Asymptotic entanglement manipulation under PPT operations: new SDP bounds and irreversibility

Xin Wang

UTS: Centre for Quantum Software and Information

Joint work with Runyao Duan (UTS:QSI)
Background

• Entanglement
 • Entangled state: $\rho \neq \sum_i p_i \rho_A^i \otimes \rho_B^i$
 • Non-entangled (separable) state: $\rho = \sum_i p_i \rho_A^i \otimes \rho_B^i$
Background

- Entanglement
 - Entangled state: \(\rho \neq \sum_i p_i \rho_A^i \otimes \rho_B^i \)
 - Non-entangled (separable) state: \(\rho = \sum_i p_i \rho_A^i \otimes \rho_B^i \)

- Entanglement theory studies the detection, quantification, manipulation and applications of entanglement.
Background

- **Entanglement**
 - Entangled state: \(\rho \neq \sum_i p_i \rho_A^i \otimes \rho_B^i \)
 - Non-entangled (separable) state: \(\rho = \sum_i p_i \rho_A^i \otimes \rho_B^i \)
- Entanglement theory studies the detection, quantification, manipulation and applications of entanglement.
- Two fundamental processes in entanglement manipulations
 - **Entanglement distillation** (Bennett, DiVincenzo, Smolin, Wootters, 1996; Rains, 1999, 2001): To extract standard \(2 \otimes 2 \) maximally entangled states (EPR pairs) from a given state \(\rho \) by LOCC

\[
|\phi(2)\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)
\]
Background

- Entanglement
 - Entangled state: $\rho \neq \sum_i p_i \rho_A^i \otimes \rho_B^i$
 - Non-entangled (separable) state: $\rho = \sum_i p_i \rho_A^i \otimes \rho_B^i$
- Entanglement theory studies the detection, quantification, manipulation and applications of entanglement.
- Two fundamental processes in entanglement manipulations
 - **Entanglement distillation** (Bennett, DiVincenzo, Smolin, Wootters, 1996; Rains, 1999, 2001): To extract standard $2 \otimes 2$ maximally entangled states (EPR pairs) from a given state ρ by LOCC

```
|φ(2)⟩ = \frac{1}{\sqrt{2}} (|00⟩ + |11⟩)
```

- **Entanglement dilution**: To prepare a given state ρ with the standard EPR pairs by LOCC
Distillable entanglement and entanglement cost

- **Distillable entanglement**: The optimal (maximal) number of EPR pairs we can extract from ρ in an asymptotic setting,

$$E_D(\rho_{AB}) := \sup \{ r : \lim_{n \to \infty} \inf_{\Lambda \in \text{LOCC}} \| \Lambda(\rho_{AB}^{\otimes n}) - \Phi(2^{rn}) \|_1 = 0 \}.$$

Note that $\Phi(2^{rn})$ is local unitarily equivalent to $\Phi(2)^{rn}$.
Distillable entanglement and entanglement cost

- **Distillable entanglement**: The optimal (maximal) number of EPR pairs we can extract from ρ in an asymptotic setting,

$$E_D(\rho_{AB}) := \sup \{ r : \lim_{n \to \infty} \inf_{\Lambda \in \text{LOCC}} \| \Lambda(\rho_{AB}^\otimes n) - \Phi(2^rn) \|_1 = 0 \}.$$

Note that $\Phi(2^rn)$ is local unitarily equivalent to $\Phi(2)^rn$.

- **Entanglement cost**: The optimal (minimal) number of EPR pairs we need to prepare ρ in an asymptotic setting,

$$E_C(\rho_{AB}) = \inf \{ r : \lim_{n \to \infty} \inf_{\Lambda \in \text{LOCC}} \| \rho_{AB}^\otimes n - \Lambda(\Phi(2^rn)) \|_1 = 0 \}.$$

It is equal to the regularized entanglement of formation (Hayden, Horodecki, Terhal 2001).
Distillable entanglement and entanglement cost

- **Distillable entanglement**: The optimal (maximal) number of EPR pairs we can extract from ρ in an asymptotic setting,

\[
E_D(\rho_{AB}) := \sup \{ r : \lim_{n \to \infty} \inf_{\Lambda \in \text{LOCC}} \| \Lambda(\rho_{AB}^\otimes n) - \Phi(2^{rn}) \|_1 = 0 \}.
\]

Note that $\Phi(2^{rn})$ is local unitarily equivalent to $\Phi(2)^{rn}$.

- **Entanglement cost**: The optimal (minimal) number of EPR pairs we need to prepare ρ in an asymptotic setting,

\[
E_C(\rho_{AB}) = \inf \{ r : \lim_{n \to \infty} \inf_{\Lambda \in \text{LOCC}} \| \rho_{AB}^\otimes n - \Lambda(\Phi(2^{rn})) \|_1 = 0 \}.
\]

It is equal to the regularized entanglement of formation (Hayden, Horodecki, Terhal 2001).

- It is natural to ask whether $E_C \neq E_D$.
Asymptotic entanglement manipulations and irreversibility

For pure states, asymptotic entanglement manipulation is reversible (Bennett, Bernstein, Popescu, Schumacher’96), i.e.,

\[E_D(|\psi\rangle\langle\psi|) = E_C(|\psi\rangle\langle\psi|) = S(\text{Tr}_B |\psi\rangle\langle\psi|). \]
Entanglement manipulations and irreversibility

- Asymptotic entanglement manipulations and irreversibility
 - For pure states, asymptotic entanglement manipulation is reversible (Bennett, Bernstein, Popescu, Schumacher’96), i.e.,
 \[E_D(|\psi\rangle\langle\psi|) = E_C(|\psi\rangle\langle\psi|) = S(\text{Tr}_B |\psi\rangle\langle\psi|). \]
 - For mixed states, this reversibility does not hold any more (Vidal and Cirac 2001).

