Tsirelson's problem and linear system games

William Slofstra
IQC, University of Waterloo
January 20th, 2017
includes joint work with Richard Cleve and Li Liu

A speculative question

Conventional wisdom: Finite time / volume / energy / etc. \Longrightarrow can always describe nature by finite-dimensional Hilbert spaces

A speculative question

Conventional wisdom: Finite time / volume / energy / etc. \Longrightarrow can always describe nature by finite-dimensional Hilbert spaces

But... many models in quantum mechanics and quantum field theory require infinite-dimensional Hilbert spaces (e.g. CCR)

Could nature be "intrinsically" infinite-dimensional?

A speculative question

Conventional wisdom: Finite time / volume / energy / etc. \Longrightarrow can always describe nature by finite-dimensional Hilbert spaces

But... many models in quantum mechanics and quantum field theory require infinite-dimensional Hilbert spaces (e.g. CCR)

Could nature be "intrinsically" infinite-dimensional?
Answer: Probably not

A speculative question

Conventional wisdom: Finite time / volume / energy / etc. \Longrightarrow can always describe nature by finite-dimensional Hilbert spaces

But... many models in quantum mechanics and quantum field theory require infinite-dimensional Hilbert spaces (e.g. CCR)

Could nature be "intrinsically" infinite-dimensional?
Answer: Probably not
But if it was... could we recognize that fact in an experiment?
(For instance, in a Bell-type experiment?)

Non-local games (aka Bell-type experiments)

Win/lose based on outputs a, b and inputs x, y

Alice and Bob must cooperate to win

Winning conditions known in advance

Complication: players cannot communicate while the game is in progress

Non-local games ct'd

Suppose game is played many times, with inputs drawn from some public distribution π

To outside observer, Alice and Bob's strategy is described by:
$P(a, b \mid x, y)=$ the probability of output (a, b) on input (x, y)

Correlation matrix: collection of numbers $\{P(a, b \mid x, y)\}$

What can $P(a, b \mid x, y)$ be?

$P(a, b \mid x, y)=$ the probability of output (a, b) on input (x, y)
n questions, m answers: $\{P(a, b \mid x, y)\} \subset \mathbb{R}^{m^{2} n^{2}}$

$\underline{\text { Classically }}$

$$
P(a, b \mid x, y)=p_{a}^{x} \cdot q_{b}^{y}
$$

Probability that Alice outputs a on input x
Same for Bob

What can $P(a, b \mid x, y)$ be?

$P(a, b \mid x, y)=$ the probability of output (a, b) on input (x, y)
n questions, m answers: $\{P(a, b \mid x, y)\} \subset \mathbb{R}^{m^{2} n^{2}}$

Classically

$$
P(a, b \mid x, y)=\sum_{i} \lambda_{i} \cdot p_{a}^{x i} \cdot q_{b}^{y i}
$$

Shared randomness
Probability that Alice outputs a on input x
Same for Bob

What can $P(a, b \mid x, y)$ be?

$P(a, b \mid x, y)=$ the probability of output (a, b) on input (x, y)
n questions, m answers: $\{P(a, b \mid x, y)\} \subset \mathbb{R}^{m^{2} n^{2}}$

Quantum

$$
P(a, b \mid x, y)=\langle\psi| M_{a}^{x} \otimes N_{b}^{y}|\psi\rangle
$$

Alice's measurement on input x \oint
Bob's measurement on input y
shared state on $H_{1} \otimes H_{2}$

What can $P(a, b \mid x, y)$ be?

$P(a, b \mid x, y)=$ the probability of output (a, b) on input (x, y)
n questions, m answers: $\{P(a, b \mid x, y)\} \subset \mathbb{R}^{m^{2} n^{2}}$

Quantum

$$
P(a, b \mid x, y)=\langle\psi| M_{a}^{x} \uparrow_{\text {tensor product }}^{\otimes} N_{b}^{y}|\psi\rangle
$$

Why? axiom of quantum mechanics for composite systems

Bell inequalities

$C_{c}(m, n)=$ set of classical correlation matrices
$C_{q}(m, n)=$ set of quantum correlation matrices
Both are convex subsets of $\mathbb{R}^{m^{2} n^{2}}$.

Bell inequalities ct'd

$\omega(G, P)=$ probability of winning game G with correlation P
$\omega^{c}(G)=$ maximum winning probability for $P \in C_{c}(m, n)$
$\omega^{q}(G)=$ same thing but with $C_{q}(m, n)$

Bell inequalities ct'd

If $\omega^{c}(G)<\omega^{q}(G)$, then
(1) $C_{c} \subsetneq C_{q}$, and
(2) we can (theoretically) show this in an experiment

Bell inequalities ct'd

If $\omega^{c}(G)<\omega^{q}(G)$, then
(1) $C_{c} \subsetneq C_{q}$, and
(2) we can (theoretically) show this in an experiment Bell's theorem + many experiments: this happens!

