Fault-tolerant error correction for non-abelian anyons

Guillaume Dauphinais and David Poulin

Institut quantique & département de physique, Université de Sherbrooke

QIP
January 18, 2017

1arXiv:1607.02159
Outline

1. Non-abelian anyons and quantum information
2. Error correction for abelian anyons
3. Error correction for non-abelian anyons
What are anyons1?

- Localized gapped excitations living on a 2-dimensional surface

1A. Kitaev, Annals Phys. \textbf{321}, 2-111 (2006)
What are anyons1?

- Localized gapped excitations living on a 2-dimensional surface
- Each excitation is described by a unique label, called its topological charge from a finite set \(\{a, b, c, \ldots \} \)

What are anyons\(^1\)?

- Localized gapped excitations living on a 2-dimensional surface
- Each excitation is described by a unique label, called its *topological charge* from a finite set \(\{a, b, c, \ldots \} \)
- We can imagine bringing 2 excitation together (\(a \) and \(b \)), and ask what is their total charge \(c \).

What are anyons\(^1\)?

- Localized gapped excitations living on a 2-dimensional surface
- Each excitation is described by a unique label, called its topological charge from a finite set \(\{a, b, c, \ldots\}\)
- We can imagine bringing 2 excitation together (\(a\) and \(b\)), and ask what is their total charge \(c\).
- The possible outcomes are given by the fusion rules:

\[
 a \times b = \sum_c N_{ab}^c c
\]

Abelian vs non-abelian anyons

- The fusion rules for abelian anyons are deterministic and unique, as for excitations in the toric code:
 \[e \times e = 1, \ m \times m = 1, \ e \times m = em, \ldots \]
Abelian vs non-abelian anyons

- The fusion rules for abelian anyons are deterministic and unique, as for excitations in the toric code:
 \[e \times e = 1, \; m \times m = 1, \; e \times m = em, \ldots \]

- Whereas for non-abelian anyons, the fusion rules are in general probabilistic, for example with Fibonacci anyons:
 \[\tau \times \tau = 1 + \tau. \]
Abelian vs non-abelian anyons

- The fusion rules for abelian anyons are deterministic and unique, as for excitations in the toric code:
 \[e \times e = 1, \quad m \times m = 1, \quad e \times m = em, \ldots \]

- Whereas for non-abelian anyons, the fusion rules are in general probabilistic, for example with Fibonacci anyons:
 \[\tau \times \tau = 1 + \tau. \]

- A Hilbert space is associated to each fusion/splitting process.
Abelian vs non-abelian anyons

- The fusion rules for abelian anyons are deterministic and unique, as for excitations in the toric code:
 \[e \times e = 1, \ m \times m = 1, \ e \times m = em, \ldots \]

- Whereas for non-abelian anyons, the fusion rules are in general probabilistic, for example with Fibonacci anyons:
 \[\tau \times \tau = 1 + \tau. \]

- A Hilbert space is associated to each fusion/splitting process.

- Fusing two anyons \(a_1 \) and \(a_2 \) collapses the wavefunction into a definite super-selection sector, with probability given by Born’s rule:
 \[
P(c) = \langle \psi | \Pi_c^{a_1 a_2} | \psi \rangle.
 \] \hspace{1cm} (1)
Quantum computation with non-abelian anyons1

Thermal processes can corrupt the information1

- At $T > 0$, thermal excitations are present in finite density.
- Thermal excitations can diffuse at no energy cost.
- It really is a scalability issue: for large systems, such processes are bound to happen.

1F. L. Pedrocchi \textit{et al.}, arXiv:1505.03712
Our goal is to find an error correction procedure for systems of non-abelian anyons.

Our goal is to find an error correction procedure for systems of non-abelian anyons

We want to include measurement errors
Our goal is to find an error correction procedure for systems of non-abelian anyons.

We want to include measurement errors.

Fault-tolerant error correction for topologically ordered systems giving rise to abelian anyons have been studied extensively.\(^1\)

\(^1\)Dennis et al., J. Math. Phys. 43, 4452 (2002)
Anyons and topological order

Anyons appear as excitations in topologically ordered systems\(^1\). The ground space is degenerate and quantum information can be encoded in such states.

- Logical operations consist of creating a pair of excitations, performing non-trivial loop, and fuse the excitations back to the vacuum.
- World lines with the same topology have the same effect on the ground space.

Anyons and topological order

Anyons appear as excitations in topologically ordered systems\(^1\). The ground space is degenerate and quantum information can be encoded in such states.

- Logical operations consist of creating a pair of excitations, performing non-trivial loop, and fuse the excitations back to the vacuum.
- World lines with the same topology have the same effect on the ground space.

Anyons and topological order

Anyons appear as excitations in topologically ordered systems1. The ground space is degenerate and quantum information can be encoded in such states.

