Information-Theoretic Tools for Interactive Quantum Protocols, and Applications: Flow of Information, Augmented Index, and DYCK(2)

MATHIEU LAURIÈRE, ASHWIN NAYAK, AND DAVE TOUCHETTE

QIP 2017, Seattle
16 January 2017
Interactive Quantum Protocols,
Information-Theoretic Tools for Interactive Quantum Protocols,

MATHIEU LAURIÈRE, ASHWIN NAYAK, AND DAVE TOUCHETTE

QIP 2017, Seattle
16 January 2017
Information-Theoretic Tools for Interactive Quantum Protocols, and Applications: Flow of Information, Augmented Index, and DYCK(2)

MATHIEU LAURIÈRE, ASHWIN NAYAK, AND DAVE TOUCHETTE

QIP 2017, Seattle
16 January 2017
Quantum Advantage for Disjointness

- Disjointness: \(x, y \subseteq \{1, 2, \ldots, n\} \), is \(x \cap y = \emptyset \)?
- \(x = x_1 \cdots x_n, y = y_1 \cdots y_n \in \{0, 1\}^n \), looking for \(i \) such that \(x_i = y_i = 1 \)
- Quantum Protocol [BCW98]: distributed version of Grover search
- \(\text{QCC}(\text{Disj}) = \Theta(\sqrt{n}) \) [BCW98, Razb03, AA03]
- \(\text{CC}(\text{Disj}) = \Omega(n) \) [KS92]

Input: \(x \)
Initialize: \(\frac{1}{n} \sum_i |i\rangle \)

Oracle call: \(\frac{1}{n} \sum_i |i\rangle |x_i\rangle \)

\(\frac{1}{n} \sum_i (-1)^{x_i \land y_i} |i\rangle \)

Inversion about the mean
Repeat \(\approx \sqrt{n} \) times
Measure to get desired \(i \) if intersection

Input: \(y \)

[Buhrman, Cleve and Wigderson 1998; Razborov 2003; Aaronson and Ambainis 2003; Kalyanasundaram and Schnitger 1992]
Quantum Advantage for Disjointness

- Disjointness: $x, y \subseteq \{1,2, ..., n\}$, is $x \cap y = \emptyset$?
- $x = x_1 \cdots x_n, y = y_1 \cdots y_n \in \{0,1\}^n$, looking for i such that $x_i = y_i = 1$
- Quantum Protocol [BCW98]: distributed version of Grover search
- $\text{QCC(Disj)} = \Theta(\sqrt{n})$ [BCW98, Razb03, AA03]
- $\text{CC(Disj)} = \Omega(n)$ [KS92]
- How does information flow in this protocol?
- Can we avoid transmitting back/forgetting information?
Interactive Communication

- Communication Complexity setting:
 - How much communication to compute f on $(x, y) \sim \mu$
 - Take information-theoretic view: Information Complexity
 - How much information to compute f on $(x, y) \sim \mu$
 - Information content of interactive protocols?
 - Classical vs. Quantum?
Overview

Based on 2 papers

◦ 1701.02062: ML & DT, Info. Flow & Cost of Forgetting
 ◦ Th 1: HIC = CIC \(–\) CRIC, QIC = CIC + CRIC
 ◦ Tool 1: Information Flow Lemma
 ◦ Th 2: \(\Pi\) not forgetting for Disjointness \(\Rightarrow\) QCC(\(\Pi\)) \(\in\) \(\Omega(n)\)
 ◦ Th 3: Can maintain IC for quantum simulation of classical protocols, and then IC(\(f_{rdm}\)) = \(n (1 - o(1))\)

◦ 1610.04937: AN & DT, Aug. Index & Streaming algo. for DYCK(2)
 ◦ Th 4: Any T-pass one-way qu. Streaming algorithm for DYCK(2) requires space \(s(N) \in \Omega(\frac{\sqrt{N}}{T^3})\) on length N inputs
 ◦ Th 5: Any t-round protocol for Augmented Index satisfies a QIC trade-off \(QIC_A \rightarrow_B (\Pi, \mu_0) \in \Omega\left(\frac{n}{t^2}\right)\) or \(QIC_B \rightarrow_A (\Pi, \mu_0) \in \Omega\left(\frac{1}{t^2}\right)\)
 ◦ Tool 2: Superposition-Average Encoding Theorem
 ◦ Tool 3: Quantum Cut-and-Paste
 ◦ Application of Tool 1
Quantum Communication Complexity