Xin Wang & Runyao Duan (UTS:QSI) | Asymptotic entanglement manipulation under PPT operations: new bounds & irreversibility
Asymptotic entanglement manipulations and irreversibility

- For **pure states**, asymptotic entanglement manipulation is **reversible** (Bennett, Bernstein, Popescu, Schumacher’96), i.e.,

\[
E_D(\ketbra{\psi}{\psi}) = E_C(\ketbra{\psi}{\psi}) = S(\text{Tr}_B \ketbra{\psi}{\psi}).
\]

- For **mixed states**, this reversibility does not hold any more (Vidal and Cirac 2001).
- In particular, \(0 = E_D < E_C\) for any bound entangled states (Yang, Horodecki, Horodecki, Synak-Radtke 2005).
Entanglement manipulations and irreversibility

- Asymptotic entanglement manipulations and irreversibility
 - For **pure states**, asymptotic entanglement manipulation is **reversible** (Bennett, Bernstein, Popescu, Schumacher’96), i.e.,
 \[
 E_D(|\psi\rangle\langle\psi|) = E_C(|\psi\rangle\langle\psi|) = S(\text{Tr}_B |\psi\rangle\langle\psi|).
 \]
 - For **mixed states**, this reversibility does not hold any more (Vidal and Cirac 2001).
 - In particular, \(0 = E_D < E_C\) for any bound entangled states (Yang, Horodecki, Horodecki, Synak-Radtke 2005).

- Enlarge the set of operations?
Entanglement manipulations and irreversibility

- Asymptotic entanglement manipulations and irreversibility
 - For **pure states**, asymptotic entanglement manipulation is reversible (Bennett, Bernstein, Popescu, Schumacher’96), i.e.,
 \[E_D(|\psi\rangle\langle\psi|) = E_C(|\psi\rangle\langle\psi|) = S(\text{Tr}_B|\psi\rangle\langle\psi|). \]
 - For **mixed states**, this reversibility does not hold any more (Vidal and Cirac 2001).
 - In particular, \(0 = E_D < E_C \) for any bound entangled states (Yang, Horodecki, Horodecki, Synak-Radtke 2005).

- Enlarge the set of operations?
- One candidate is the set of **PPT operations** (quantum operations completely preserving positivity of partial transpose). Note that \(\text{LOCC} \not\subseteq \text{SEP} \not\subseteq \text{PPT} \).
Entanglement manipulations under PPT operations

- PPT distillable entanglement (Rains 1999, 2001)

\[E_{D,PPT}(\rho_{AB}) := \sup \{ r : \lim_{n \to \infty} \inf_{\Lambda \in \text{PPT}} \| \Lambda(\rho_{AB}^\otimes n) - \Phi(2^rn) \|_1 = 0 \}. \]
Entanglement manipulations under PPT operations

- PPT distillable entanglement (Rains 1999, 2001)

\[E_{D,PPT}(\rho_{AB}) := \sup \{ r : \lim_{n \to \infty} \inf_{\Lambda \in \text{PPT}} \| \Lambda(\rho_{AB}^\otimes n) - \Phi(2^rn) \|_1 = 0 \}. \]

PPT entanglement cost (Audenaert, Plenio, Eisert 2003)

\[E_{C,PPT}(\rho_{AB}) = \inf \{ r : \lim_{n \to \infty} \inf_{\Lambda \in \text{PPT}} \| \rho_{AB}^\otimes n - \Lambda(\Phi(2^rn)) \|_1 = 0 \} \]
Entanglement manipulations under PPT operations

- PPT distillable entanglement (Rains 1999, 2001)

\[E_{D,PPT}(\rho_{AB}) := \sup \{ r : \lim_{n \to \infty} \inf_{\Lambda \in \text{PPT}} \| \Lambda(\rho_{AB}^\otimes n) - \Phi(2^{rn}) \|_1 = 0 \} \]

PPT entanglement cost (Audenaert, Plenio, Eisert 2003)

\[E_{C,PPT}(\rho_{AB}) = \inf \{ r : \lim_{n \to \infty} \inf_{\Lambda \in \text{PPT}} \| \rho_{AB}^\otimes n - \Lambda(\Phi(2^{rn})) \|_1 = 0 \} \]

Clearly,

\[E_D \leq E_{D,PPT} \leq E_{C,PPT} \leq E_C \]
The class of antisymmetric states is an example of reversibility under PPT operations (Audenaert, Plenio, Eisert 2003).
Reversibility under PPT operations?

- The class of *antisymmetric states* is an example of reversibility under PPT operations (Audenaert, Plenio, Eisert 2003).
- Any state with a nonpositive partial transpose is distillable under PPT operations (Eggeling, Vollbrecht, Werner, Wolf 2001).

Background

Improved SDP bound

Rains’ bound is not additive

Irreversibility

Conclusion
The class of \textit{antisymmetric states} is an example of \textit{reversibility under PPT operations} (Audenaert, Plenio, Eisert 2003).

Any state with a nonpositive partial transpose is distillable under PPT operations (Eggeling, Vollbrecht, Werner, Wolf 2001).

\textbf{An old open problem} (Audenaert, Plenio, Eisert 2003):

\[E_{D,PPT}(\rho) = E_{C,PPT}(\rho)? \]

(The 20th problem listed at the website of Werner’s group.)
Reversibility under PPT operations?

- The class of **antisymmetric states** is an example of **reversibility under PPT operations** (Audenaert, Plenio, Eisert 2003).

- Any state with a nonpositive partial transpose is distillable under PPT operations (Eggeling, Vollbrecht, Werner, Wolf 2001).

- **An old open problem** (Audenaert, Plenio, Eisert 2003):

 \[E_{D,PPT}(\rho) = E_{C,PPT}(\rho) ? \]

 (The 20\(^{th}\) problem listed at the website of Werner’s group.)