- Logical operations consist of creating a pair of excitations, performing non-trivial loop, and fuse the excitations back to the vacuum.
- World lines with the same topology have the same effect on the ground space.

1X. G. Wen, Phys. Rev. B 40, 7387 (1989)
Anyons and topological order

Anyons appear as excitations in topologically ordered systems1. The ground space is degenerate and quantum information can be encoded in such states.

- Logical operations consist of creating a pair of excitations, performing non-trivial loop, and fuse the excitations back to the vacuum.
- World lines with the same topology have the same effect on the ground space.

1X. G. Wen, Phys. Rev. B \textbf{40}, 7387 (1989)
Error correction for abelian anyons

Topological quantum error correction for abelian anyons have been extensively studied (i.e. the toric code)

- Thermal processes are modelled probabilistically.
Error correction for abelian anyons

Topological quantum error correction for abelian anyons have been extensively studied (i.e. the toric code)

- Thermal processes are modelled probabilistically.
- A decoding algorithm is used to find a correction procedure.
Error correction for abelian anyons

Topological quantum error correction for abelian anyons have been extensively studied (i.e. the toric code)

- Thermal processes are modelled probabilistically.
- A decoding algorithm is used to find a correction procedure.
- The correction operations are performed.
Various families of decoding algorithms

- Perfect matching
- Mapping to statistical physics problems
- Clustering methods
- Cellular automaton
- Renormalization methods

\[1\] G. Duclos-Cianci et al., PRL 104, 050504 (2010)
Cellular Automata

- Classical device acting on a small neighborhood
- Apply predetermined local operations depending on the state of the sites in the neighborhood
- Can communicate with neighboring automata
- Can have a memory and instruction of a programs
Emerging structure of the noise1

- Each actual error is characterized by a level \(n \).
- If fits in a box of size \(Q^n \times Q^n \times U^n \) and is separated by at least \(aQ^n \) sites (\(bU^n \) time steps) from other actual errors.
- The notion of \textit{actual error} is recursively defined over the level.

Emerging structure of the noise

- Each actual error is characterized by a level n.
- If fits in a box of size $Q^n \times Q^n \times U^n$ and is separated by at least aQ^n sites (bU^n time steps) from other actual errors.
- The notion of actual error is recursively defined over the level.
Emerging structure of the noise

- Each actual error is characterized by a level n.
- If fits in a box of size $Q^n \times Q^n \times U^n$ and is separated by at least aQ^n sites (bU^n time steps) from other actual errors.
- The notion of *actual error* is recursively defined over the level.
Emerging structure of the noise

Each actual error is characterized by a level n.

If fits in a box of size $Q^n \times Q^n \times U^n$ and is separated by at least aQ^n sites (bU^n time steps) from other actual errors.

The notion of actual error is recursively defined over the level.
Emerging structure of the noise

- Each actual error is characterize by a level n.
- If fits in a box of size $Q^n \times Q^n \times U^n$ and is separated by at least aQ^n sites (bU^n time steps) from other actual errors.
- The notion of actual error is recursively defined over the level.
Emerging structure of the noise

- Each actual error is characterized by a level n.
- If fits in a box of size $Q^n \times Q^n \times U^n$ and is separated by at least aQ^n sites (bU^n time steps) from other actual errors.
- The notion of *actual error* is recursively defined over the level.
Emerging structure of the noise

- Each actual error is characterized by a level n.
- If fits in a box of size $Q^n \times Q^n \times U^n$ and is separated by at least aQ^n sites (bU^n time steps) from other actual errors.
- The notion of actual error is recursively defined over the level.

The rate of appearance of a level-n actual errors goes as $\epsilon_n \sim e^{-2^n}$
The idea behind Harrington’s algorithm

- Cellular automata periodically measure topological charges.

[Diagram showing cellular automata and topological charges]
The idea behind Harrington’s algorithm

- Cellular automata periodically measure topological charges.
- If 2 excitations are close, they will be fused together.
The idea behind Harrington’s algorithm

- Cellular automata periodically measure topological charges.
- If 2 excitations are close, they will be fused together.
- If an excitation is isolated, it is displaced to the colony center.
The need for renormalization

- An error chain extending over 2 or more colonies cannot get corrected using such simple local rules.
The need for renormalization

- An error chain extending over 2 or more colonies cannot get corrected using such simple local rules.
- Colonies are periodically grouped into renormalized colonies.
The need for renormalization

- An error chain extending over 2 or more colonies cannot get corrected using such simple local rules.
- Colonies are periodically grouped into renormalized colonies.
- Renormalized transition rules are periodically applied.
Existence of a threshold

- Harrington showed that a level-n actual error stays local at the n^{th} renormalization level.
Existence of a threshold

- Harrington showed that a level-n actual error stays local at the n^{th} renormalization level.
- A level-n actual errors gets corrected by the n^{th} level transition rules.
Existence of a threshold

- Harrington showed that a level-n actual error stays local at the n^{th} renormalization level.
- A level-n actual errors gets corrected by the n^{th} level transition rules.
- Actual errors stay well-separated from each other in time.
Existence of a threshold

- Harrington showed that a level-n actual error stays local at the n^{th} renormalization level.
- A level-n actual errors gets corrected by the n^{th} level transition rules.
- Actual errors stay well-separated from each other in time.