Finite versus infinite-dimensional

Quantum correlations:

$$
P(a, b \mid x, y)=\langle\psi| M_{a}^{x} \otimes N_{b}^{y}|\psi\rangle
$$

where $|\psi\rangle \in H_{1} \otimes H_{2}$

Finite versus infinite-dimensional

Quantum correlations:

$$
P(a, b \mid x, y)=\langle\psi| M_{a}^{x} \otimes N_{b}^{y}|\psi\rangle
$$

where $|\psi\rangle \in H_{1} \otimes H_{2}$

Correlation set C_{q} :
H_{1}, H_{2} must be finite-dimensional
(but, no bound on dimension)

Finite versus infinite-dimensional

Quantum correlations:

$$
P(a, b \mid x, y)=\langle\psi| M_{a}^{x} \otimes N_{b}^{y}|\psi\rangle
$$

where $|\psi\rangle \in H_{1} \otimes H_{2}$

Correlation set C_{q} :
H_{1}, H_{2} must be finite-dimensional
(but, no bound on dimension)
Correlation set $C_{q s}$:
H_{1}, H_{2} allowed to be infinite-dimensional
(the 's' stands for 'spatial tensor product')

Finite versus infinite-dimensional ct'd

Can we separate C_{q} from $C_{q s}$ with a Bell inequality?

Finite versus infinite-dimensional ct'd

Can we separate C_{q} from $C_{q s}$ with a Bell inequality?

NO!
This is the wrong picture

How is this picture wrong?

C_{q} and $C_{q s}$ are not known to be closed.

How is this picture wrong?

C_{q} and $C_{q s}$ are not known to be closed.
Even worse: $\overline{C_{q s}}=\overline{C_{q}}$

How is this picture wrong?

C_{q} and $C_{q s}$ are not known to be closed.
Even worse: $\overline{C_{q s}}=\overline{C_{q}}$
New correlation set $C_{q a}:=\overline{C_{q}}$
contains limits of finite-dimensional correlations indistinguishable from C_{q} and $C_{q s}$ in experiment

The real picture

Could look like:

We know $C_{q} \subseteq C_{q s} \subseteq C_{q a} \ldots$ but nothing else!

The real picture

Could look like:

We know $C_{q} \subseteq C_{q s} \subseteq C_{q a} \ldots$ but nothing else!
Fortunately, this is not the end of the story
We've assumed that $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} \ldots$ maybe this is too restrictive

Commuting-operator model

Another model of composite systems
Correlation set $C_{q c}$:

$$
P(a, b \mid x, y)=\langle\psi| M_{a}^{x} \cdot N_{b}^{y}|\psi\rangle
$$

where
(1) $|\psi\rangle$ belongs to a joint Hilbert space H
(possibly infinite-dimensional)
(2) Measurements commute: $M_{a}^{x} N_{b}^{y}=N_{b}^{y} M_{a}^{x}$ for all x, y, a, b
'qc' stands for 'quantum-commuting'

What do we know about $C_{q c}$

Correlation set $C_{q c}: P(a, b \mid x, y)=\langle\psi| M_{a}^{x} \cdot N_{b}^{y}|\psi\rangle$
$C_{q c}$ is closed!
Get a hierarchy $C_{q} \subseteq C_{q s} \subseteq C_{q a} \subseteq C_{q c}$ of convex sets

What do we know about $C_{q c}$

Correlation set $C_{q c}: P(a, b \mid x, y)=\langle\psi| M_{a}^{x} \cdot N_{b}^{y}|\psi\rangle$
$C_{q c}$ is closed!
Get a hierarchy $C_{q} \subseteq C_{q s} \subseteq C_{q a} \subseteq C_{q c}$ of convex sets
If H is finite-dimensional, then $\{P(a, b \mid x, y)\} \in C_{q}$

$$
\begin{gathered}
\text { Can find } H_{1}, H_{2} \text { such that } H=H_{1} \otimes H_{2}, \\
M_{a}^{x} \cong \widetilde{M}_{a}^{x} \otimes I \text { and } N_{b}^{y} \cong I \otimes \widetilde{N}_{b}^{y} \text { for all } x, y, a, b
\end{gathered}
$$

This argument doesn't work if H is infinite-dimensional

Tsirelson's problem(s)

Tsirelson problems: is $C_{t}, t \in\{q, q s, q a\}$ equal to $C_{q c}$

Tsirelson's problem(s)

Tsirelson problems: is $C_{t}, t \in\{q, q s, q a\}$ equal to $C_{q c}$
These are fundamental questions
(1) Comparing two axiom systems:

Strong Tsirelson: is $C_{q}=C_{q c}$?

