Separations in communication complexity using cheat sheet and information complexity

Anurag Anshua, Aleksandrs Belovsb, Shalev Ben-Davidc, Mika Göösd, Rahul Jaina,e,f, Robin Kotharic, Troy Leea,f,g, Miklos Santhaa,h

a CQT, National University of Singapore
b University of Latvia
c Massachusetts Institute of Technology
d SEAS, Harvard University
e Dept. of CS, National University of Singapore
f MajuLab, UMI 3654, Singapore
g SPMS, Nanyang Technological University
h IRIF, Université Paris Diderot, CNRS

January 16, 2017
Roadmap

1. Some background

2. New separations in communication complexity
For a function F, Randomized (make an error of $1/3$) query complexity $R^{dt}(F)$, Quantum (make error of $1/3$) query complexity $Q^{dt}(F)$.

Quadratic separation: using Grover’s search algorithm [Grov95] and its variant proved in [BBHT96].

$$\text{OR: } \{0, 1\}^n \rightarrow \{0, 1\} \text{ outputs 1 if the input contains at least one 1.}$$

<table>
<thead>
<tr>
<th>R^{dt}</th>
<th>Q^{dt}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 [BBHT96]</td>
</tr>
</tbody>
</table>
Randomized communication complexity $R(F)$: number of bits communicated in a randomized protocol.

Quantum communication complexity $Q(F)$: number of qubits communicated in an entanglement assisted quantum protocol.

Information complexity $IC(F)$: amount of information about input that must be revealed (to other party) to compute the function.
A quantum query algorithm for a function gives rise to a quantum communication protocol for a related function [BCW98].

Disjointness function \(\text{DISJ} \) inputs two subsets \(x, y \) of the set \(\{1, 2, \ldots, n\} \) and outputs 0 if the subsets are disjoint.

\[
\text{DISJ}(x, y) = \text{OR}(x_1 \text{ AND } y_1, x_2 \text{ AND } y_2, \ldots, x_n \text{ AND } y_n)
\]

\[
\begin{array}{c|c}
\text{R} & \text{Q} \\
2 [\text{BCW98}] & \text{[KS87],[Raz91]}
\end{array}
\]
Aaronson, Ben-David and Kothari [2016] introduced the technique of cheat sheet.

F_{cs} has two components: ‘c’ copies of a parent function F and a cheat sheet cs.

Compute based on inputs to functions and content at ‘decimal(b)’.

\[b = F_1, \ldots F_c \]

\[\begin{array}{ccc}
F_1 & \cdots & F_c \\
\end{array} \]

\[\begin{array}{cccc}
1 & 2 & \cdots & 2^c \\
\end{array} \]

\[\begin{array}{|cc|}
Q^{dt} & \\
R^{dt} & 2.5 \ [ABK16] \\
\end{array} \]
Separating exact quantum and randomized

- Exact quantum query complexity of F, denoted $Q_{E}^{dt}(F)$, is number of quantum queries needed to compute F with zero error.
- Similarly we define $Q_{E}(F)$ for communication complexity.

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>Q_{E}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>2.5</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>[ABK16]</td>
<td>[Amb12]</td>
</tr>
<tr>
<td>dt</td>
<td>2</td>
<td>1.15</td>
</tr>
<tr>
<td>com</td>
<td>dt</td>
<td>com</td>
</tr>
<tr>
<td></td>
<td>[Amb12]</td>
<td>[Amb12]</td>
</tr>
</tbody>
</table>
Exact quantum query complexity of F, denoted $Q_{E dt}^d(F)$, is number of quantum queries needed to compute F with zero error.

Similarly we define $Q_E(F)$ for communication complexity.

<table>
<thead>
<tr>
<th>R</th>
<th>Q_{dt}</th>
<th>Q_{com}</th>
<th>$Q_{E dt}$</th>
<th>$Q_{E com}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ABK16]</td>
<td>2.5</td>
<td>2</td>
<td>1.5</td>
<td>1.15</td>
</tr>
<tr>
<td>dt</td>
<td>com</td>
<td>dt</td>
<td>com</td>
<td></td>
</tr>
</tbody>
</table>
Unambiguous certificate complexity UN^{dt} is a lower bound on deterministic query complexity. Analogously Partition number UN in communication complexity.

Goos, Pitassi, Watson [2015] presented first super linear separation between UN^{dt} and deterministic query complexity. Similar result in communication complexity.