- (Brandão and Plenio 2008) Entanglement can be reversibly interconverted under asymptotically non-entangling operations.
Main question and outline

This talk is about

- How to efficiently estimate the distillable entanglement E_D and entanglement cost E_C?
Main question and outline

This talk is about

- How to efficiently estimate the distillable entanglement E_D and entanglement cost E_C?
- Are asymptotic entanglement transformations reversible under PPT operations?

Diagram:

- Distillation: $\phi(2^nE_D)$
- Dilution: $\phi(2^nE_C)$
- $\rho_{AB}^\otimes n$ (PPT operations)
- $\Delta = 0$?
Main question and outline

This talk is about

- How to efficiently estimate the distillable entanglement E_D and entanglement cost E_C?
- Are asymptotic entanglement transformations reversible under PPT operations?

We will show

- **Improved** upper bounds for $E_{D,PPT}$
Main question and outline

This talk is about

- How to efficiently estimate the distillable entanglement E_D and entanglement cost E_C?
- Are asymptotic entanglement transformations reversible under PPT operations?

We will show

- Improved upper bounds for $E_{D,PPT}$
- Efficiently computable lower bound for $E_{C,PPT}$
Main question and outline

This talk is about

- How to efficiently estimate the distillable entanglement E_D and entanglement cost E_C?
- Are asymptotic entanglement transformations reversible under PPT operations?

We will show

- **Improved** upper bounds for $E_{D,PPT}$
- **Efficiently computable** lower bound for $E_{C,PPT}$
- The **irreversibility** under PPT operations:

$$\exists \rho, \text{ s.t. } E_{D,PPT}(\rho) < E_{C,PPT}(\rho).$$
An Upper bound of E_D: Logarithmic negativity

- How to evaluate the distillable entanglement (by any of LOCC, or PPT) is formidable. Only known for very limited cases.
An Upper bound of E_D: Logarithmic negativity

- How to evaluate the distillable entanglement (by any of LOCC, or PPT) is formidable. Only known for very limited cases.

- **Logarithmic negativity** (Vidal and Werner 2002; Plenio 2005):

 $$E_N(\rho_{AB}) = \log_2 \|\rho_{AB}^{T_B}\|_1,$$

 where T_B means the partial transpose over the system B and $\| \cdot \|_1$ is the trace norm.
An Upper bound of E_D: Logarithmic negativity

- How to evaluate the distillable entanglement (by any of LOCC, or PPT) is formidable. Only known for very limited cases.

- **Logarithmic negativity** (Vidal and Werner 2002; Plenio 2005):

 $$E_N(\rho_{AB}) = \log_2 \| \rho_{AB}^{T_B} \|_1,$$

 where T_B means the partial transpose over the system B and $\| \cdot \|_1$ is the trace norm.

 - **Negativity** $N(\rho_{AB}) = (\| \rho_{AB}^{T_B} \|_1 - 1)/2$ (Zyczkowski, Horodecki, Sanpera and Lewenstein 1998)
 - (Rains, 2001; Vidal and Werner 2002):

 $$E_D(\rho_{AB}) \leq E_{D,PPT}(\rho_{AB}) \leq E_N(\rho_{AB}).$$

 - E_N has many nice properties (see later).
A better SDP upper bound of E_D

- Primal SDP:
 \[
 E_W(\rho) = \max \log_2 \text{Tr}\rho R, \text{ s.t. } |R^{TB}| \leq 1, R \geq 0. \tag{1}
 \]

- Dual SDP:
 \[
 E_W(\rho) = \min \log_2 \|X^{TB}\|_1, \text{ s.t. } X \geq \rho. \tag{2}
 \]
A better SDP upper bound of E_D

- **Primal SDP:**
 \[
 E_W(\rho) = \max \log_2 \text{Tr} \rho R, \quad \text{s.t.} \quad |R^T| \leq 1, \quad R \geq 0.
 \]

- **Dual SDP:**
 \[
 E_W(\rho) = \min \log_2 \|X^T\|_1, \quad \text{s.t.} \quad X \geq \rho.
 \]

- **Properties of E_W:**

 i) **Additivity:**
 \[
 E_W(\rho \otimes \sigma) = E_W(\rho) + E_W(\sigma).
 \]
A better SDP upper bound of E_D

- **Primal SDP:**
 \[E_W(\rho) = \max \log_2 \text{Tr} \rho R, \text{ s.t. } |R^{TB}| \leq 1, R \geq 0. \]

- **Dual SDP:**
 \[E_W(\rho) = \min \log_2 \|X^{TB}\|_1, \text{ s.t. } X \geq \rho. \]

- **Properties of E_W:**
 1. **Additivity:** $E_W(\rho \otimes \sigma) = E_W(\rho) + E_W(\sigma)$.
 2. **Upper bound on PPT distillable entanglement:**
 \[E_{D,PPT}(\rho) \leq E_W(\rho). \]
A better SDP upper bound of E_D

- Primal SDP:
 \[
 E_W(\rho) = \max \log_2 \text{Tr} \rho R, \text{ s.t. } |R^T| \leq 1, R \geq 0. \tag{1}
 \]

- Dual SDP:
 \[
 E_W(\rho) = \min \log_2 \|X^T\|_1, \text{ s.t. } X \geq \rho. \tag{2}
 \]

- Properties of E_W:
 i) **Additivity**: $E_W(\rho \otimes \sigma) = E_W(\rho) + E_W(\sigma)$.
 ii) **Upper bound on PPT distillable entanglement**:

 \[
 E_{D,PPT}(\rho) \leq E_W(\rho).
 \]

 iii) Detecting genuine PPT distillable entanglement: $E_W(\rho) > 0$ iff $E_D(\rho) > 0$, i.e., ρ is PPT distillable.

 iv) **Non-increasing in average under PPT (LOCC) operations**
A better SDP upper bound of E_D

- Primal SDP:
 \[
 E_W(\rho) = \max \log_2 \text{Tr} \rho R, \text{ s.t. } |R^T B| \leq 1, R \geq 0. \tag{1}
 \]

