Robust self-testing of multi-qubit states

Anand Natarajan (MIT) and Thomas Vidick (Caltech) arXiv:1610.03574

Self-testing

Certifying an unknown quantum state up to local isometry assuming only QM and causality

Self-testing: the setup

- We can test |ψ> up to error ε if:
 - Completeness: $Pr[|\psi\rangle \text{ accepted}] \ge c$
 - Soundness: $Pr[|\phi\rangle \text{ accepted}] \ge s \Rightarrow$ $\exists U,V, s.t.$ $\|(U\otimes V) |\phi\rangle - |\psi\rangle\| \le \varepsilon$
 - Robustness = c s

Testing an EPR pair with CHSH

• The CHSH game is a self-test for $|\psi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$ up to ε with c \approx 0.85, $c - s = \Omega(\varepsilon^2)$ [MYS'12]

Self-testing many-qubit states

	State	Message size	Complete- ness	Soundness
MYS'12	EPR	O(I)	0.85	0. 85 - ε
RUV'13	EPR ^{⊗n}	O(n) sequential rounds	Ω(I)	c – I/poly(n)
WBMcKS'15	EPR ^{⊗2}	O(I)	I	Ι-ε
McK'I5	EPR ^{⊗n}	O(n)	0.94	0.94 – I/exp(n)
Col'16,CN'16	EPR ^{⊗n}	O(n)	I	I – I/poly(n)
CRSV'16	EPR ^{⊗n}	O(log n)	0.9	0.9 – I/poly(n)

Not robust: c-s gap shrinks with n!

Result I: test for n EPR pairs

Thm I: There is a 2-prover self-test for n EPR pairs up to error ε with O(n)-bit questions, O(1)-bit answers, c = 1, s = 1 – $\Omega(\varepsilon^{1/32})$.

First test for n EPR pairs where c-s gap constant independent of n

Application: test for ground states

Local Hamiltonian problem: given H on n qubits, is $\lambda_{\min}(H) \le a \text{ or } \ge b \text{ for } a - b = \Omega(1/poly(n))$

Thm 2: There is a 7-prover, I-round MIP* protocol for Local Hamiltonian problem with O(n)-bit questions, O(I)-bit answers, $c = I, c-s = \Omega(I)$

(Also follows from QMA \subseteq NEXP \subseteq MIP*, but protocol is much simpler)

Application: delegated computation

Cor: 7-prover I-round MIP* protocol for BQP with O(n)-bit questions, O(1)-bit answers, c-s = O(1), where honest provers need only the power of BQP.

Follows from thm 2 + Kitaev history state construction

Techniques

Proof Overview

- To test an n-qubit state, test n-qubit observables!
 - E.g. n-qubit Paulis X(a), Z(b)
- To test observables, test the **algebraic relations** between them:
 - Linearity: $X(a)X(b) = X(a \oplus b)$
 - Anticommutation: $X(a)Z(b) = (-1)^{(a,b)}Z(b) X(a)$

EPR Test

- With probability 1/4 each,
 - Tell Alice and Bob to measure in "X" basis, and perform linearity test
 - Tell Alice and Bob to measure in "Z" basis, and perform linearity test
 - Perform anticommutation test
 - Consistency test: send both players same random query, check they give same answer

Analysis of EPR Test

- Thm I: success in test \rightarrow n EPR pairs
- Lemma: success in test → exist X'(a), Z'(b) exactly satisfying Pauli group relations
- Lemma \rightarrow Theorem
 - Pauli group \rightarrow isometry mapping H to $(C^2)^{\otimes n}$ and X', Z' to σ_X, σ_Z
 - Consistency test $\rightarrow |\psi\rangle$ is stabilized by $\sigma_X(i) \otimes \sigma_X(i)$ and $\sigma_Z(i) \otimes \sigma_Z(i)$ for all $i \rightarrow EPR$ state

Classical linearity testing

- Function f:{0,1}ⁿ \rightarrow {0,1} is *linear* if for all points a, b, f(a) \oplus f(b) = f(a \oplus b)
- Example: $f(x) = \langle x, a \rangle$
- Thm (BLR):
 - If $Pr_{a,b} [f(a) \bigoplus f(b) = f(a \bigoplus b)] \ge 1 \varepsilon$, then f is $O(\varepsilon)$ -close to some linear function g(x)

BLR Test

Quantum BLR Test

- X: $\{0, I\}^n \rightarrow Obs(H)$ linear if $\forall a, b, X(a)X(b) = X(a \oplus b)$
- Thm: if
 (ψ|X(a)X(b)X(a⊕b)|ψ) ≥ Ι ε, then X is ε-close to some
 linear Y acting on |ψ)

Anticommutation Test

- Any anticommuting pair X(a),Z(b) defines a qubit!
- $\langle CHSH(a,b) \rangle \ge 1-\epsilon \rightarrow X(a)Z(b)|\psi \rangle \approx -Z(b)X(a)|\psi \rangle$
- (Also works with Magic Square)

From EPR pairs to Ground States

- Encode each qubit of |Ψ⟩ with 7-qubit code
 Based on [FV'14], [Ji'15]
- With prob 0.5 each:
 - Pick j ∈ [7] and play EPR test with Player j as Alice and remaining players as Bob
 - Measure Hamiltonian term

Outlook

- Toy PCP: NP \subseteq MIP(n, c, c - δ)

- [NV '16]: QMA \subseteq MIP*(n, c, c δ)
- [Ji 'I 5]: QMA \subseteq MIP*(log n, c, c I/poly(n))
- [FV'14]: QMA \subseteq QMIP(log n, c, c 1/poly(n))

Conj (MIP-qPCP): QMA \subseteq MIP*(log n, c, c - δ) (PCP: NP \subseteq MIP(log n, c, c - δ))

MIP-qPCP

Open questions

- MIP-qPCP
 - Can we use ideas from low-degree testing (the "old proof" of classical PCP)?
- DIQKD
- Blind delegated computation
- Alphabet reduction for quantum games
- <u>MIP* = QMIP</u> [Ji'16]

– Can it be strengthened?

Thanks!

Any Questions?

(If I don't get to your question, ask Zhengfeng Ji)

Property Testing

- Classical analog of selftesting
- Given a Boolean function f: {0, I}ⁿ → {0, I}
 - Promised f satisfies some global property, or is far from satisfying it,
 - Determine which, by making *few* queries to f

Proof of lemma

- In analysis only adjoin n EPR pairs
- C(a,b) := X(a)Z(b) $\otimes \sigma_X(a) \sigma_Z(b)$
- X, Z pass EPR test
 →C(a,b) passes BLR test
- Quantum BLR \rightarrow exist linear C'(a,b) close to C(a,b)
- X'(a) := C'(a,0) $\bigotimes \sigma_X(a)$, Z'(b) := C'(0,b) $\bigotimes \sigma_Z(b)$

Self-testing and qPCP

- Self test = Nonlocal game = I-round MIP*
- Classically: PCP theorem ~ hardness for MIP with constant c-s gap
 - Equivalent to hardness of approximation for CSPs
- Quantumly: MIP-qPCP := hardness for MIP* with constant c-s gap?
 - Not necessarily equivalent to hardness of approximation for Hamiltonians