A Complete Characterization of Unitary Quantum Space

Bill Fefferman (QuICS, University of Maryland)
Joint with Cedric Lin (QuICS)

Based on arXiv:1604.01384

QIP 2017, Seattle, Washington
Our motivation: How powerful are quantum computers with a small number of qubits?

- **Our results**: Give two natural problems *characterize* the power of quantum computation with *any* bound on the number of qubits
 1. **Precise Succinct Hamiltonian** problem
 2. **Well-conditioned Matrix Inversion** problem

- These characterizations have many applications
 - **QMA** proof systems and Hamiltonian complexity
 - The power of preparing **PEPS** states vs ground states of **Local Hamiltonians**
 - Classical **Logspace** complexity
Quantum space complexity

- **BQSPACE**[\(k(n)\)] is the class of promise problems \(L=(L_{\text{yes}}, L_{\text{no}})\) that can be decided by a bounded error quantum algorithm acting on \(k(n)\) qubits.
 - i.e., Exists uniformly generated family of quantum circuits \(\{Q_x\}_{x\in\{0,1\}^*}\) each acting on \(O(k(|x|))\) qubits:
 - “If answer is yes, the circuit \(Q_x\) accepts with high probability”
 \[x \in L_{\text{yes}} \Rightarrow \langle 0^k | Q_x \rangle_1 \langle 1 |_{\text{out}} Q_x | 0^k \rangle \geq 2/3\]
 - “If answer is no, the circuit \(Q_x\) accepts with low probability”
 \[x \in L_{\text{no}} \Rightarrow \langle 0^k | Q_x \rangle_1 \langle 1 |_{\text{out}} Q_x | 0^k \rangle \leq 1/3\]
- Our results show two natural complete problems for **BQSPACE**[\(k(n)\)]
 - For any \(k(n)\) so that \(\log(n) \leq k(n) \leq \text{poly}(n)\)
 - Our reductions use classical \(k(n)\) space and \(\text{poly}(n)\) time
- **Subtlety:** This is “unitary quantum space”
 - No intermediate measurements
 - Not known if “deferring” intermediate measurements can be done space efficiently
Quantum Merlin-Arthur

- Problems whose solutions can be verified quantumly given a quantum state as witness
- **QMA**(c,s) is the class of promise problems \(L=(L_{yes}, L_{no})\) so that:
 \[
 x \in L_{yes} \Rightarrow \exists |\psi\rangle \Pr[V(x, |\psi\rangle) = 1] \geq c
 \]
 \[
 x \in L_{no} \Rightarrow \forall |\psi\rangle \Pr[V(x, |\psi\rangle) = 1] \leq s
 \]
- **QMA = QMA**\((2/3, 1/3) = \bigcup_{c>0} QMA(c, c-1/poly)\)
- **k-Local Hamiltonian** problem is **QMA**-complete (when \(k \geq 2\))[Kitaev ’00]
 - Input: \(H = \sum_{i=1}^{M} H_i\), each term \(H_i\) is \(k\)-local
 - Promise either:
 - Minimum eigenvalue \(\lambda_{\min}(H) > b\) or \(\lambda_{\min}(H) < a\)
 - Where \(b-a \geq 1/poly(n)\)
 - Which is the case?
- Generalizations of **QMA**:
 1. **PreciseQMA** = \(\bigcup_{c>0} QMA(c, c-1/exp)\)
 2. **k-bounded QMA**\(_m\)(c,s)
 - Arthur’s verification circuit acts on \(k\) qubits
 - Merlin sends an \(m\) qubit witness

QIP 2017, Seattle, Washington
Characterization 1:
Precise Succinct Hamiltonian problem
The **Precise Succinct** Hamiltonian Problem

- **Definition:** “**Succinct Encoding**”
 - We say a classical Turing machine M is a **Succinct Encoding** for $2^{k(n)} \times 2^{k(n)}$ matrix A if:
 - On input $i \in \{0,1\}^{k(n)}$, M outputs non-zero elements in i-th row of A
 - Using at most $\text{poly}(n)$ time and $k(n)$ space

- **$k(n)$-Precise Succinct Hamiltonian problem**
 - Input: Size n Succinct Encoding of $2^{k(n)} \times 2^{k(n)}$ Hermitian PSD matrix A
 - Promised either:
 - Minimum eigenvalue $\lambda_{\min}(A) > b$ or $\lambda_{\min}(A) < a$
 - Where $b-a > 2^{-O(k(n))}$
 - Which is the case?

