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classical Accept or Reject?

Testing quantum systems
-Is it quantum?
-How many qubits?
-How much entanglement?
-How does it work?
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for large quantum systems
take polynomial time
with high probability
tolerate constant noise
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Test the dimensionality of 
a single quantum system

—How many qubits

Test the number of (tilted) EPR
pairs between two systems 

—How much entanglement

my part: next:

• Andrea:
          using tilted CHSH games

• Matthew:
          using Magic Square games

^overlapping
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Theorem 1:

n overlapping qubits can fit in poly(n) dimensions

‘𝜀-overlap’

(operations on one qubit
can affect any other
qubit by at most 𝜀)

Theorem 2:

Given access to n (overlapping) qubits, ∃ a test s.t.

Pr[pass test]≥1-𝜀 ⇒ dimension ≥ (1-O(n2𝜀)) 2n

n1/𝜀2 dimensions

⇒



A qubit in     is a pair of anti-commuting reflections on itH
Definitions:

Indeed: 

•  

{X,Z} = 0 )
H ' C2 ⌦H0

X ' �x ⌦ 1
Z ' �z ⌦ 1



A qubit in     is a pair of anti-commuting reflections on itH
Definitions:

Indeed: 

•  

HThe overlap 𝜀 of 2 qubits (X1,Z1), (X2,Z2) in     is given by 

max

P,Q2{X,Z}
k[P1, Q2]k

•  

{X,Z} = 0 )
H ' C2 ⌦H0

X ' �x ⌦ 1
Z ' �z ⌦ 1



A qubit in     is a pair of anti-commuting reflections on itH
Definitions:

Indeed: 

•  

HThe overlap 𝜀 of 2 qubits (X1,Z1), (X2,Z2) in     is given by 

max

P,Q2{X,Z}
k[P1, Q2]k

•  

{X,Z} = 0 )
H ' C2 ⌦H0

X ' �x ⌦ 1
Z ' �z ⌦ 1

𝜀=0 ⇔ qubits in tensor product: 

X1 ' �x ⌦ I ⌦ 1
Z1 ' �z ⌦ I ⌦ 1

X2 ' I ⌦ �x ⌦ 1
Z2 ' I ⌦ �z ⌦ 1
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Dimension test:

1. Sequentially store n random qubits (|0›, |1›, |+›, or|-›)

2. Retrieve a random index & check it’s correct

1 j n

Given access to n qubits



Dimension test:

1. Sequentially store n random qubits (|0›, |1›, |+›, or|-›)

2. Retrieve a random index & check it’s correct

1 j n

Given access to n qubits

Theorem 2:

Pr[pass test]≥1-𝜀 ⇒ dimension ≥ (1-O(n2𝜀)) 2n

meaningful only if 𝜀=O( 1/n2 )Note:



• Qubit:  anti-commuting reflection pair
• Overlapping qubits:  nearly commuting reflections

Summary
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Summary

• Test functionality
• Loosen assumptions & run experiments
• Self-testing of EPR states

Applications and open questions:

• Qubit packing:  
      n overlapping qubits can fit in poly(n) dimensions

• Qubit separation:  
    Pr[pass test]≥1-𝜀 ⇒ dimension ≥ (1-O(n2𝜀)) 2n

Thank you!