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>Q_E</th>
<th>UN</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>2.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>[ABK16]</td>
<td>[Amb12]</td>
<td>[GJPW]</td>
</tr>
<tr>
<td>dt</td>
<td>com</td>
<td>dt</td>
<td>com</td>
</tr>
<tr>
<td>com</td>
<td>dt</td>
<td>com</td>
<td>com</td>
</tr>
</tbody>
</table>
Unambiguous certificate complexity UN^{dt} is a lower bound on deterministic query complexity. Analogously Partition number UN in communication complexity.

Goos, Pitassi, Watson [2015] presented first super linear separation between UN^{dt} and deterministic query complexity. Similar result in communication complexity.

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>Q_E</th>
<th>UN</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>2.5</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>com</td>
<td>com</td>
<td>com</td>
</tr>
<tr>
<td>$[\text{ABK16}]$</td>
<td>$[\text{ABK16}]$</td>
<td>$[\text{Amb12}]$</td>
<td>$[\text{AKK16}]$</td>
</tr>
<tr>
<td>dt</td>
<td>dt</td>
<td>dt</td>
<td>dt</td>
</tr>
<tr>
<td>$[\text{GJPW}]$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Can we somehow lift these query results to communication? What gadgets should be used?

AND is not a good: $\text{AND}(x_1 \text{ AND } y_1, \ldots, x_n \text{ AND } y_n)$ is easy.

Inner Product lifts a lower bound (junta degree) on $R^{dt}(F)$ to a lower bound on communication complexity $R(F)$ (smooth rectangle bound) [GLMWZ, 2015].

But we have no idea what is junta degree for cheat sheet function.
Look-up function F_G

$F : \mathcal{X} \otimes \mathcal{Y} \rightarrow \{0, 1\}$

$F_1, F_2 \ldots F_c \equiv F$

$G : \mathcal{X} \otimes^c \mathcal{Y} \otimes^c \mathcal{W} \rightarrow \{0, 1\}$

\mathcal{W} is set of strings of size $O(n^2)$

$u_0, v_0, u_1, v_1 \ldots u_{2c}, v_{2c} \in \mathcal{W}$
Look-up function F_g

Compute $b = (F_1, F_2, \ldots, F_c)$
Look-up function F_g

F_{1}

F_{c}

$u_0 \rightarrow v_0$

$u_1 \rightarrow v_1$

$u_{2c} \rightarrow v_{2c}$

goto block number

decimal(b)

Anurag Anshu, Aleksandrs Belovs, Shalev Ben-David, Mika Göös, Rahul Jain, Robin Kothari, Troy Lee, Miklos Santha (CQT)
Look-up function F_G

\[F_G = 1 \quad \text{iff} \quad G(u_b \oplus v_b, x_1, y_1 \ldots x_c, y_c) = 1 \]
Lower bound on communication complexity of look-up function

- For reasonably non-trivial function G, we show the following.

Theorem

\[R(F_G) = \Omega\left(\frac{R(F)}{c^2}\right) \text{ and } IC(F_G) = \Omega\left(\frac{IC(F)}{c^3}\right). \]
An idea of the proof: pointer function

\[F : \mathcal{X} \otimes \mathcal{Y} \rightarrow \{0, 1\} \]

\[F_1, F_2 \ldots F_c \equiv F \]
An idea of the proof: pointer function

\[F : \mathcal{X} \otimes \mathcal{Y} \to \{0, 1\} \]

\[F_1, F_2 \ldots F_c \equiv F \]

compute

\[b = (F_1, F_2, \ldots F_c) \]
An idea of the proof: pointer function

\[F : \mathcal{X} \otimes \mathcal{Y} \to \{0, 1\} \]

\[F_1, F_2 \ldots F_c \equiv F \]

Output \(u_b \oplus v_b \)
An idea of the proof: pointer function

\[F : X \otimes Y \to \{0, 1\} \]

\[F_1, F_2 \ldots F_c \equiv F \]

Hard distribution for F: \(\mu \)

Distribution for pointer:

\[\mu \otimes^c \otimes \text{uniform}_{UV} \]
An idea of the proof: pointer function

\[F : \mathcal{X} \otimes \mathcal{Y} \rightarrow \{0, 1\} \]

\[F_1, F_2 \ldots F_c \equiv F \]

transcript \(\Pi \)

\[I(\Pi : b | UVY) \text{ small} \]

\[I(\Pi U : b | VY) \text{ small} \]
An idea of the proof: pointer function

\[F : \mathcal{X} \otimes \mathcal{Y} \rightarrow \{0, 1\} \]

\[F_1, F_2 \ldots F_c \equiv F \]

transcript \(\Pi \)

\[\left(\prod U \right)_{b,v,y} \approx \left(\prod U \right)_{v,y} \]

averaged over \(b, v, y \)

