Overlapping qubits

Rui Chao USC

Ben W. Reichardt Chris Sutherland USC

USC

Thomas Vidick Caltech arXiv 1701.01062

Parallel self-testing of (tilted) EPR pairs via copies of (tilted) CHSH

> Andrea W. Coladangelo Caltech

arXiv 1609.03687

The parallel-repeated magic square game is rigid

Matthew Coudron

Anand Natarajan

arXiv 1610.03574

Overlapping qubits

Rui Chao USC

Ben W. Reichardt Chris Sutherland USC

USC

Thomas Vidick Caltech arXiv 1701.01062

Parallel self-testing of (tilted) EPR pairs via copies of (tilted) CHSH

> Andrea W. Coladangelo Caltech

arXiv 1609.03687

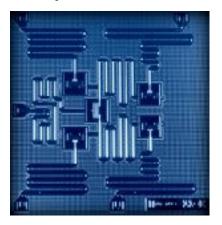
The parallel-repeated magic square game is rigid

Matthew Coudron

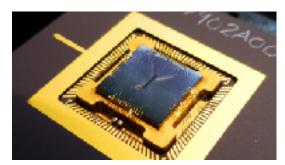
Anand Natarajan

arXiv 1610.03574

5 superconducting qubits, IBM



16 trapped ion qubits, UMD/NIST

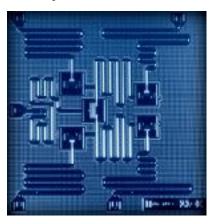


1152 superconducting qubits, D-Wave

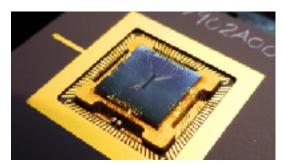
quantum computers are scaling up

n qubits \Rightarrow 2ⁿ dimensions \Rightarrow exponentially hard to analyze

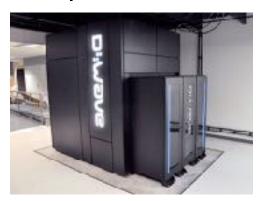
5 superconducting qubits, IBM



16 trapped ion qubits, UMD/NIST



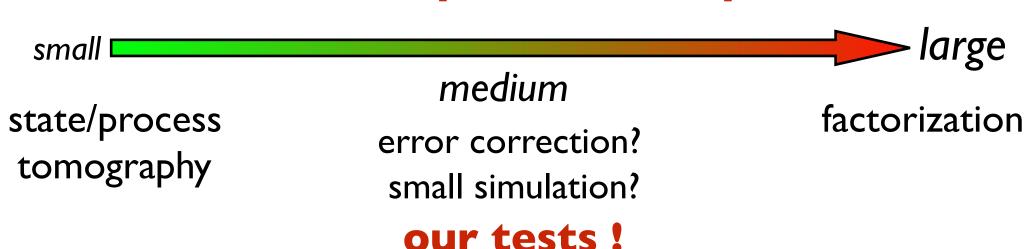
1152 superconducting qubits, D-Wave

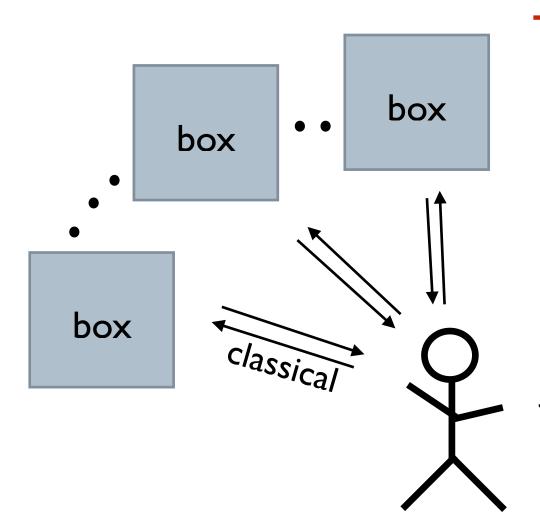


quantum computers are scaling up

n qubits \Rightarrow 2ⁿ dimensions \Rightarrow exponentially hard to analyze

How to test quantum computers?

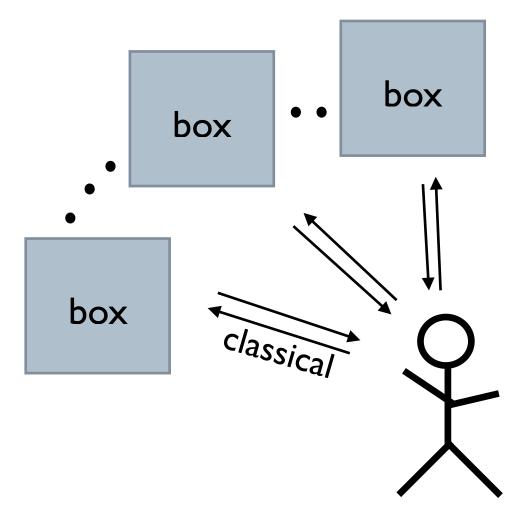




Testing quantum systems

- -ls it quantum?
- -How many qubits?
- -How much entanglement?
- -How does it work?