- Dual SDP:
 \[
 E_W(\rho) = \min \log_2 \|X^T B\|_1, \text{ s.t. } X \geq \rho. \tag{2}
 \]

- Properties of E_W:
 \begin{enumerate}
 \item Additivity: $E_W(\rho \otimes \sigma) = E_W(\rho) + E_W(\sigma)$.
 \item Upper bound on PPT distillable entanglement:
 \[
 E_{D,PPT}(\rho) \leq E_W(\rho).
 \]
 \item Detecting genuine PPT distillable entanglement: $E_W(\rho) > 0$ iff $E_D(\rho) > 0$, i.e., ρ is PPT distillable.
 \item Non-increasing in average under PPT (LOCC) operations
 \item Improved over logarithmic negativity: $E_W(\rho) \leq E_N(\rho)$ and the inequality is strict in general.
 \end{enumerate}
A better SDP upper bound of E_D

- **Primal SDP:**
 \[
 E_W(\rho) = \max \log_2 \text{Tr}\rho R, \text{ s.t. } |R^T| \leq 1, R \geq 0. \tag{1}
 \]

- **Dual SDP:**
 \[
 E_W(\rho) = \min \log_2 \|X^T\|_1, \text{ s.t. } X \geq \rho. \tag{2}
 \]

- **Properties of E_W:**

 i) **Additivity:** $E_W(\rho \otimes \sigma) = E_W(\rho) + E_W(\sigma)$.

 ii) **Upper bound on PPT distillable entanglement:**
 \[
 E_{D,PPT}(\rho) \leq E_W(\rho).
 \]

 iii) Detecting genuine PPT distillable entanglement: $E_W(\rho) > 0$ iff $E_D(\rho) > 0$, i.e., ρ is PPT distillable.

 iv) **Non-increasing in average under PPT (LOCC) operations**

 v) **Improved over logarithmic negativity:** $E_W(\rho) \leq E_N(\rho)$ and the inequality is strict in general.

- E_N has all above properties except v)!
Relative entropy of entanglement and Rains bound

- Relative Von Neumann entropy $S(\rho||\sigma) = \text{Tr}(\rho \log \rho - \rho \log \sigma)$
- Relative entropy of entanglement (Vedral, Plenio, Rippin, Knight 1997; Vedral, Plenio, Jacobs, Knight 1997) with respect to PPT states

$$E_{R,PPT}(\rho) = \min S(\rho||\sigma) \quad \text{s.t.} \quad \sigma, \sigma^T_B \geq 0, \text{Tr} \sigma = 1.$$
Relative entropy of entanglement and Rains bound

- Relative Von Neumann entropy $S(\rho\|\sigma) = \text{Tr}(\rho \log \rho - \rho \log \sigma)$
- Relative entropy of entanglement (Vedral, Plenio, Rippin, Knight 1997; Vedral, Plenio, Jacobs, Knight 1997) with respect to PPT states

 $$E_{R,PPT}(\rho) = \min S(\rho\|\sigma) \text{ s.t. } \sigma, \sigma^T \geq 0, \text{Tr} \sigma = 1.$$

- Asymptotic relative entropy of entanglement w.r.t. PPT states

 $$E_{R,PPT}^\infty(\rho) = \lim_{n \to \infty} \frac{1}{n} E_{R,PPT}(\rho \otimes^n).$$
Relative entropy of entanglement and Rains bound

- Relative Von Neumann entropy $S(\rho||\sigma) = \text{Tr}(\rho \log \rho - \rho \log \sigma)$
- Relative entropy of entanglement (Vedral, Plenio, Rippin, Knight 1997; Vedral, Plenio, Jacobs, Knight 1997) with respect to PPT states
 \[E_{R,PPT}(\rho) = \min S(\rho||\sigma) \text{ s.t. } \sigma, \sigma^T_B \geq 0, \text{Tr} \sigma = 1. \]
- Asymptotic relative entropy of entanglement w.r.t. PPT states
 \[E_{R,PPT}^\infty(\rho) = \lim_{n \to \infty} \frac{1}{n} E_{R,PPT}(\rho^\otimes n). \]
- (Rains 2001) Rains’ bound is the best known upper bound on the PPT distillable entanglement, i.e., $E_{D,PPT}(\rho) \leq R(\rho)$.
- **Rains’ bound** (Rains 2001; Audenaert, De Moor, Vollbrecht, Werner’02)
 \[R(\rho) = \min S(\rho||\sigma) \text{ s.t. } \sigma \geq 0, \text{Tr} |\sigma^T_B| \leq 1, \]
Rains bound is not additive

- A conjecture (Audenaert, De Moor, Vollbrecht, Werner 2002): Rains’ bound is always additive;
Rains bound is not additive

- **A conjecture** (Audenaert, De Moor, Vollbrecht, Werner 2002): Rains’ bound is always additive;
- **An open problem** (Plenio and Virmani 2007):
 \[E^\infty_{R,PPT}(\rho) = R(\rho) ? \]
Rains bound is not additive

- A conjecture (Audenaert, De Moor, Vollbrecht, Werner 2002): Rains’ bound is always additive;
- An open problem (Plenio and Virmani 2007):
 \[E^\infty_{R,PPT}(\rho) = R(\rho) ? \]

- Evidence: Rains’ bound equals to \(E^\infty_{R,PPT} \) for Werner states (Audenaert, Eisert, Jane, Plenio, Virmani, De Moor 2001) and orthogonally invariant states (Audenaert, et al. 2002).
Rains bound is not additive

- **A conjecture** (Audenaert, De Moor, Vollbrecht, Werner 2002): Rains’ bound is always additive;
- **An open problem** (Plenio and Virmani 2007):
 \[E_\infty^{R,PPT}(\rho) = R(\rho) ? \]

- Evidence: Rains’ bound **equals** to \(E_\infty^{R,PPT} \) for Werner states (Audenaert, Eisert, Jane, Plenio, Virmani, De Moor 2001) and orthogonally invariant states (Audenaert, et al. 2002).