Protocol Π: X XA_1 XA_2 XA_3 XA_M X

A_0 U_1 U_3 U_f A_f

C_1 C_3 C_{M-1} C_M

μ $|\psi\rangle$ \downarrow \uparrow \uparrow \downarrow

Y B_0 U_2 YB_2 YB_{M-1} B_f

Output: $f(X,Y)$
Quantum Communication Complexity

- QCC(f) = \(\min_{\Pi} \text{QCC}(\Pi) \)
- Minimization over all \(\Pi \) computing \(f \)
- QCC(\(\Pi \)) = \(\sum \log(\text{dim}(C_i)) \); total number of qubits exchanged
Quantum Information Theory

- Conditional Quantum Mutual Information
 - $I(R: C | B) = I(R: BC) - I(R: B) = H(R|B) - H(R|BC) = H(RB) + H(BC) - H(B) - H(RBC)$
 - Non-negativity: $I(R: C | B) \geq 0$ [LR73]
 - Chain rule: $I(A: BD|C) = I(A: B|C) + I(A: D|BC)$
 - Invariance under local isometry, satisfies a data processing inequality...
 - Operational interpretation [DY08, YD09]: Quantum state redistribution, optimal communication rate $I(R: C | B) = I(R: C|A)$

[Lieb and Ruskai 1973; Devetak and Yard 2008; Yard and Devetak 2009]
Quantum Information Theory

- **Conditional Quantum Mutual Information**
 - \(I(R: C | B) = I(R: BC) - I(R: B) = H(R | B) - H(R | BC) = H(RB) + H(BC) - H(B) - H(RBC) \)
 - Non-negativity: \(I(R: C | B) \geq 0 \) [LR73]
 - Chain rule: \(I(A: BD|C) = I(A: B|C) + I(A: D|BC) \)
 - Invariance under local isometry, satisfies a data processing inequality...
 - Operational interpretation [DY08, YD09]: Quantum state redistribution, optimal communication rate \(I(R: C | B) = I(R: C | A) \)
 - Recoverability [FR15]
 - There exists a recovery map \(T_{B\rightarrow BC} \) such that \(-\log F(\rho_{RBC}, T_{B\rightarrow BC}(\rho_{RB})) \leq I(R: C | B)_{\rho} \)

[Lieb and Ruskai 1973; Devetak and Yard 2008; Yard and Devetak 2009; Fawzi and Renner 2015]
Quantum Information Complexity (QIC)

- $\text{QIC}(f, \mu) = \inf_{\Pi} \text{QIC}(\Pi, \mu)$
- Optimization over all Π computing f
- $\text{QIC}(\Pi, \mu) = \sum_{i \text{ odd}} I(R_X R_Y : C_i | Y B_i) + \sum_{i \text{ even}} I(R_X R_Y : C_i | X A_i)$
 - Motivated by quantum state redistribution, with $R_X R_Y$ purifying the $X Y$ input registers: $\rho_{R_X X R_Y Y} = \sum_{x,y} \mu(x, y) |x y y\rangle_R |x y y\rangle_{R_X X R_Y Y}$
Quantum Information Complexity (QIC)

- $\text{QIC}(f, \mu) = \inf_{\Pi} \text{QIC}(\Pi, \mu)$
- Optimization over all Π computing f
- $\text{QIC}(\Pi, \mu) = \sum_{i \text{ odd}} I(R_X R_Y: C_i | Y B_i) + \sum_{i \text{ even}} I(R_X R_Y: C_i | X A_i)$
- Properties [T15]:
 - Information equals amortized communication
 - Additivity
 - $\text{QIC} \leq \text{QCC}$
 - Continuity, ...