Tsirelson's problem(s)

Tsirelson problems: is $C_{t}, t \in\{q, q s, q a\}$ equal to $C_{q c}$
These are fundamental questions
(1) Comparing two axiom systems:

Strong Tsirelson: is $C_{q}=C_{q c}$?
(2) Is $\omega^{q}(G)<\omega^{q c}(G)$ for any game?

Equivalent to weak Tsirelson: is $C_{q a}=C_{q c}$?

What do we know?

Theorem (Ozawa, JNPPSW, Fr)

$C_{q a}=C_{q c}$ if and only if Connes' embedding problem is true

What do we know?

Theorem (Ozawa, JNPPSW, Fr)
$C_{q a}=C_{q c}$ if and only if Connes' embedding problem is true

Theorem (S)

$C_{q s} \neq C_{q c}$

Other fundamental questions

(1) Resource question:

A non-local game G is a computational task
Bell's theorem: can do better with entanglement
Can G be played optimally with finite Hilbert space dimension?

Yes $\Longleftrightarrow C_{q}=C_{q \text { a }}$ (in other words, is C_{q} closed?)
Variants of games: finite dimensions do not suffice [LTW13],[MV14],[RV15]

Other fundamental questions

(1) Resource question:

A non-local game G is a computational task
Bell's theorem: can do better with entanglement
Can G be played optimally with finite Hilbert space dimension?

Yes $\Longleftrightarrow C_{q}=C_{q \text { a }}$ (in other words, is C_{q} closed?)
Variants of games: finite dimensions do not suffice [LTW13],[MV14],[RV15]
(2) Can we compute $\omega^{q}(G)$ or $\omega^{q c}(G)$?
(what is the power of MIP*?)

What do we know?

Question: can we compute $\omega^{q}(G)$ or $\omega^{q c}(G)$?

What do we know?

Question: can we compute $\omega^{q}(G)$ or $\omega^{q c}(G)$?
Brute force search through strategies on $\mathcal{H}_{A}=\mathcal{H}_{B}=\mathbb{C}^{n}$, converges to ω^{q} (from below)

Navascués, Pironio, Acín: Given a non-local game, there is a hierarchy of SDPs which converge in value to $\omega^{q c}$ (from above)

What do we know?

Question: can we compute $\omega^{q}(G)$ or $\omega^{q c}(G)$?
Brute force search through strategies on $\mathcal{H}_{A}=\mathcal{H}_{B}=\mathbb{C}^{n}$, converges to ω^{q} (from below)

Navascués, Pironio, Acín: Given a non-local game, there is a hierarchy of SDPs which converge in value to $\omega^{q c}$ (from above)

In both cases, no way to tell how close we are to the correct answer

What do we know?

Question: can we compute $\omega^{q}(G)$ or $\omega^{q c}(G)$?
Brute force search through strategies on $\mathcal{H}_{A}=\mathcal{H}_{B}=\mathbb{C}^{n}$, converges to ω^{q} (from below)

Navascués, Pironio, Acín: Given a non-local game, there is a hierarchy of SDPs which converge in value to $\omega^{q c}$ (from above)

In both cases, no way to tell how close we are to the correct answer

Theorem (S)

It is undecidable to tell if $\omega^{q c}<1$

What do we know?

Question: can we compute $\omega^{q}(G)$ or $\omega^{q c}(G)$?
Brute force search through strategies on $\mathcal{H}_{A}=\mathcal{H}_{B}=\mathbb{C}^{n}$, converges to ω^{q} (from below)

Navascués, Pironio, Acín: Given a non-local game, there is a hierarchy of SDPs which converge in value to $\omega^{q c}$ (from above)

In both cases, no way to tell how close we are to the correct answer

Theorem (S)

It is undecidable to tell if $\omega^{q c}<1$
General cases of other questions completely open!

Undecidability

Theorem (S)

It is undecidable to tell if $\omega^{q c}<1$

Undecidability

Theorem (S)

It is undecidable to tell if $\omega^{q c}<1$

NPA hierarchy: there is no computable function

$$
L: \text { Games } \rightarrow \mathbb{N}
$$

such that $\omega^{q c}(G)=L(G)$ th level of NPA hierarchy

Undecidability

Theorem (S)

It is undecidable to tell if $\omega^{q c}<1$

NPA hierarchy: there is no computable function

$$
L: \text { Games } \rightarrow \mathbb{N}
$$

such that $\omega^{q c}(G)=L(G)$ th level of NPA hierarchy
We still don't know: can we compute $\omega^{q C}(G)$ to within some given error?
(Ji '16: this problem is MIP*-complete)
If weak Tsirelson is true, then $\omega^{q c}$ is computable in this stronger sense

Undecidability comes from exact error?