Theorem

There exists a two-qubit state \(\rho \) such that

\[R(\rho \otimes^2) < 2R(\rho). \]

Meanwhile,

\[E_\infty^{R,PPT}(\rho) < R(\rho). \]
Rains’ bound is not additive: Proof ideas

i) Construct a $2 \otimes 2$ state ρ so that we can explicitly find a PPT state σ such that

$$R(\rho) = E_{R,\text{PPT}}(\rho) = S(\rho \| \sigma)$$

via a technique in (Miranowicz, Ishizaka’08, $R = E_{R,\text{PPT}}$ for any $2 \otimes 2$ state; see also Gour, Friedland’11 and Girard+’14.)
Rains’ bound is not additive: Proof ideas

i) Construct a $2 \otimes 2$ state ρ so that we can explicitly find a PPT state σ such that

$$R(\rho) = E_{R,PPT}(\rho) = S(\rho||\sigma)$$

via a technique in (Miranowicz, Ishizaka’08, $R = E_{R,PPT}$ for any $2 \otimes 2$ state; see also Gour, Friedland’11 and Girard+’14.)

ii) Finding a PPT state τ via an algorithm developed in (Girard, Zinchenko, Friedland, Gour’15). This gives an upper bound on $E_{R,PPT}(\rho^{\otimes 2})$, i.e.,

$$E_{R,PPT}(\rho^{\otimes 2}) \leq S(\rho^{\otimes 2}||\tau).$$
Rains’ bound is not additive: Proof ideas

i) Construct a $2 \otimes 2$ state ρ so that we can explicitly find a PPT state σ such that

$$R(\rho) = E_{R,PPT}(\rho) = S(\rho\|\sigma)$$

via a technique in (Miranowicz, Ishizaka’08, $R = E_{R,PPT}$ for any $2 \otimes 2$ state; see also Gour, Friedland’11 and Girard+’14.)

ii) Finding a PPT state τ via an algorithm developed in (Girard, Zinchenko, Friedland, Gour’15). This gives an upper bound on $E_{R,PPT}(\rho^2)$, i.e.,

$$E_{R,PPT}(\rho^2) \leq S(\rho^2\|\tau).$$

iii) Compare $S(\rho^2\|\tau)$ and $2E_{R,PPT}(\rho)$, achieve the goal by showing

$$R(\rho^2) \leq E_{R,PPT}(\rho^2) \leq S(\rho^2\|\tau) < 2S(\rho\|\sigma) = 2R(\rho).$$

and $E_{R,PPT}^\infty(\rho) \leq E_{R,PPT}(\rho^2)/2 < R(\rho)$.
Rains’ bound is not additive: Proof ideas

i) Construct a $2 \otimes 2$ state ρ so that we can explicitly find a PPT state σ such that

$$R(\rho) = E_{R,PPT}(\rho) = S(\rho\|\sigma)$$

via a technique in (Miranowicz, Ishizaka’08, $R = E_{R,PPT}$ for any $2 \otimes 2$ state; see also Gour, Friedland’11 and Girard+’14.)

ii) Finding a PPT state τ via an algorithm developed in (Girard, Zinchenko, Friedland, Gour’15). This gives an upper bound on $E_{R,PPT}(\rho \otimes 2)$, i.e.,

$$E_{R,PPT}(\rho \otimes 2) \leq S(\rho \otimes 2 \| \tau).$$

iii) Compare $S(\rho \otimes 2 \| \tau)$ and $2E_{R,PPT}(\rho)$, achieve the goal by showing

$$R(\rho \otimes 2) \leq E_{R,PPT}(\rho \otimes 2) \leq S(\rho \otimes 2 \| \tau) < 2S(\rho\|\sigma) = 2R(\rho).$$

and $E_{R,PPT}^\infty(\rho) \leq E_{R,PPT}(\rho \otimes 2)/2 < R(\rho)$.

iv) An example of semi-analytical and semi-numerical proof.
Rains’ bound is not additive: Proof ideas (cont.)

We construct $ \rho_r $ and $ \sigma_r $ such that $ R(\rho_r) = E_{R,PPT}(\rho_r) = S(\rho_r||\sigma_r)$:

$$
\rho_r = \frac{1}{8} |00\rangle\langle 00| + x |01\rangle\langle 01| + \frac{7 - 8x}{8} |10\rangle\langle 10| + \frac{32r^2 - (6 + 32x)r + 10x + 1}{4\sqrt{2}} (|01\rangle\langle 10| + |10\rangle\langle 01|)
$$

$$
\sigma_r = \frac{1}{4} |00\rangle\langle 00| + \frac{1}{8} |11\rangle\langle 11| + r |01\rangle\langle 01| + \left(\frac{5}{8} - r\right) |10\rangle\langle 10| + \frac{1}{4\sqrt{2}} (|01\rangle\langle 10| + |10\rangle\langle 01|).
$$

with $ x $ and $ y $ are determined by $ r $.

x and y are determined by r.
Rains’ bound is not additive: Proof ideas (cont.)