[T. 2015]
Alternative Notions of QIC

- QIC measures information about what?
 - Satisfies Information equals amortized communication
 - What about these purification registers for classical inputs?
Alternative Notions of QIC

- QIC measures information about what?
 - Satisfies Information equals amortized communication
 - What about these purification registers for classical inputs?
- Can we simply measure the final information?
 - \(\text{HIC}(\Pi, \mu) = I(X; B_f | Y) + I(Y; A_f | X) \)
 - Compare to classical \(\text{IC}(\Pi_C, \mu) = I(X; \Pi_C | Y) + I(Y; \Pi_C | X) \), with \(\Pi_C = M_1 M_2 \ldots \) the transcript of messages
 - But reversible computing makes \(\text{HIC}(f) \) trivial...
Alternative Notions of QIC

- QIC measures information about what?
 - Satisfies Information equals amortized communication
 - What about these purification registers for classical inputs?
- Can we simply measure the final information?
 - \(\text{HIC}(\Pi, \mu) = I(X:B_J|Y) + I(Y:A_J|X)\)
 - Compare to classical \(\text{IC}(\Pi_C, \mu) = I(X:Y_C|X) + I(Y:\Pi_C|X)\), with \(\Pi_C = M_1 M_2 \cdots\) the transcript of messages
 - But reversible computing makes \(\text{HIC}(f)\) trivial...
- Can we measure only new classical information?
 - \(\text{CIC}(\Pi, \mu) = \sum_{\text{odd}} I(X:C_i|Y B_i) + \sum_{\text{even}} I(Y:C_i|X A_i)\) [KLLGR16]
 - Compare to classical \(\text{IC}(\Pi_C, \mu) = \sum_{\text{odd}} I(X:M_i|Y M_{<i}) + \sum_{\text{even}} I(Y:M_i|X M_{<i})\)
 - Motivated by privacy concerns

[Kerenidis, Lauriere, Le Gall and Rennela 2016]
Alternative Notions of QIC

- QIC measures information about what?
 - Satisfies Information equals amortized communication
 - What about these purification registers for classical inputs?
- Can we simply measure the final information?
 - $\text{HIC}(\Pi, \mu) = I(X: B_f | Y) + I(Y: A_f | X)$
 - Compare to classical $\text{IC}(\Pi_C, \mu) = I(X: \Pi_C | Y) + I(Y: \Pi_C | X)$, with $\Pi_C = M_1 M_2 \cdots$ the transcript of messages
 - But reversible computing makes $\text{HIC}(f)$ trivial...
- Can we simply measure new classical information?
 - $\text{CIC}(\Pi, \mu) = \sum_{l \text{ odd}} I(X: C_l | Y B_l) + \sum_{l \text{ even}} I(Y: C_l | X A_l)$ [KLLGR16]
 - Compare to classical $\text{IC}(\Pi_C, \mu) = \sum_{l \text{ odd}} I(X: M_l | Y M < l) + \sum_{l \text{ even}} I(Y: M_l | X M < l)$
 - Motivated by privacy concerns
- $\text{HIC}(\Pi, \mu) \leq \text{CIC}(\Pi, \mu) \leq \text{QIC}(\Pi, \mu)$
 - Is there a deeper relationship?

[Kerenidis, Lauriere, Le Gall and Rennela 2016]
Tool 1: Information Flow Lemma

- Lemma: \(I(X: Y B_f) - I(X: Y) = I(X: B_f | Y) = \sum_{i \text{ odd}} I(X: C_i | Y B_i) - \sum_{i \text{ even}} I(X: C_i | Y B_i) \)
- Can also handle fully quantum processes and arbitrary extension of inputs
Th. 1: Cost of Forgetting

- Rewrite $\text{QIC}(\Pi, \mu) = \sum_i I(X: C_i | YB_i) + I(Y: C_i | XA_i)$
- What are those extra terms compared to CIC?
- $\text{CRIC}(\Pi, \mu) = \sum_{\text{even}} I(X: C_i | YB_i) + \sum_{\text{odd}} I(Y: C_i | XA_i)$
Th. 1: Cost of Forgetting

- Rewrite $QIC(\Pi, \mu) = \sum_i I(X: C_i|Y B_i) + I(Y: C_i|X A_i)$
 - What are those extra terms compared to CIC?
 - $CRIC(\Pi, \mu) = \sum_{l \text{ even}} I(X: C_i|Y B_i) + \sum_{l \text{ odd}} I(Y: C_i|X A_i)$

- Using Info. Flow Lemma, rewrite
 - Th. 1.1: $HIC(\Pi, \mu) = CIC(\Pi, \mu) - CRIC(\Pi, \mu)$
 - $QIC(\Pi, \mu) = CIC(\Pi, \mu) + CRIC(\Pi, \mu)$

- CRIC corresponds to cost of forgetting
 - Exactly assess back-flow of information
 - No need to introduce purification registers R_XR_Y to define QIC (for classical tasks)
Tool 2: Superposition-Average Encoding Th.