Accept or Reject?



Testing quantum systems

- -ls it quantum?
- -How many qubits?
- -How much entanglement?
- -How does it work?

Accept or Reject?

Goal: tests for large quantum systems scalability
that take polynomial time efficiency
and(or) with high probability completeness & soundness
and(or) tolerate constant noise robustness & rigidity

my part:

next:



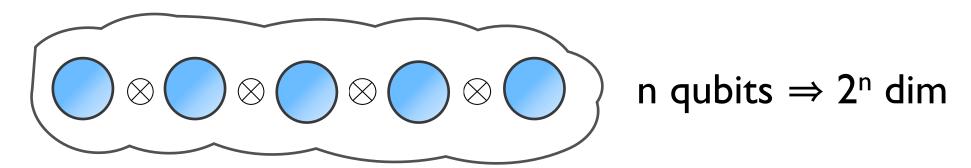
Test the dimensionality of a single quantum system

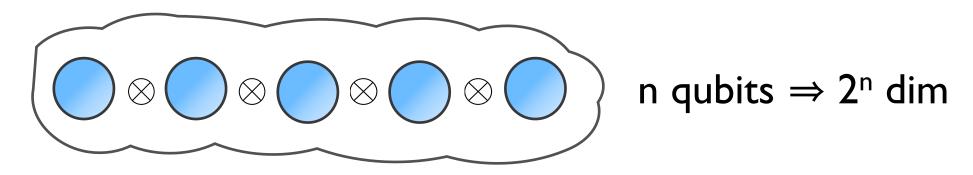
—How many qubits overlapping

Test the number of (tilted) EPR pairs between two systems

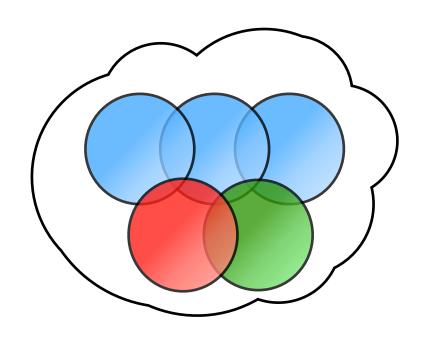
—How much entanglement

- Andrea: using tilted CHSH games
- Matthew: using Magic Square games

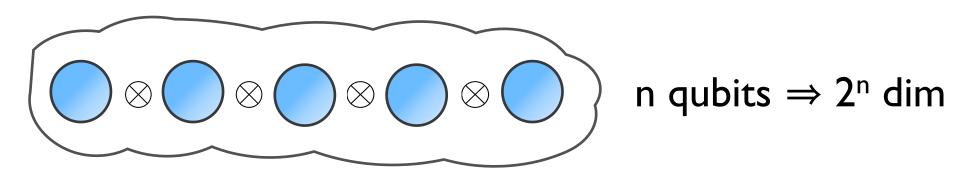




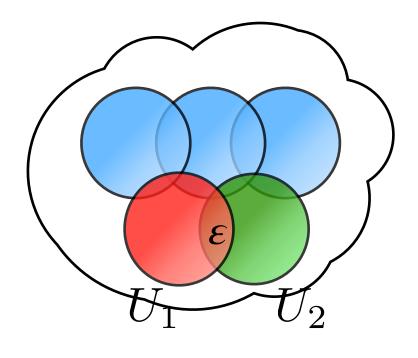
In general qubits can overlap



operations on one qubit can slightly affect the others

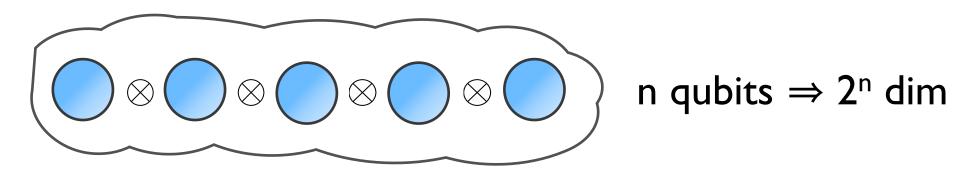


In general qubits can overlap

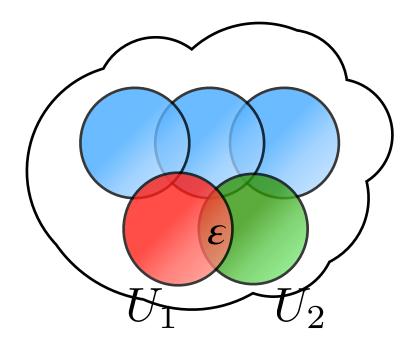


 $||[U_1, U_2]|| \le \epsilon$

operations on one qubit can slightly affect the others



In general qubits can overlap



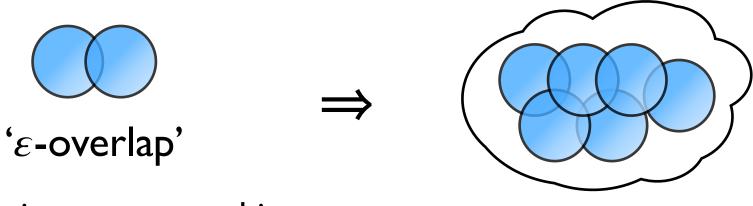
 $||[U_1, U_2]|| \le \epsilon$

operations on one qubit can slightly affect the others

n ε -overlapping qubits

 \Rightarrow n^{$1/\epsilon^2$} dim

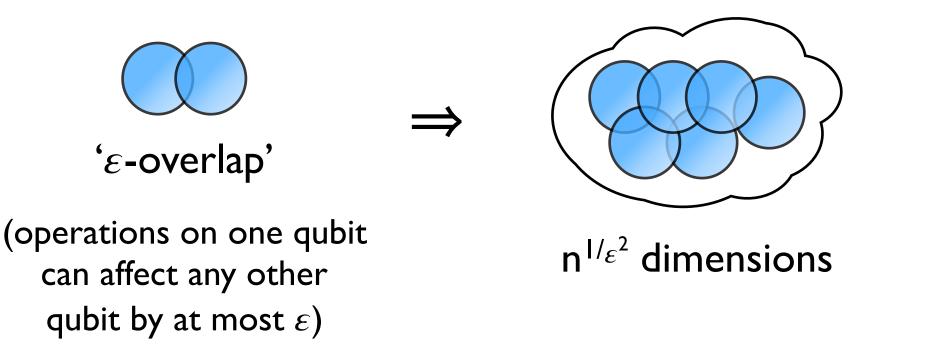
n overlapping qubits can fit in poly(n) dimensions



(operations on one qubit can affect any other qubit by at most ε)

 n^{1/ϵ^2} dimensions

n overlapping qubits can fit in poly(n) dimensions



Theorem 2:

