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Self-testing

Certifying an unknown quantum state up to 

local isometry assuming only QM and causality

|Ψ⟩ vs.

Verifier

|Ψ⟩

Tomography Self-test

(aka nonlocal game, 1-round 

MIP*)



Self-testing: the setup

• We can test |ψ⟩ up to 

error ε if:

– Completeness: 

Pr[|ψ⟩ accepted] ≥ c

– Soundness: 

Pr[|φ⟩ accepted] ≥ s ⇒
∃U,V, s.t.

‖(U⊗V) |φ⟩ - |ψ⟩‖ ≤ ε

– Robustness = c - s

Verifier

|Ψ⟩



Testing an EPR pair with CHSH

• The CHSH game is a 

self-test for 

|ψ⟩=(|00⟩ + |11⟩)/√2

up to εwith c ≈ 0.85, 

c – s = Ω(ε2) 

[MYS’12]
Verifier

|Ψ⟩

a, bx y

x ⊕ y ≟ a∙b



Self-testing many-qubit states

State Message

size

Complete-

ness

Soundness

MYS’12 EPR O(1) 0.85 0.85 - ε

RUV’13 EPR⊗n O(n) 

sequential 

rounds

Ω(1) c – 1/poly(n)

WBMcKS’15 EPR⊗2 O(1) 1 1 - ε

McK’15 EPR⊗n O(n) 0.94 0.94 –

1/exp(n)

Col’16,CN’16 EPR⊗n O(n) 1 1 – 1/poly(n)

CRSV’16 EPR⊗n O(log n) 0.9 0.9 –

1/poly(n)

Not robust: c-s gap shrinks with n!



Result 1: test for n EPR pairs

First test for n EPR pairs where c-s gap constant 

independent of n

Thm 1:  There is a 2-prover self-test for n

EPR pairs up to error εwith O(n)-bit 

questions, O(1)-bit answers, c = 1, s =1 –

Ω(ε1/32).



Application: test for ground states

(Also follows from QMA ⊆NEXP ⊆ MIP*, but protocol is much 

simpler)

Thm 2:  There is a 7-prover, 1-round MIP*

protocol for Local Hamiltonian problem

with O(n)-bit questions, O(1)-bit answers, 

c = 1, c-s = Ω(1)

Local Hamiltonian problem: given H on n qubits, is 

λmin(H) ≤ a or ≥ b for a - b = Ω(1/poly(n))



Application: delegated computation

Follows from thm 2 + Kitaev history state 

construction

Cor:  7-prover 1-round MIP* protocol for 

BQP with O(n)-bit questions, O(1)-bit 

answers, c-s = Ω(1), where honest provers

need only the power of BQP.



Techniques



Proof Overview

• To test an n-qubit state, test n-qubit

observables!

– E.g. n-qubit Paulis X(a), Z(b)

• To test observables, test the algebraic 

relations between them:

– Linearity: X(a)X(b) = X(a⊕b)

– Anticommutation: X(a)Z(b) = (-1)⟨a,b⟩Z(b) X(a)



EPR Test

• With probability 1/4 each,

– Tell Alice and Bob to measure in “X” basis, and 

perform linearity test

– Tell Alice and Bob to measure in “Z” basis, and 

perform linearity test

– Perform anticommutation test

– Consistency test: send both players same random 

query, check they give same answer



Analysis of EPR Test

• Thm 1: success in test → n EPR pairs

• Lemma: success in test → exist X’(a), Z’(b)

exactly satisfying Pauli group relations

• Lemma →Theorem

– Pauli group → isometry mapping H to (C2)⊗n and 

X’, Z’ to σX, σZ

– Consistency test → |ψ⟩ is stabilized by 

σX(i) ⊗ σX(i) and σZ(i) ⊗ σZ(i) for all i → EPR 

state



Classical linearity testing

• Function f:{0,1}n → {0,1} is linear if for all 

points a, b, f(a) ⊕ f(b) = f(a ⊕ b)

