TIME-CORRELATED NOISE IN QUANTUM COMPUTATION
Motivation
Fault-tolerant computation

- computing requires isolation & control
- maybe no such qubits occur "naturally"
- fault-tolerance: generic approach
- noise has to be weak & weakly correlated in spacetime
- here: arbitrary correlations in time
Fabrication faults
Fabrication faults

fabrication faults: known / unknown
operations: flexible / fixed
Fabrication faults

fabrication faults: known / unknown
operations: flexible / fixed
Noise model
Stochastic noise
Local stochastic noise

\[P(1 \land 5) \leq \lambda^2 \]
Spatially local stochastic noise

\[P(\Box \land \Box) \leq x^2 \]
Quantum memories based on single-shot error correction exhibit an error threshold under spatially local stochastic noise.
Single-shot error correction
Error correction

logical qubit \rightarrow physical qubits

extra d.o.f. \rightarrow check ops

syndrome extraction \rightarrow decoding \rightarrow correction
Error correction

ideal

noisy

syndrome extraction → decoding → correction
Error correction

single-shot if quantum-local
(analogous to LOCC)

syndrome extraction
local, quantum

decoding
global, classical

correction
local, quantum
Error correction

ideal

noisy

other
Topological codes
Topological codes

local check operators

local indistinguishability
2D codes

errors: strings

syndrome: endpoints
2D codes
2D codes

Spatially local (and Markovian), e.g.

\[P(x_{i,t} \cap x_{i,t}) = \lambda^2 \]
Single-shot codes

D = 4

D = 3
4D codes

errors: membranes
syndrome: loops
3D codes

errors: strings
syndrome: endpoints

\[P(e) \leq \Delta \]
Subsystem codes

logical qubit

physical qubits

extra d.o.f. \{ check ops
gauge d.o.f. \}
Gauss law

charge

flux

charge

field

error

syndrome

gauge

syndrome
3D gauge color codes

tetrahedron = qubit
edge = gauge op
vertex = check op
X & Z type
Confinement

check ops

unconfined

gauge ops

confined!
Result
Quantum memory

Perfect encoding and decoding to test the quality of the quantum memory: alternated noise and noisy error correction
Noise

\[P(1 \land 3 \land 7) \leq \lambda^3 \]
Noisy error correction

\[P \left(\bigwedge_{i=1}^{3} e_i \bigwedge \right) \leq 3^{-3} \]
Quantum memory

For error rates below a threshold

\[p(\text{error}) \leq a t + b \]

where \(a \) & \(b \) decrease exponentially with the system size.
DISCUSSION

- Universal computation probably straightforward
- $D < 3$
- Known fabrication faults
- Fully local (CA) error correction
- The physics of gauge color codes. Gapless phases? Confinement?
Local operations

- Transversal
- Local
- Quantum-local

Not universal
Not universal?

Universal + EC

but + EC = universal

Fault tolerance!
Th.

with ϵ the error rate of
d = 2
\(d = 4 \)
localized measurement errors yield localized residual noise
\[
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1/\sqrt{2} & 1/\sqrt{2} \\
-1/\sqrt{2} & -1/\sqrt{2}
\end{bmatrix}
\]

\[
d = 2
\]