_{j_2}\cdots R_{j_{n_i}}=(-1)^{ au_i}I.$

• Two chains G_{prop} and G_{cons} :

The referee possesses a quantum system $\mathbb{C}^{V(G_{\text{prop}})}$ and performs the following two checks with equal probability:

- 1. (Propagation Check). Propagation game for G_{prop} ;
- 2. (Constraint Check). Propagation game for $G_{\rm cons}$ (no need to interact with the player);

RIGIDITY FOR CONSTRAINT PROPAGATION GAMES

For strategy $ig(
ho,\{\hat{R}_j\}ig)$, define

$$\hat{C}_i = \hat{R}_{i,1} \hat{R}_{i,2} \cdots \hat{R}_{i,n_i}$$
 .

Theorem. If the strategy has value at least $1-\epsilon$, then the constraints are approximately satisfied. That is, for some constant κ and state $\rho_0 \propto \langle 0|\rho|0\rangle$,

$$\operatorname{Re}\operatorname{Tr}_{
ho_0}\hat{C}_ipprox_{N^\kappa\epsilon^{1/\kappa}}(-1)^{ au_i}.$$

MULTI-QUBIT RIGIDITY WITHOUT CONSISTENCY

- Two enhancements to Propagation Games and Constraint Propagation Games
 - 1. Allow the confusion questions $R_{j|q}$ where $j \in q \subseteq [n]$ Relate the Single qubit Pauli to Multi-qubit Pauli
 - 2. Allow the controlled questions $\Lambda_c(R_j)$ Rearranging operators without consistency
- Multi-Qubit Rigidity

The player must measure the constant-weight Pauli operators up to some isometry

REASONS TO ENHANCE CONSTRAINT PROPAGATION GAMES

The rigidity theorem for constraint propagation games allows us to enforce useful conditions such as approximate commutativity and approximate anti-commutativity

$$\operatorname{Re}\operatorname{Tr}_{
ho_0}\left(\hat{R}_0\hat{R}_1\hat{R}_0\hat{R}_1
ight)pprox\pm1$$

However, approximate commutativity and anti-commutativity are not sufficient to guarantee the multi-qubit rigidity

[Chao, Reichardt, Sutherland and Vidick '17]

CHECKING PROVER PROPAGATION

Consider only the prover propagation part and check that the state is of the form

$$|00
angle|\phi
angle+|11
angle(I\otimes W)|\phi
angle$$

Extended EPR Game

- Anti-commutativity and rigidity
- A theory of approximate stabilizers
- To achieve close-to-optimal value, the player must initialize the EPR state and measure honestly

CONCLUSION AND OPEN PROBLEMS

- We proved that any r-player quantum multi-prover interactive protocol can be compressed to a nonlocal game in which messages are of $O(\log n)$ bits
- Nonlocal Games are QMIP*-complete and NEXP-hard
- A combination of ideas in quantum proofs
 - History state and propagation checking
 - Parallelization of quantum proofs
 - Rigidity of nonlocal games
- Exact case versus approximate case

[Slofstra '17]

- Open problems
 - What is the hardness of the constant precision approximation problem for nonlocal games?
 - Tradeoff between precision and complexity
 - Characterization of QMIP*

THANKS!