Overlapping qubits

Rui Chao Ben W. Reichardt Chris Sutherland Thomas Vidick USC USC USC

Caltech arXiv 1701.01062

Parallel self-testing of (tilted) EPR pairs via copies of (tilted) CHSH
Andrea W. Coladangelo
Caltech
arXiv 1609.03687

The parallel-repeated magic square game is rigid Matthew Coudron MIT
Anand Natarajan MIT

Overlapping qubits

Rui Chao Ben W. Reichardt Chris Sutherland Thomas Vidick USC USC USC

Parallel self-testing of (tilted) EPR pairs via copies of (tilted) CHSH
 Andrea W. Coladangelo
 Caltech

The parallel-repeated magic square game is rigid $\frac{\text { Matthew Coudron }}{\text { MIT }}$

Anand Natarajan MIT

quantum computers are scaling up

n qubits $\Rightarrow 2^{\mathrm{n}}$ dimensions \Rightarrow exponentially hard to analyze

quantum computers are scaling up
n qubits $\Rightarrow 2^{\mathrm{n}}$ dimensions \Rightarrow exponentially hard to analyze

How to test quantum computers?

small

medium
error correction?
small simulation?
our tests !

Testing quantum systems
 -Is it quantum?
 -How many qubits?
 -How much entanglement?
 -How does it work?

Testing quantum systems -Is it quantum?
-How many qubits?
-How much entanglement?
-How does it work?

Goal: tests for large quantum systems
that take polynomial time and(or) with high probability completeness \& soundness and (or) tolerate constant noise robustness \& rigidity
my part:

Test the dimensionality of a single quantum system
—How many qubits overlapping

next:

Test the number of (tilted) EPR pairs between two systems
-How much entanglement

- Andrea:
using tilted CHSH games
- Matthew:
using Magic Square games

Quantum systems are made of qubits in tensor product

Quantum systems are made of qubits in tensor product

In general qubits can overlap

operations on one qubit can slightly affect the others

Quantum systems are made of qubits in tensor product

In general qubits can overlap

$$
\left\|\left[U_{1}, U_{2}\right]\right\| \leq \epsilon
$$

operations on one qubit can slightly affect the others

Quantum systems are made of qubits in tensor product

n qubits $\Rightarrow 2^{n}$ dim

In general qubits can overlap

$\left\|\left[U_{1}, U_{2}\right]\right\| \leq \epsilon$
$\mathrm{n} \varepsilon$-overlapping qubits
$\Rightarrow \mathrm{n}^{1 / \varepsilon^{2}} \mathrm{dim}$

Theorem I:

n overlapping qubits can fit in poly(n) dimensions

(operations on one qubit can affect any other $n^{1 / \varepsilon^{2}}$ dimensions qubit by at most ε)

Theorem I:

n overlapping qubits can fit in poly(n) dimensions

(operations on one qubit can affect any other qubit by at most ε)

Theorem 2:

Given access to n (overlapping) qubits, \exists a test s.t. $\operatorname{Pr}[$ pass test $] \geq \mathrm{I}-\varepsilon \Rightarrow$ dimension $\geq\left(\mathrm{I}-\mathrm{O}\left(\mathrm{n}^{2} \varepsilon\right)\right) 2^{\mathrm{n}}$

Definitions:

- A qubit in \mathcal{H} is a pair of anti-commuting reflections on it

$$
\text { Indeed: } \quad\{X, Z\}=0 \Rightarrow \begin{aligned}
\mathcal{H} & \simeq \mathbb{C}^{2} \otimes \mathcal{H}^{\prime} \\
X & \simeq \sigma^{x} \otimes 1 \\
Z & \simeq \sigma^{z} \otimes 1
\end{aligned}
$$

Definitions:

- A qubit in \mathcal{H} is a pair of anti-commuting reflections on it

$$
\mathcal{H} \simeq \mathbb{C}^{2} \otimes \mathcal{H}^{\prime}
$$

Indeed: $\quad\{X, Z\}=0 \Rightarrow \quad X \simeq \sigma^{x} \otimes \mathbf{1}$ $Z \simeq \sigma^{z} \otimes 1$

- The overlap ε of 2 qubits $\left(X_{1}, Z_{1}\right),\left(X_{2}, Z_{2}\right)$ in \mathcal{H} is given by

$$
\max _{P, Q \in\{X, Z\}}\left\|\left[P_{1}, Q_{2}\right]\right\|
$$

Definitions:

- A qubit in \mathcal{H} is a pair of anti-commuting reflections on it

$$
\mathcal{H} \simeq \mathbb{C}^{2} \otimes \mathcal{H}^{\prime}
$$

Indeed: $\quad\{X, Z\}=0 \Rightarrow \quad X \simeq \sigma^{x} \otimes \mathbf{1}$ $Z \simeq \sigma^{z} \otimes 1$