- Compared to the **Local Hamiltonian** problem...
 - Input is SuccinctlyEncoded instead of Local
 - Precision needed to determine the promise is $\frac{1}{2^k}$ instead of $\frac{1}{\text{poly}(n)}$

- **Our Result:** $k(n)$-P.S Hamiltonian problem is complete for $\text{BQSPACE}[k(n)]$
Upper bound (1/2):

\[k(n) - \text{Precise Succinct Hamiltonian} \in \text{k(n)-bounded QMA}_{k(n)}(c,c-2^{-k(n)}) \]

- **Recall:** \(k(n) \)-precise succinct Hamiltonian problem
 - Given succinct encoding of \(2^{k(n)} \times 2^{k(n)} \) Hermitian PSD matrix \(A \), is \(\lambda_{\min}(A) \leq a \) or \(\lambda_{\min}(A) \geq b \) where \(b-a \geq 2^{-O(k(n))} \)?

- Merlin send eigenstate \(|\psi\rangle \) with minimum eigenvalue
 - Arthur runs phase estimation with one ancilla qubit on \(e^{-iA} \) and \(|\psi\rangle \)

\[
|0\rangle \quad \begin{array}{c}
\text{H} \\
\text{H}
\end{array} \\
\frac{1 + e^{-i\lambda t}}{2} |0\rangle + \frac{1 - e^{-i\lambda t}}{2} |1\rangle

|\psi\rangle \quad e^{-iAt} \quad |\psi\rangle
\]

- Measure ancilla and accept iff “0”
- Easy to see that we get “0” outcome with probability that’s slightly \((2^{-O(k)}) \) higher if \(\lambda_{\min}(A) < a \) than if \(\lambda_{\min}(A) > b \)
- But this is exactly what’s needed to establish the claimed bound!

- **Remaining question:** how do we implement \(e^{-iA} \)?
 - We need to implement this operator with precision \(2^{-k} \), since otherwise the error in simulation overwhelms the gap!
 - Luckily, we can invoke recent “precise Hamiltonian simulation” results of [Childs et. al’14]
 - Implement \(e^{-iA} \) to within precision \(\epsilon \) in space that scales with \(\log(1/\epsilon) \) and time \(\text{polylog}(1/\epsilon) \)
 - See also Guang Hao Low’s talk on Thursday!

- Using these results, can implement Arthur’s circuit in \(\text{poly}(n) \) time and \(O(k(n)) \) space

QIP 2017, Seattle, Washington
Upper bound (2/2):

\(k(n) \)-bounded QMA\(^{k(n)}(c,c\,-2^{-k(n)}) \subseteq BQSPACE[k(n)] \)

1. Error amplify the PreciseQMA protocol
 - \textit{Goal}: Obtain a protocol with error inverse exponential in the witness length, \(k(n) \)
 - We want to do this while simultaneously preserving verifier space \(O(k(n)) \)
 - We develop new “space-preserving” QMA amplification procedures
 - By combining ideas from “in-place” amplification [Marriott & Watrous ‘04] with phase estimation

2. “Guess the witness”!
 - Consider this amplified verification protocol run on a maximally mixed state on \(k(n) \) qubits
 - Not hard to see that this new “no witness” protocol has a “precise” gap of \(O(2^{-k(n)}) \)

3. Amplify again!
 - Use our “space-efficient” QMA error amplification technique again!
 - Obtain bounded error, at a cost of exponential time
 - But the space remains \(O(k(n)) \), establishing the BQSPACE\([k(n)]\) upper bound

 - Space-efficient amplification also used to prove hardness!
 - \(k(n) \)-P.S Hamiltonian is BQSPACE\([k(n)]\)-hard
 - Follows from first using our space-bounded amplification, and then Kitaev’s clock-construction to build sparse Hamiltonian from the amplified circuit

QIP 2017, Seattle, Washington
Application: **PreciseQMA=PSPACE**

- **Question**: How does the power of QMA scale with the completeness-soundness gap?
- **Recall**: PreciseQMA=\(\bigcup_{c>0}^{}\)QMA\((c, c-2^{-\text{poly}(n)})\)
- Both upper and lower bounds follow from our completeness result, together with BQPSPACE=PSPACE [Watrous’03]
- **Corollary**: “precise k-Local Hamiltonian problem” is PSPACE-complete
- **Extension**: “Perfect Completeness case”: QMA\((1, 1-2^{-\text{poly}(n)})=\)PSPACE
 - **Corollary**: checking if a local Hamiltonian has zero ground state energy is PSPACE-complete
Where is this power coming from?