We construct ρ_r and σ_r such that $R(\rho_r) = E_{R,PPT}(\rho_r) = S(\rho_r||\sigma_r)$:

$$\rho_r = \frac{1}{8}|00\rangle\langle 00| + x|01\rangle\langle 01| + \frac{7 - 8x}{8}|10\rangle\langle 10| + \frac{32r^2 - (6 + 32x)r + 10x + 1}{4\sqrt{2}}(|01\rangle\langle 10| + |10\rangle\langle 01|)$$

$$\sigma_r = \frac{1}{4}|00\rangle\langle 00| + \frac{1}{8}|11\rangle\langle 11| + r|01\rangle\langle 01| + \left(\frac{5}{8} - r\right)|10\rangle\langle 10| + \frac{1}{4\sqrt{2}}(|01\rangle\langle 10| + |10\rangle\langle 01|).$$

with x and y are determined by r. When $0.45 \leq r \leq 0.548$, we show the gap between $2R(\rho_r)$ and $E_R^+(\rho_r^\otimes 2) = S(\rho_r^\otimes 2||\tau_r)$:

![Graph showing the comparison between $2R(\rho_r)$ and $E_R^+(\rho_r^\otimes 2)$](image-url)
Application & New problem

- Regularization of Rains’ bound: \(R^\infty(\rho) = \inf_{k \geq 1} \frac{R(\rho^\otimes k)}{k} \).
- A better upper bound on distillable entanglement:

\[
E_{D,PPT}(\rho) \leq R^\infty(\rho) \leq R(\rho),
\]

and the second inequality could be strict.
Application & New problem

- Regularization of Rains' bound: $R^\infty(\rho) = \inf_{k \geq 1} \frac{R(\rho^\otimes k)}{k}$.
- A better upper bound on distillable entanglement:

$$E_{D,PPT}(\rho) \leq R^\infty(\rho) \leq R(\rho),$$

and the second inequality could be strict.
Application & New problem

- Regularization of Rains’ bound: $R^\infty(\rho) = \inf_{k \geq 1} \frac{R(\rho^\otimes k)}{k}$.
- A better upper bound on distillable entanglement:

$$E_{D,PPT}(\rho) \leq R^\infty(\rho) \leq R(\rho),$$

and the second inequality could be strict.

- New problem and an old open problem
 - $R^\infty(\rho) = E_{R,PPT}^\infty(\rho)$?
Application & New problem

- Regularization of Rains’ bound: $R^\infty(\rho) = \inf_{k \geq 1} \frac{R(\rho^\otimes k)}{k}$.
- A better upper bound on distillable entanglement:

$$E_{D,PPT}(\rho) \leq R^\infty(\rho) \leq R(\rho),$$

and the second inequality could be strict.

- New problem and an old open problem
 - $R^\infty(\rho) = E_{R,PPT}^\infty(\rho)$?
 - Note that

$$E_{D,PPT}(\rho) \leq R^\infty(\rho) \leq E_{R,PPT}^\infty(\rho) \leq E_{C,PPT}(\rho).$$
Application & New problem

- Regularization of Rains’ bound: \(R^\infty(\rho) = \inf_{k \geq 1} \frac{R(\rho^\otimes k)}{k} \).
- A better upper bound on distillable entanglement:

\[
E_{D,PPT}(\rho) \leq R^\infty(\rho) \leq R(\rho),
\]

and the second inequality could be strict.
- Remark: Hayashi introduced \(R^\infty \) in his book in 2006.

New problem and an old open problem
- \(R^\infty(\rho) = E_{R,PPT}^\infty(\rho) \)?
- Note that

\[
E_{D,PPT}(\rho) \leq R^\infty(\rho) \leq E_{R,PPT}^\infty(\rho) \leq E_{C,PPT}(\rho).
\]
- Dream: if \(R^\infty(\rho) < E_{R,PPT}^\infty(\rho) \), then we will have \(E_{D,PPT}(\rho) < E_{C,PPT}(\rho) \)!
Application & New problem

- Regularization of Rains’ bound: $R^\infty(\rho) = \inf_{k \geq 1} \frac{R(\rho \otimes^k)}{k}$.
- A better upper bound on distillable entanglement:

$$E_{D,PPT}(\rho) \leq R^\infty(\rho) \leq R(\rho),$$

and the second inequality could be strict.
- New problem and an old open problem
 - $R^\infty(\rho) = E_{R,PPT}^\infty(\rho)$?
 - Note that

$$E_{D,PPT}(\rho) \leq R^\infty(\rho) \leq E_{R,PPT}^\infty(\rho) \leq E_{C,PPT}(\rho).$$

- Dream: if $R^\infty(\rho) < E_{R,PPT}^\infty(\rho)$, then we will have $E_{D,PPT}(\rho) < E_{C,PPT}(\rho)$!
- How to evaluate R^∞ and $E_{R,PPT}^\infty$?

Xin Wang & Runyao Duan (UTS:QSI) | Asymptotic entanglement manipulation under PPT operations: new bounds & irreversibility
Irreversibility under PPT operations

Theorem (Key result)

There exists entangled state ρ such that $R^\infty(\rho) < E^\infty_{R,PPT}(\rho)$. Thus, the asymptotic entanglement manipulation under PPT operations is irreversible:

$$\exists \rho, \text{ s.t. } E_{D,PPT}(\rho) < E_{C,PPT}(\rho).$$
Irreversibility under PPT operations

Theorem (Key result)

There exists entangled state ρ such that $R^\infty(\rho) < E^\infty_{R,PPT}(\rho)$. Thus, the asymptotic entanglement manipulation under PPT operations is irreversible:

$$\exists \rho, \text{ s.t. } E_{D,PPT}(\rho) < E_{C,PPT}(\rho).$$
The lower bound of $E_{R,PPT}^\infty$

Our key contribution is an efficiently computable lower bound on the regularized relative entropy of entanglement w.r.t. PPT states.