Given access to n (overlapping) qubits, ∃ a test s.t.

 $\Pr[\text{pass test}] \ge I - \varepsilon \Rightarrow \text{dimension} \ge (I - O(n^2 \varepsilon)) 2^n$

Definitions:

ullet A qubit in ${\cal H}$ is a pair of anti-commuting reflections on it

Indeed:
$$\{X,Z\}=0\Rightarrow egin{array}{cccc} \mathcal{H}' & X\simeq \sigma^x\otimes \mathbf{1} \ & Z\simeq \sigma^z\otimes \mathbf{1} \end{array}$$

Definitions:

ullet A qubit in ${\cal H}$ is a pair of anti-commuting reflections on it

Indeed:
$$\{X,Z\}=0\Rightarrow egin{array}{cccc} \mathcal{H}' & \mathcal{H}\simeq\mathbb{C}^2\otimes\mathcal{H}' \ & X\simeq\sigma^x\otimes\mathbf{1} \ & Z\simeq\sigma^z\otimes\mathbf{1} \end{array}$$

• The overlap ε of 2 qubits (X_1,Z_1) , (X_2,Z_2) in \mathcal{H} is given by

$$\max_{P,Q \in \{X,Z\}} ||[P_1,Q_2]||$$

Definitions:

ullet A qubit in ${\cal H}$ is a pair of anti-commuting reflections on it

Indeed:
$$\{X,Z\}=0\Rightarrow egin{array}{cccc} \mathcal{H}' & \mathcal{H}\simeq\mathbb{C}^2\otimes\mathcal{H}' \ & X\simeq\sigma^x\otimes\mathbf{1} \ & Z\simeq\sigma^z\otimes\mathbf{1} \end{array}$$

• The overlap ε of 2 qubits (X_1,Z_1) , (X_2,Z_2) in \mathcal{H} is given by

$$\max_{P,Q \in \{X,Z\}} ||[P_1,Q_2]||$$

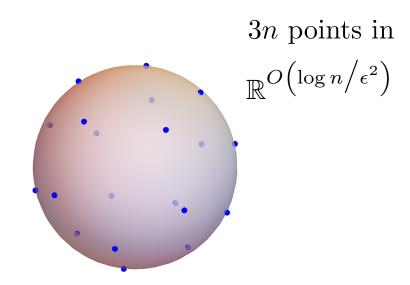
 ε =0 \Leftrightarrow qubits in tensor product:

$$X_1 \simeq \sigma^x \otimes I \otimes \mathbf{1}$$
 $X_2 \simeq I \otimes \sigma^x \otimes \mathbf{1}$ $Z_1 \simeq \sigma^z \otimes I \otimes \mathbf{1}$ $Z_2 \simeq I \otimes \sigma^z \otimes \mathbf{1}$

n ε -overlapping qubits can fit in $n^{\Omega(1/\varepsilon^2)}$ -dimensional Hilbert space.