- Average encoding theorem [KNTZ07]: $E_X[h^2(\rho_B^X, \rho_B)] \leq I(X:B)_\rho$
 - $\rho_{XB} = \sum_x p(x)|x\rangle\langle x|_X \otimes \rho_B^x$
 - $\rho_B = E_X[\rho_B^X]$, average state
 - $h^2(\sigma, \theta) = 1 - F(\sigma, \theta)$, Bures distance, with $F(\sigma, \theta) = ||\sqrt{\sigma} \sqrt{\theta}||_1$
 - Follows from Pinsker’s inequality
 - Many applications, e.g. together with a round-by-round variant of HIC [JRS03]

[Klauck, Nayak, Ta-Shma and Zuckerman 2007; Jain, Radhakrishnan and Sen 2003]
Tool 2: Superposition-Average Encoding Th.

- Average encoding theorem [KNTZ07]: $E_X[h^2(\rho^X_B, \rho_B)] \leq I(X:B)_\rho$
- What about superposition over (part of) X?
- Recall F-R theorem (stated in terms of h)
 - There exists a recovery map $T_{B \rightarrow BC}$ such that $h^2(\rho_{RBC}, T_{B \rightarrow BC}(\rho_{RB})) \leq I(R:C|B)_\rho$
- Theorem: If for odd i then $h^2(\rho^f_{RXRYBf}, \sigma^f_{RXRYBf}) \leq M \sum_i \varepsilon_i$
Tool 3: Quantum Cut-and-Paste Lemma

- Variant of a tool developed in [JRS03, JN14]
- Consider input subset \(\{x_1, x_2\} \times \{y_1, y_2\} \)
- Lemma: If for odd \(i \) and for even \(i \), then

\[
\begin{align*}
\delta_i & = h\left(\rho_{B_iC_i}^{i,x_1y_1}, \rho_{B_iC_i}^{i,x_2y_1}\right) \\
& \leq 2 \sum_{j \leq i} \delta_j
\end{align*}
\]

\[
\begin{align*}
\delta_i & = h\left(\rho_{A_iC_i}^{i,x_1y_1}, \rho_{A_iC_i}^{i,x_2y_1}\right)
\end{align*}
\]
Applications
Th. 2: Disjointness

- Recall Disjointness: $x, y \subseteq [n], \text{Disj}_n(x, y) = ? [x \cap y = \emptyset]$
- $\text{CC}(\text{Disj}_n) \in \Omega(n), \text{QCC}(\text{Disj}_n) \in \Omega(\sqrt{n})$
- For r rounds, $\text{QCC}^r(\text{Disj}_n) \in \tilde{\Omega}(\frac{n}{r})$ \cite{BGKMT15}
- Number of rounds r appears only through a continuity argument
 - Not there for classical protocols
 - Due to possibility of forgetting and retransmitting in quantum protocols
- With no-forgetting (NF), $\text{QCC}^{NF}(\text{Disj}_n) \in \Omega(n)$

\cite{Braverman, Garg, Kun Ko, Mao and T. 2015}
Th. 3: QIC and IC of Random functions

- Can we simulate classical protocols with quantum ones?
 - Of course!
 - What about maintaining IC?
 - Must be careful with private randomness
 - Bring Π_C in canonical form first
 - Then QIC looks classical... almost!
Th. 3: QIC and IC of Random functions