A lower bound for $E_{R,PPT}^\infty$

Let P be the projection over the support of state ρ. Then

$$E_{R,PPT}^\infty(\rho) \geq E_\eta(\rho) = -\log_2 \eta(P),$$

where

$$\eta(P) = \min t, \text{ s.t. } -t \mathbb{1} \leq Y_{TB} \leq t \mathbb{1}, -Y \leq P_{TB}^T \leq Y.$$
Lower bound of $E_{R,PPT}^\infty$: Sketch of the proof

- Relate the problem to an SDP:

$$\min_{\sigma \in \text{PPT}} S(\rho \| \sigma) \geq \min_{\rho_0 \in D(\rho), \sigma_0 \in \text{PPT}} S(\rho_0 \| \sigma_0) \geq \min_{\sigma_0 \in \text{PPT}} -\log \text{Tr } P\sigma_0.$$

Also see min-relative entropy (Datta 2009):

$$S(\rho \| \sigma) \geq D_{\text{min}}(\rho \| \sigma) = -\log \text{Tr } P\sigma$$
Lower bound of $E_{R,PPT}^\infty$: Sketch of the proof

- Relax the problem to an SDP:

$$\min_{\sigma \in \text{PPT}} S(\rho \| \sigma) \geq \min_{\rho_0 \in D(\rho), \sigma_0 \in \text{PPT}} S(\rho_0 \| \sigma_0) \geq \min_{\sigma_0 \in \text{PPT}} \left(-\log \text{Tr} P \sigma_0 \right) .$$

Also see min-relative entropy (Datta 2009):

$$S(\rho \| \sigma) \geq D_{\min}(\rho \| \sigma) = -\log \text{Tr} P \sigma$$

- Utilizing the weak duality of SDP and did a further relaxation

$$E_{R,PPT}(\rho) \geq \min_{\sigma_0 \in \text{PPT}} -\log \text{Tr} P \sigma_0 \geq \max -\log t \text{ s.t. } Y^{T_B} \leq t \mathbb{1}, P^{T_B} \leq Y \ (\text{not additive} \; \odot)$$
Lower bound of $E_{R,PPT}^\infty$: Sketch of the proof

- Relax the problem to an SDP:

$$\min_{\sigma \in \text{PPT}} S(\rho || \sigma) \geq \min_{\rho_0 \in D(\rho), \sigma_0 \in \text{PPT}} S(\rho_0 || \sigma_0) \geq \min_{\sigma_0 \in \text{PPT}} -\log \text{Tr} P\sigma_0.$$

Also see min-relative entropy (Datta 2009):

$$S(\rho || \sigma) \geq D_{\text{min}}(\rho || \sigma) = -\log \text{Tr} P\sigma$$

- Utilizing the weak duality of SDP and did a further relaxation

$$E_{R,PPT}(\rho) \geq \min_{\sigma_0 \in \text{PPT}} -\log \text{Tr} P\sigma_0 \geq \max -\log t \text{ s.t. } Y^{T_B} \leq t1, P^{T_B} \leq Y \quad \text{(not additive 😞)}$$

$$\geq \max -\log t \text{ s.t. } -t1 \leq Y^{T_B} \leq t1, -Y \leq P^{T_B} \leq Y = E_\eta.$$
Lower bound of $E_{R,PPT}^\infty$: Sketch of the proof

- Relax the problem to an SDP:
 \[
 \min_{\sigma \in \text{PPT}} S(\rho \| \sigma) \geq \min_{\sigma_0 \in D(\rho), \sigma_0 \in \text{PPT}} S(\rho_0 \| \sigma_0) \\
 \geq \min_{\sigma_0 \in \text{PPT}} -\log \Tr P \sigma_0.
 \]

 Also see min-relative entropy (Datta 2009):
 \[
 S(\rho \| \sigma) \geq D_{\text{min}}(\rho \| \sigma) = -\log \Tr P \sigma
 \]

- Utilizing the weak duality of SDP and did a further relaxation
 \[
 E_{R,PPT}(\rho) \geq \min_{\sigma_0 \in \text{PPT}} -\log \Tr P \sigma_0 \\
 \geq \max -\log t \text{ s.t. } Y^{T_B} \leq t \mathbb{1}, P^{T_B} \leq Y \quad (\text{not additive } \oplus) \\
 \geq \max -\log t \text{ s.t. } -t \mathbb{1} \leq Y^{T_B} \leq t \mathbb{1}, -Y \leq P^{T_B} \leq Y = E_\eta.
 \]

- Utilizing the strong duality of SDP to obtain
 \[
 E_\eta(\rho_1 \otimes \rho_2) = E_\eta(\rho_1) + E_\eta(\rho_2), \quad \odot
 \]
Lower bound of $E_{\infty,\text{PPT}}^\infty$: Sketch of the proof

- Relax the problem to an SDP:

 $$\min_{\sigma \in \text{PPT}} S(\rho \| \sigma) \geq \min_{\rho_0 \in D(\rho), \sigma_0 \in \text{PPT}} S(\rho_0 \| \sigma_0) \geq \min_{\sigma_0 \in \text{PPT}} -\log \text{Tr} P\sigma_0.$$

 Also see min-relative entropy (Datta 2009):

 $$S(\rho \| \sigma) \geq D_{\min}(\rho \| \sigma) = -\log \text{Tr} P\sigma$$

- Utilizing the weak duality of SDP and did a further relaxation

 $$E_{R,\text{PPT}}(\rho) \geq \min_{\sigma_0 \in \text{PPT}} -\log \text{Tr} P\sigma_0$$

 $$\geq \max -\log t \text{ s.t. } Y^{T_B} \leq t\mathbb{1}, P^{T_B} \leq Y \text{ (not additive ☹)}$$

 $$\geq \max -\log t \text{ s.t. } -t\mathbb{1} \leq Y^{T_B} \leq t\mathbb{1}, -Y \leq P^{T_B} \leq Y = E_\eta.$$

- Utilizing the strong duality of SDP to obtain

 $$E_\eta(\rho_1 \otimes \rho_2) = E_\eta(\rho_1) + E_\eta(\rho_2), \; ☺$$

 thus we have

 $$E_{R,\text{PPT}}^\infty(\rho) \geq \lim_{n \to \infty} \frac{1}{n} E_\eta(\rho^\otimes n) = E_\eta(\rho).$$
Explicit examples of irreversibility under PPT operations

- Consider the $3 \otimes 3$ anti-symmetric subspace
 \[
 \text{span}\{|01\rangle - |10\rangle, |02\rangle - |20\rangle, |12\rangle - |21\rangle\}
 \]
Explicit examples of irreversibility under PPT operations