- The overlap ε of 2 qubits $\left(X_{1}, Z_{1}\right),\left(X_{2}, Z_{2}\right)$ in \mathcal{H} is given by

$$
\max _{P, Q \in\{X, Z\}}\left\|\left[P_{1}, Q_{2}\right]\right\|
$$

$\varepsilon=0 \Leftrightarrow$ qubits in tensor product:

$$
\begin{array}{ll}
X_{1} \simeq \sigma^{x} \otimes I \otimes 1 & X_{2} \simeq I \otimes \sigma^{x} \otimes 1 \\
Z_{1} \simeq \sigma^{z} \otimes I \otimes 1 & Z_{2} \simeq I \otimes \sigma^{z} \otimes \mathbf{1}
\end{array}
$$

Theorem I:

$\mathrm{n} \varepsilon$-overlapping qubits can fit in $\mathrm{n}^{\Omega\left(1 / \varepsilon^{2}\right)}$-dimensional Hilbert space.

Proof idea:

nearly orthogonal vectors

Theorem I:

$\mathrm{n} \varepsilon$-overlapping qubits can fit in $\mathrm{n}^{\Omega\left(1 / \varepsilon^{2}\right)}$-dimensional Hilbert space.

Proof idea:

nearly orthogonal vectors
$\sqrt{\Omega}$ group in threes
nearly orthogonal subspaces

$\mathrm{n} \varepsilon$-overlapping qubits can fit in $\mathrm{n}^{\Omega\left(1 / \varepsilon^{2}\right)}$-dimensional Hilbert space.

Proof idea:

nearly orthogonal vectors
$\sqrt{\Omega}$ group in threes
nearly orthogonal subspaces
$\sqrt{\Omega}$ Clifford algebra rep.
nearly commuting qubits

$$
X=i E F \quad Z=i E G
$$

$$
\left(\mathrm{n}^{\Omega\left(\mid / \varepsilon^{2}\right)} \text {-dim ref. }\right)
$$

$\mathrm{n} \varepsilon$-overlapping qubits can fit in $\mathrm{n}^{\Omega\left(1 / \varepsilon^{2}\right)}$-dimensional Hilbert space.

Proof idea:

nearly orthogonal vectors
$\sqrt{\square}$ group in threes
nearly orthogonal subspaces
$\sqrt{\Omega}$ Clifford algebra rep.
nearly commuting qubits

$$
X=i E F \quad Z=i E G
$$

$$
\left(\mathrm{n}^{\Omega\left(\| / \varepsilon^{2}\right)} \text {-dim ref. }\right)
$$

Note: meaningful only if $\varepsilon=\Omega(\sqrt{ }(\log n / n))$

Dimension test: Given access to n qubits

I. Sequentially store n random qubits (|0>, |I>,|+>, or|->)
2. Retrieve a random index \& check it's correct

Dimension test: Given access to n qubits

I. Sequentially store n random qubits (|0>, |I>,|+>, or|->)
2. Retrieve a random index \& check it's correct

Theorem 2:
$\operatorname{Pr}[$ pass test $] \geq I-\varepsilon \Rightarrow$ dimension $\geq\left(I-O\left(n^{2} \varepsilon\right)\right) 2^{n}$

Note: meaningful only if $\varepsilon=O\left(1 / n^{2}\right)$

Summary

- Qubit: anti-commuting reflection pair
- Overlapping qubits: nearly commuting reflections
- Qubit packing:
n overlapping qubits can fit in poly(n) dimensions
Qubit separation:
$\operatorname{Pr}[$ pass test $] \geq I-\varepsilon \Rightarrow$ dimension $\geq\left(I-O\left(n^{2} \varepsilon\right)\right) 2^{n}$

Summary

- Qubit: anti-commuting reflection pair
- Overlapping qubits: nearly commuting reflections
- Qubit packing:
n overlapping qubits can fit in poly(n) dimensions
- Qubit separation:
$\operatorname{Pr}[$ pass test $] \geq I-\varepsilon \Rightarrow$ dimension $\geq\left(I-O\left(n^{2} \varepsilon\right)\right) 2^{n}$

Applications and open questions:

- Test functionality
- Loosen assumptions \& run experiments
- Self-testing of EPR states

Summary

- Qubit: anti-commuting reflection pair
- Overlapping qubits: nearly commuting reflections
- Qubit packing:
n overlapping qubits can fit in poly(n) dimensions
- Qubit separation:
$\operatorname{Pr}[$ pass test $] \geq I-\varepsilon \Rightarrow$ dimension $\geq\left(I-O\left(n^{2} \varepsilon\right)\right) 2^{n}$

Applications and open questions:

- Test functionality
- Loosen assumptions \& run experiments
- Self-testing of EPR states