• Example: f(x) = ⟨x, a⟩

• Thm (BLR): 

If Pra,b [f(a) ⊕ f(b) = f(a ⊕ b)] ≥ 1 – ε, then f is 

O(ε)-close to some linear function g(x)



BLR Test

BobAlice

Verifier

a, b a ⊕ b, 

c f(a ⊕
b),

f(c)

f(a),

f(b)

Check f(a) ⊕ f(b) = f(a ⊕
b)

Shared x



Quantum BLR Test

• X: {0,1}n → Obs(H) linear if 

∀a,b, X(a)X(b) = X(a⊕b)

• Thm: if 

⟨ψ|X(a)X(b)X(a⊕b)|ψ⟩ ≥ 1 -

ε, then X is ε–close to some 

linear Y acting on |ψ⟩

1

2

3

4

Χ

Χ

Χ

Χ

⟨x,a⟩



Anticommutation Test

• Any anticommuting pair 

X(a),Z(b) defines a qubit!

• ⟨CHSH(a,b)⟩⩾ 1-ε →
X(a)Z(b)|ψ⟩ ≈ -Z(b)X(a) |ψ⟩

• (Also works with Magic 

Square)

1

2

3

4

X(1)

X(2)

X(3)

X(4)

Z(1)

Z(2)

Z(3)

Z(4)

1 qubit

1 qubit

1 cubit



From EPR pairs to Ground States

• Encode each qubit of 

|Ψ⟩ with 7-qubit code

– Based on [FV’14], [Ji’15]

• With prob 0.5 each:

– Pick j ∈ [7] and play EPR 

test with Player j as Alice

and remaining players as 

Bob

– Measure Hamiltonian 

term

2 6 7…

7 provers

Verifier

ENC(|Ψ⟩)
1



Outlook



MIP-qPCP

• [FV’14]: QMA ⊆ QMIP(log n, c, c – 1/poly(n))

• [Ji ‘15]: QMA ⊆ MIP*(log n, c, c – 1/poly(n))

• [NV ‘16]: QMA ⊆ MIP*(n, c, c – δ)

– Toy PCP: NP ⊆ MIP(n, c, c – δ)

Conj (MIP-qPCP): 

QMA ⊆ MIP*(log n, c, c – δ)
(PCP: NP ⊆ MIP(log n, c, c – δ))



Open questions

• MIP-qPCP

– Can we use ideas from low-degree testing (the 

“old proof” of classical PCP)?

• DIQKD

• Blind delegated computation

• Alphabet reduction for quantum games

• MIP* = QMIP [Ji’16]

– Can it be strengthened?



Thanks!

Any Questions?
(If I don’t get to your question, ask Zhengfeng Ji)



Property Testing

• Classical analog of self-

testing

• Given a Boolean 

function f: {0,1}n →

{0,1}

– Promised f satisfies some 

global property, or is far 

from satisfying it,

– Determine which, by 

making few queries to f

BobAlice

Verifier

a1,a2,

…
b1,b2,

…
f(b1),

f(b2),

…

f(a1),

f(a2),

…

Shared f



Proof of lemma

• In analysis only adjoin n 
EPR pairs

• C(a,b) := 
X(a)Z(b) ⊗ σX(a) σZ(b)

• X, Z pass EPR test
→C(a,b) passes BLR test

• Quantum BLR → exist 
linear C’(a,b) close to 
C(a,b)

• X’(a) := C’(a,0) ⊗ σX(a) , 
Z’(b) := C’(0,b) ⊗ σZ(b)

|ψ⟩Alice Bob

EPR⊗n

Verifier



Self-testing and qPCP

• Self test = Nonlocal game = 1-round MIP*

• Classically: PCP theorem ~  hardness for MIP 

with constant c-s gap

– Equivalent to hardness of approximation for CSPs

• Quantumly: MIP-qPCP := hardness for MIP* 

with constant c-s gap?

– Not necessarily equivalent to hardness of 

approximation for Hamiltonians