- Consider the $3 \otimes 3$ anti-symmetric subspace
 \[\text{span}\{ |01\rangle - |10\rangle, |02\rangle - |20\rangle, |12\rangle - |21\rangle \}\]

- **Example 1:** We choose the rank-2 state. Let
 \[
 \rho = \frac{1}{2}(|v_1\rangle \langle v_1 | + |v_2\rangle \langle v_2 |) \quad \text{with}
 \]
 \[|v_1\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle), |v_2\rangle = \frac{1}{\sqrt{2}}(|02\rangle - |20\rangle),\]
Explicit examples of irreversibility under PPT operations

- Consider the $3 \otimes 3$ anti-symmetric subspace
 \[\text{span}\{ |01\rangle - |10\rangle, |02\rangle - |20\rangle, |12\rangle - |21\rangle \} \]

- **Example 1:** We choose the rank-2 state. Let
 \[\rho = \frac{1}{2}(|v_1\rangle\langle v_1| + |v_2\rangle\langle v_2|) \]
 with
 \[|v_1\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle), \quad |v_2\rangle = \frac{1}{\sqrt{2}}(|02\rangle - |20\rangle), \]
 We have
 \[E_{D,PPT}(\rho) = R^\infty(\rho) = \log_2\left(1 + \frac{1}{\sqrt{2}}\right) < 1 = E_{R,PPT}(\rho) = E_{C,PPT}(\rho). \]
Explicit examples of irreversibility under PPT operations

- Consider the $3 \otimes 3$ anti-symmetric subspace

 \[\text{span}\{|01\rangle - |10\rangle, |02\rangle - |20\rangle, |12\rangle - |21\rangle\} \]

- **Example 1:** We choose the rank-2 state. Let

 \[
 \rho = \frac{1}{2}(|v_1\rangle\langle v_1| + |v_2\rangle\langle v_2|) \text{ with}
 \]

 \[
 |v_1\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle),
 |v_2\rangle = \frac{1}{\sqrt{2}}(|02\rangle - |20\rangle),
 \]

 We have

 \[
 E_{D,PPT}(\rho) = R^\infty(\rho) = \log_2(1 + \frac{1}{\sqrt{2}}) < 1 = E_{R,PPT}(\rho) = E_{C,PPT}(\rho).
 \]

- Sufficient condition for the irreversibility: If

 \[
 E_\eta(\rho) > E_W(\rho) = \min_{X_{AB} \geq \rho} \log_2 \| X_{AB}^{TB} \|_1,
 \]

 then

 \[
 E_{D,PPT}(\rho) \leq E_W(\rho) < E_\eta(\rho) \leq E_{C,PPT}(\rho).
 \]
Explicit examples of irreversibility under PPT operations

- Consider the $3 \otimes 3$ anti-symmetric subspace
 \[\text{span}\{ |01\rangle - |10\rangle, |02\rangle - |20\rangle, |12\rangle - |21\rangle \} \]

- **Example 1:** We choose the rank-2 state. Let
 \(\rho = \frac{1}{2}(|v_1\rangle\langle v_1| + |v_2\rangle\langle v_2|) \) with
 \(|v_1\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle), |v_2\rangle = \frac{1}{\sqrt{2}}(|02\rangle - |20\rangle) \),

 We have
 \[
 E_{D,PPT}(\rho) = R^\infty(\rho) = \log_2(1 + \frac{1}{\sqrt{2}}) < 1 = E_{R,PPT}(\rho) = E_{C,PPT}(\rho).
 \]

- Sufficient condition for the irreversibility: If
 \(E_\eta(\rho) > E_W(\rho) = \min_{X_{AB} \geq \rho} \log_2 \| X_{AB}^T B \|_1 \), then
 \[
 E_{D,PPT}(\rho) \leq E_W(\rho) < E_\eta(\rho) \leq E_{C,PPT}(\rho),
 \]

- **Example 2:** The above example can be generalized to any rank-2 state \(\rho \) supporting on the $3 \otimes 3$ anti-symmetric subspace:
 \(E_{D,PPT}(\rho) \leq E_W(\rho) < 1 = E_\eta(\rho) = E_{C,PPT}(\rho) \).
Conclusion

Results:
- Better SDP upper bound on E_D
- Non-additivity of Rains’ bound
- SDP lower bound for $E_R^{\infty,\text{PPT}}$
- Irreversibility under PPT operations:

$$E_{D,\text{PPT}} \neq E_{C,\text{PPT}}.$$
Conclusion

Results:

- Better SDP upper bound on E_D
- Non-additivity of Rains’ bound
- SDP lower bound for $E_{R,PPT}^\infty$
- Irreversibility under PPT operations:

\[E_{D,PPT} \neq E_{C,PPT}. \]

Discussions:

- $E_{D,PPT}(\rho) = R^\infty(\rho)$?
Conclusion

Results:
- Better SDP upper bound on E_D
- Non-additivity of Rains’ bound
- SDP lower bound for $E_{R,PPT}^\infty$
- Irreversibility under PPT operations:
 \[E_{D,PPT} \neq E_{C,PPT}. \]

Discussions:
- $E_{D,PPT}(\rho) = R^\infty(\rho)$?
- Note that E_η is not tight for the $3 \otimes 3$ anti-symmetric state σ_a, how to improve E_η?
Conclusion

Results:

- Better SDP upper bound on E_D
- Non-additivity of Rains’ bound
- SDP lower bound for $E_{R,PPT}^\infty$
- Irreversibility under PPT operations:
 \[E_{D,PPT} \neq E_{C,PPT}. \]

Discussions:

- $E_{D,PPT}(\rho) = R^\infty(\rho)$?
- Note that E_η is not tight for the 3 \otimes 3 anti-symmetric state σ_a, how to improve E_η?
- How to evaluate the distillable entanglement without using PPT operations?
arXiv: 1606.09421, 1605.00348, 1601.07940
Thank you for your attention!