- Can we simulate classical protocols with quantum ones?
 - Of course!
 - What about maintaining IC?
 - Must be careful with private randomness
 - Bring Π_C in canonical form first
 - Then QIC looks classical... almost!
- Known: $QCC(IP_n) = n$ [CDNT99], $QCC(f_{rdm}) = n(1 - o(1))$ [MW07]
 - $IP_n(x,y) = \oplus_i x_i \wedge y_i$, f_{rdm} random function on $n + n$ bits
 - Using Info. Flow Lemma, QCC lower bound transfers to QIC lower bound (at zero error)
 - Already known: $IC(IP_n) = n$ [BGPW], $IC(f_{rdm}) = \Omega(n)$ [BW]
- By above simulation, $IC(f_{rdm}) = n(1 - o(1))$

[Cleve, van Dam, Nielsen and Tapp 1999; Montanaro and Winter 2007; Braverman, Garg, Pankratov and Weinstein 2013; Braverman and Weinstein 2012]
Th. 4: Streaming Algorithms for DYCK(2)

- \(\text{DYCK}(2) = \epsilon + [\text{DYCK}(2)] + (\text{DYCK}(2)) + \text{DYCK}(2) \cdot \text{DYCK}(2) \)
- Reduction from multi-party QCC to streaming algorithm to DYCK(2) [MMN14]
 - Consider T-pass, one-way quantum streaming algorithms
 - Space \(s(N) \) in algorithm corresponds to communication between parties
 - Multi-party problem consists of OR of multiple instances of two-party problem

\[|0^{s(N)} \rangle \]

\[O_{x_1} \quad O_{x_2} \quad \ldots \quad O_{x_N} \]

Repeat T times

[Magniez, Mathieu and Nayak 2014]
Th. 4: Streaming Algorithms for DYCK(2)

- $\text{DYCK}(2) = \epsilon + [\text{DYCK}(2)] + (\text{DYCK}(2)) + \text{DYCK}(2) \cdot \text{DYCK}(2)$
- Reduction from multi-party QCC to streaming algorithm to DYCK(2) [MMN14]
 - Consider T-pass, one-way quantum streaming algorithms
 - Space $s(N)$ in algorithm corresponds to communication between parties
 - Multi-party problem consists of OR of multiple instances of two-party problem
- Direct sum argument allows to reduce from a two-party problem
 - Multi-party QCC lower bounds requires two-party QIC lower bound on “easy distribution”
- Th. 2.1: Any T-pass 1-way qu. streaming algo. for DYCK(2) needs space $s(N) \in \Omega(\sqrt{N}/T^3)$ on length N inputs

[Magniez, Mathieu and Nayak 2014]
Th. 5: Augmented Index

- Index($x_1 ... x_i ... x_n, i$) = x_i
- Augmented Index: $AI_n(x_1 ... x_n, (i, x_1 ... x_{<i}, b)) = x_i \oplus b$
- Th. 2.2: For any r-round protocol Π for AI_n, either
 - $QIC_{A \rightarrow B}(\Pi, \mu_0) \in \Omega\left(\frac{n}{r^2}\right)$ or
 - $QIC_{B \rightarrow A}(\Pi, \mu_0) \in \Omega\left(\frac{1}{r^2}\right)$ with
 - μ_0 the uniform distribution on zeros of AI_n ("easy distribution")
- Builds on direct sum approach of [JN14]
- General approach uses Tools 2, 3 (Sup.-Average Encoding Th., Qu. Cut-and-Paste)
- More specialized approach uses Tool 1 (Info. Flow Lemma)
Outlook

- Information-Theoretic Tools for Interactive Quantum Protocols
 - Information Flow Lemma
 - Superposition-average encoding theorem
 - Quantum Cut-and-Paste Lemma

- Applications
 - Intuitive interpretation of QIC, links with CIC, HIC (and other notions)
 - Forgetting an essential feature of quantum protocols for Disjointness
 - Quantum simulation of classical protocols leads to $n(1-o(1))$ lower bound on IC of random functions
 - Space lower bound on quantum streaming algorithms for DYCK(2)
 - Quantum information trade-off for Augmented Index
 - Further applications...?
V2: Information Flow Lemma

\[I(E_A:B_f|E_B) - I(E_A:B_0|E_B) = \sum_i I(E_A:C_i|E_BB_i) - \sum_i I(E_A:D_i|E_BB_i) \]
ASCENSION

[MMN14]

[Magniez, Mathieu and Nayak 2014]