• Could $\text{QMA} = \text{PreciseQMA} = \text{PSPACE}$?
 • Unlikely since $\text{QMA} = \text{PreciseQMA} \implies \text{PSPACE} = \text{PP}$
 • Using $\text{QMA} \subseteq \text{PP}$

• How powerful is PreciseMA, the classical analogue of PreciseQMA?
 • *Crude upper bound:* $\text{PreciseMA} \subseteq \text{NP}^{\text{PP}} \subseteq \text{PSPACE}$
 • And believed to be strictly less powerful, unless the “Counting Hierarchy” collapses

• So the power of PreciseQMA seems to come from both the quantum witness and the small gap, together!

QIP 2017, Seattle, Washington
Understanding “Precise” complexity classes

• We can answer questions in the “precise” regime that we have no idea how to answer in the “bounded-error” regime

• Example 1: How powerful is \textbf{QMA(2)}?
 • PreciseQMA=\textbf{PSPACE} (our result)
 • PreciseQMA(2)=\textbf{NEXP} [Blier & Tapp’07, Pereszlényi’12]
 • So, PreciseQMA(2) \neq PreciseQMA, unless NEXP=\textbf{PSPACE}

• Example 2: How powerful are quantum vs classical witnesses?
 • PreciseQCMA \subseteq \textbf{NP}^{\text{PP}}
 • So, PreciseQMA \neq PreciseQCMA, unless \textbf{PSPACE} \subseteq \textbf{NP}^{\text{PP}}

• Example 3: How powerful is \textbf{QMA} with perfect completeness?
 • PreciseQMA=PreciseQMA_1=\textbf{PSPACE}

QIP 2017, Seattle, Washington
Characterization 2:
Well-Conditioned Matrix Inversion
The Classical Complexity of **Matrix Inversion**

• The **Matrix Inversion** problem
 • Input: nonsingular $n \times n$ matrix A with integer entries, promised either:
 • $A^{-1}[0,0]>2/3$ or
 • $A^{-1}[0,0]<1/3$
 • Which is the case?

• This problem can be solved in classical $O(\log^2(n))$ space [Csanky’76]

• Not believed to be solvable classically in $O(\log(n))$ space
 • If it is, then $L=NL$ (*Logspace* equivalent of $P=NP$)
Can we do better quantumly?

• “Well-Conditioned Matrix Inversion” can be solved in *non-unitary BQSPACE*[log(n)]! [Ta-Shma’12] building on [HHL’08]
 • i.e., same problem with poly(n) upper bound on the condition number, κ, so that κ^{-1}∥A∥1
 • *Appears* to attain quadratic speedup in space usage over classical algorithms

• *Begs the question*: how important is this “well-conditioned” restriction?
 • Can we also solve the *general Matrix Inversion* problem in quantum space O(log(n))?
Our results on **Matrix Inversion**

- **Well-conditioned Matrix Inversion** is complete for *unitary* $\text{BQSPACE}[\log(n)]!$
 1. We give a new quantum algorithm for **Well-conditioned Matrix Inversion** avoiding intermediate measurements
 - Combines techniques from [HHL’08] with amplitude amplification
 2. We also prove $\text{BQSPACE}[\log(n)]$ hardness—suggesting that “well-conditioned” constraint is *necessary* for quantum Logspace algorithms
Can generalize from $\log(n)$ to $k(n)$ qubits...

• **Result 3:** $k(n)$-**Well-conditioned Matrix Inversion** is complete for $\text{BQSPACE}[k(n)]$
 • Input: Succinct Encoding of $2^k \times 2^k$ PSD matrix A
 • Upper bound $\kappa < 2^{O(k(n))}$ on the condition number so that $\kappa^{-1} |A| \ll I$
 • Promised either $|A^{-1}[0,0]| \geq 2/3$ or $\leq 1/3$
 • Decide which is the case?

• Additionally, by varying the dimension and the bound on the condition number, can use **Matrix Inversion** problem to **characterize** the power of quantum computation with simultaneously bounded time and space!
Open questions

• Can we use our PreciseQMA=PSPACE characterization to give a PSPACE upper bound for other complexity classes?
 • For example, QMA(2)?

• How powerful is PreciseQIP?

• Natural complete problems for non-unitary quantum space?
Thanks!