Proof idea:

nearly orthogonal vectors



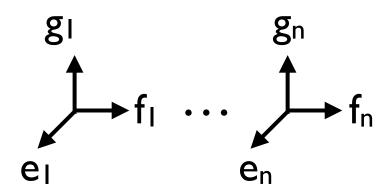
n ε -overlapping qubits can fit in $n^{\Omega(1/\varepsilon^2)}$ -dimensional Hilbert space.

Proof idea:

nearly orthogonal vectors

几 group in threes

nearly orthogonal subspaces



n ε -overlapping qubits can fit in $n^{\Omega(1/\varepsilon^2)}$ -dimensional Hilbert space.

Proof idea:

nearly orthogonal vectors

□ group in threes

nearly orthogonal subspaces

Clifford algebra rep.

nearly commuting qubits

$$g_{l}$$

$$f_{l}$$

$$e_{l}$$

$$f_{l}$$

$$f_{n}$$

$$e_{n}$$

$$X = i E F Z = i E G$$

$$(n^{\Omega(1/\epsilon^{2})}-dim ref.)$$

n ε -overlapping qubits can fit in $n^{\Omega(1/\varepsilon^2)}$ -dimensional Hilbert space.

Proof idea:

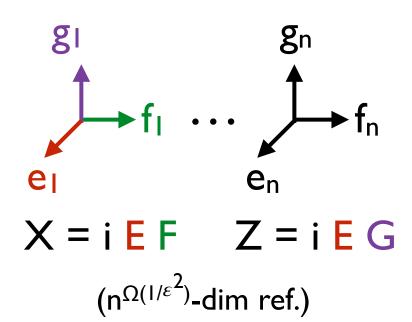
nearly orthogonal vectors

□ group in threes

nearly orthogonal subspaces

Clifford algebra rep.

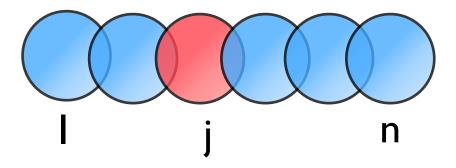
nearly commuting qubits



Note: meaningful only if $\varepsilon = \Omega(\sqrt{\log n/n})$

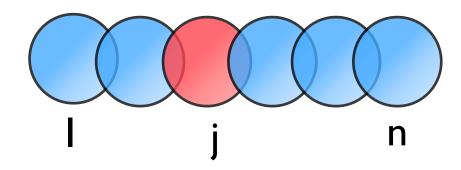
Dimension test: Given access to n qubits

- I. Sequentially store n random qubits (|0>, |1>, |+>, or|->)
- 2. Retrieve a random index & check it's correct



Dimension test: Given access to n qubits

- I. Sequentially store n random qubits (|0>, |1>, |+>, or|->)
- 2. Retrieve a random index & check it's correct



Theorem 2:

 $\Pr[\text{pass test}] \ge 1 - \varepsilon \Rightarrow \text{dimension} \ge (1 - O(n^2 \varepsilon)) 2^n$

Note: meaningful only if ε =O(I/n²)

Summary

- Qubit: anti-commuting reflection pair
- Overlapping qubits: nearly commuting reflections
- Qubit packing:
 n overlapping qubits can fit in poly(n) dimensions
- Qubit separation:

 $Pr[pass test] \ge I - \varepsilon \Rightarrow dimension \ge (I - O(n^2 \varepsilon)) 2^n$

Summary

- Qubit: anti-commuting reflection pair
- Overlapping qubits: nearly commuting reflections
- Qubit packing:
 n overlapping qubits can fit in poly(n) dimensions
- Qubit separation:

 $\Pr[\text{pass test}] \ge I - \varepsilon \Rightarrow \text{dimension} \ge (I - O(n^2 \varepsilon)) 2^n$

Applications and open questions:

- Test functionality
- Loosen assumptions & run experiments
- Self-testing of EPR states

Summary

- Qubit: anti-commuting reflection pair
- Overlapping qubits: nearly commuting reflections
- Qubit packing:
 n overlapping qubits can fit in poly(n) dimensions
- Qubit separation:

 $Pr[pass test] \ge I - \varepsilon \Rightarrow dimension \ge (I - O(n^2 \varepsilon)) 2^n$

Applications and open questions:

Thank you!

- Test functionality
- Loosen assumptions & run experiments
- Self-testing of EPR states