Anurag Anshua, Aleksandrs Belovsb, Shalev c

a CQT

January 16, 2017
An idea of the proof: pointer function

\[F : \mathcal{X} \otimes \mathcal{Y} \rightarrow \{0, 1\} \]

\[F_1, F_2 \ldots F_c \equiv F \]

\[I(\Pi : U_b | VY) \text{ small} \]

\(b \) distributed correctly

\[u_0 \rightarrow v_0 \]

\[u_1 \rightarrow v_1 \]

\[u_2 \rightarrow v_2 \]
An idea of the proof: pointer function

\[F : \mathcal{X} \otimes \mathcal{Y} \to \{0, 1\} \]
\[F_1, F_2 \ldots F_c \equiv F \]

\[\prod_{b, v, y} (\prod U_b)_{v, y} \approx \prod_{v, y} \otimes U_b \]

averaged over \(b, v, y \)
An idea of the proof: pointer function

$$F : \mathcal{X} \otimes \mathcal{Y} \to \{0, 1\}$$

$$F_1, F_2 \ldots F_c \equiv F$$

$$[\prod U_b]_{v,y} \approx \prod_{v,y} \otimes U_b$$

$$[\prod U]_{b,v,y} \approx (\prod U)_{v,y}$$

averaged over $$b, v, y$$
An idea of the proof: pointer function

\[F : \mathcal{X} \otimes \mathcal{Y} \rightarrow \{0, 1\} \]

\[F_1, F_2 \ldots F_c \equiv F \]

\[[(\prod U_b)_{v,y} \approx \prod_{v,y} \otimes U_b] \]

\[[(\prod U_b)_{b,v,y} \approx (\prod U_b)_{v,y}] \]

averaged over \(b, v, y \)
An idea of the proof: pointer function

\[F : \mathcal{X} \otimes \mathcal{Y} \to \{0, 1\} \]

\[F_1, F_2 \ldots F_c \equiv F \]

\[(\prod U_b)_{b,v,y} \approx (\prod)_{b,v,y} \otimes U_b \]

error!!
Main results

- We choose G in similar way as in cheat sheet function.
- We choose appropriate F, lifting $SIMON \circ TRIBES$ (a la Aaronson, Ben-David, Kothari [2016]). Lifting done using Inner Product gadget ([Goos et. al., 2015]).

Theorem

There exists a total function F such that $R(F) = \tilde{\Omega}(Q(F)^{2.5})$.
Main results

Theorem

There exists a total function F such that $R(F) = \tilde{\Omega}(Q(F)^{2.5})$.

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>Q_E</th>
<th>UN</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>2.5 \cite{ABK16} dt</td>
<td>2.5 \cite{ABK16} com</td>
<td>1.5 \cite{Amb12} dt</td>
</tr>
</tbody>
</table>
Similarly for exact quantum separation, lifting the super linear separation of Aaronson, Ben-David, Kothari [2016].

Theorem

There exists a total function F such that $R(F) = \tilde{\Omega}(Q_E(F)^{1.5})$.

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>Q_E</th>
<th>UN</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>2.5 [ABK16] dt</td>
<td>1.5 [AKK16] dt</td>
<td>2 [GJPW] dt</td>
</tr>
<tr>
<td></td>
<td>2.5 [ABK16] com</td>
<td>1.5 [AKK16] com</td>
<td>1.5 [GJPW] com</td>
</tr>
</tbody>
</table>
Main results

- Following Ambianis, Kokainis and Kothari (2016), we separate $R(F)$ and $UN(F)$.
- We use the lower bound on information complexity (IC) of look-up function, since it has nice properties required for F.

Theorem (ABBG+16)

There exists a function F with the following relation between $R(F)$ and unambiguous non-deterministic communication complexity $UN(F)$:

$$R(F) > UN(F)^{2-o(1)}.$$
Main results

Theorem (ABBG+16)

There exists a function F such that $R(F) > UN(F)^{2-o(1)}$.

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>Q_E</th>
<th>UN</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>2.5</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>[ABK16]</td>
<td>dt</td>
<td>dt</td>
<td>dt</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>com</td>
<td>com</td>
<td>com</td>
</tr>
</tbody>
</table>
Open questions

- Is there a general lifting theorem from randomized query complexity to randomized communication complexity?
- Are randomized communication complexity and quantum communication complexity of total functions polynomially related?
- Can we reduce the number of blocks in cheat sheet?