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How to test quantum computers?

state/process . factorization

. H error correction?
omosgra . .
grapny small simulation?

our tests!
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box -Is it quantum?
-How many qubits?
-How much entanglement!?

f
: \ X -How does it work!?

box
%‘ JAccept or Reject?

box

Goal: tests for large quantum systems scalability
that take polynomial time efficiency
and(or) with high probability completeness & soundness
and(or) tolerate constant noise  robustness & rigidity



my part: next:

Test the dimensionality of Test the number of (tilted) EPR
a single quantum system  pairs between two systems

— How man);\qubits —How much entanglement

overlapping e Andrea:
using tilted CHSH games

e Matthew:
using Magic Square games
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Theorem 2:

Given access to n (overlapping) qubits, 3 a test s.t.

Pr[pass test]=|-¢ = dimension = (1-O(n?%¢)) 2"



Definitions:
e A qubit inH is a pair of anti-commuting reflections on it
H~C*@H
Indeed: {X,Z}=0= X ~0"®1
Z~0*®1



Definitions:
e A qubit inH is a pair of anti-commuting reflections on it
H~C*@H
Indeed: {X,Z}=0= X ~0"®1
Z~0*®1

e The overlap € of 2 qubits (Xi,Z)), (X2,Z2) in H is given by

P
Lo 1P Qe



Definitions:

e A qubit inH is a pair of anti-commuting reflections on it
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e The overlap € of 2 qubits (Xi,Z)), (X2,Z2) in H is given by
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£=0 &< qubits in tensor product:

XlﬁO'x@[@]_ X22]®0'x®1
ZlﬁO'Z@I@]_ ZQQI(X)O'Z@].
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n e-overlapping qubits can fit in n®("#)-dimensional
Hilbert space.

Proof idea:
nearly orthogonal vectors gl gn
{1 group in threes }’ fiooe }’ £
nearly orthogonal subspaces e en
{1} Clifford algebra rep. X=iEF Z=iEG
nearly commuting qubits (") dim ref))

Note: meaningful only if e=Q( +/(log n/n))
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Theorem 2:

Pr[pass test]= |- = dimension = (I-O(n%e)) 2"

Note: meaningful only if e=O( |/n?)
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* Qubit packing:
n overlapping qubits can fit in poly(n) dimensions
* Qubit separation:

Pr[pass test]=|-¢ = dimension = (1-O(n?%¢)) 2"

Applications and open questions:

. . Thank you!
* Test functionality

* Loosen assumptions & run experiments
- Self-testing of EPR states