The properties above combined with the fact that $\epsilon_n \sim e^{-2n}$ leads to the existence of a threshold.
Complications for non-abelian anyons: probabilistic evolution

The fusion channel of 2 or more anyons is in general not deterministic:

\[= \alpha + \beta \]

We introduce the notion of a \textit{trajectory domain} of an error. It roughly corresponds to the set of sites having a probability of becoming charged because of a given error.
Complications for non-abelian anyons: renormalized charge

The total charge present in a colony becomes path-dependent and subject to rapid fluctuations.

The notion of *renormalized charge* needs to be carefully defined, and must include the interactions of the errors with the transition rules.
Complications for non-abelian anyons: interactions between renormalization levels

The hierarchic classification of errors does not capture the 'topological interaction' between anyons caused by different actual errors.

We introduce the notion of *causally-linked clusters* of errors, sets of actual errors which can potentially interact with each others through the application of transition rules.
Key properties for non-cyclic anyons

Despite all the complications related to the 'non-abelianity', we show that our algorithm is such that
Key properties for non-cyclic anyons

Despite all the complications related to the 'non-abelianity', we show that our algorithm is such that

- A level-n causally-linked cluster is spatially local at the n^{th} level of renormalization.
Key properties for non-cyclic anyons

Despite all the complications related to the 'non-abelianity', we show that our algorithm is such that

- A level-n causally-linked cluster is spatially local at the n^{th} level of renormalization.
- The renormalized syndromes are valid (the good renormalized charge is reported).
Key properties for non-cyclic anyons

Despite all the complications related to the ’non-abelianity’, we show that our algorithm is such that

- A level-n causally-linked cluster is spatially local at the n^{th} level of renormalization.
- The renormalized syndromes are valid (the good renormalized charge is reported).
- Renormalized transition rules are always successful after being applied a constant number of times.
Key properties for non-cyclic anyons

Despite all the complications related to the 'non-abelianity', we show that our algorithm is such that

- A level-\(n\) causally-linked cluster is spatially local at the \(n\)th level of renormalization.
- The renormalized syndromes are valid (the good renormalized charge is reported).
- Renormalized transition rules are always successful after being applied a constant number of times.

Non-cyclic anyons are anyons such that for any sequence of labels \(\{x_0, x_1, \ldots, x_n\}\) such that \(x_0 = x_n\) (and not the vacuum), then

\[
\prod_{i=0}^{n} N_{x_i \bar{x}_i}^{x_i + 1} = 0.
\]
A threshold for non-cyclic anyons

Despite the new failing mechanisms for non-abelian anyons, we show that our algorithm possess a threshold for non-cyclic anyons.
A threshold for non-cyclic anyons

Despite the new failing mechanisms for non-abelian anyons, we show that our algorithm possess a threshold for non-cyclic anyons.

Threshold theorem

If A is non-cyclic, there exists a critical value $p_c > 0$ such that if $p + q < p_c$, for any number of time steps T and any $\epsilon > 0$, there exists a linear system size $L = Q^n \in O(\log \frac{1}{\epsilon})$ such that with probability of at least $1 - \epsilon$, the encoded quantum state can in principle be recovered after T time steps.
A threshold for non-cyclic anyons

Despite the new failing mechanisms for non-abelian anyons, we show that our algorithm possess a threshold for non-cyclic anyons.

Threshold theorem

If \(A \) is non-cyclic, there exists a critical value \(p_c > 0 \) such that if \(p + q < p_c \), for any number of time steps \(T \) and any \(\epsilon > 0 \), there exists a linear system size \(L = Q^n \in \mathcal{O}(\log \frac{1}{\epsilon}) \) such that with probability of at least \(1 - \epsilon \), the encoded quantum state can in principle be recovered after \(T \) time steps.

The theorem provides an upper bound on the numerical value of \(p_c < 2,7 \times 10^{-20} \times (3D + 1)^{-4} \).
We performed numerical simulations for Ising anyons. They suggest a threshold in the range of $10^{-4} \sim 10^{-3}$.

Future directions

- What can we say about cyclic anyons? (ex. Fibonacci anyons)
Future directions

- What can we say about cyclic anyons? (ex. Fibonacci anyons)
- How do we modify the algorithm to the case where we have computational anyons?
Future directions

- What can we say about cyclic anyons? (ex. Fibonacci anyons)
- How do we modify the algorithm to the case where we have computational anyons?
- How about braiding in a fault-tolerant manner?
Thank you for your attention!