Comparison point: Can decide if optimal value of finite SDP is <1 (very inefficient algorithm)

Undecidability comes from exact error?

Comparison point: Can decide if optimal value of finite SDP is <1 (very inefficient algorithm)

More generally: first-order logic for field of real numbers is decidable

Contrast: first-order logic for integers and rationals is undecidable

Undecidability comes from exact error?

Comparison point: Can decide if optimal value of finite SDP is <1 (very inefficient algorithm)

More generally: first-order logic for field of real numbers is decidable

Contrast: first-order logic for integers and rationals is undecidable
Consequence of undecidability of $\omega^{q c}<1$ due to Tobias Fritz:
quantum logic (first order theory for projections on Hilbert spaces) is undecidable

Quantum logic is undecidable

Theorem (Tobias Fritz)

The following problem is undecidable:
Given $n \geq 1$ and a collection of subsets \mathcal{C} of $\{1, \ldots, n\}$, determine if there are self-adjoint projections P_{1}, \ldots, P_{n} such that

$$
\sum_{i \in S} P_{i}=l, \quad P_{i} P_{j}=P_{j} P_{i}=0 \text { if } i \neq j \in S
$$

for all $S \in \mathcal{C}$.
Proof: follows from undecidability of $\omega^{q c}<1$
Builds on Acín-Fritz-Leverrier-Sainz '15.

Two theorems

Theorem (S)

$C_{q s} \neq C_{q c}$

Theorem (S)
It is undecidable to tell if $\omega_{q c}<1$

Theorems look very different...

Two theorems

Theorem (S)

$C_{q s} \neq C_{q c}$

Theorem (S)

It is undecidable to tell if $\omega_{\text {qc }}<1$

Theorems look very different...

But: proof follows from a single theorem in group theory

Connection with group theory comes from linear system games

Linear system games

Start with $m \times n$ linear system $A x=b$ over \mathbb{Z}_{2}

Linear system games

Start with $m \times n$ linear system $A x=b$ over \mathbb{Z}_{2}
Inputs:

- Alice receives $1 \leq i \leq m$ (an equation)
- Bob receives $1 \leq j \leq n$ (a variable)

Linear system games

Start with $m \times n$ linear system $A x=b$ over \mathbb{Z}_{2}
Inputs:

- Alice receives $1 \leq i \leq m$ (an equation)
- Bob receives $1 \leq j \leq n$ (a variable)

Outputs:

- Alice outputs an assignment a_{k} for all variables x_{k} with $A_{i k} \neq 0$
- Bob outputs an assignment b_{j} for x_{j}

Linear system games

Start with $m \times n$ linear system $A x=b$ over \mathbb{Z}_{2}
Inputs:

- Alice receives $1 \leq i \leq m$ (an equation)
- Bob receives $1 \leq j \leq n$ (a variable)

Outputs:

- Alice outputs an assignment a_{k} for all variables x_{k} with $A_{i k} \neq 0$
- Bob outputs an assignment b_{j} for x_{j}

They win if:

- $A_{i j}=0$ (assignment irrelevant) or
- $A_{i j} \neq 0$ and $a_{j}=b_{j}$ (assignment consistent)

Linear system games

Start with $m \times n$ linear system $A x=b$ over \mathbb{Z}_{2}
Inputs:

- Alice receives $1 \leq i \leq m$ (an equation)
- Bob receives $1 \leq j \leq n$ (a variable)

Outputs:

- Alice outputs an assignment a_{k} for all variables x_{k} with $A_{i k} \neq 0$
- Bob outputs an assignment b_{j} for x_{j}

They win if:

- $A_{i j}=0$ (assignment irrelevant) or
- $A_{i j} \neq 0$ and $a_{j}=b_{j}$ (assignment consistent)

Such games go back to Mermin-Peres magic square, more recently studied by Cleve-Mittal, Ji, Arkhipov

Quantum solutions of $A x=b$

Observables X_{j} such that
(1) $X_{j}^{2}=I$ for all j
(2) $\prod_{j=1}^{n} x_{j}^{A_{j j}}=(-l)^{b_{i}}$ for all i
(3) If $A_{i j}, A_{i k} \neq 0$, then $X_{j} X_{k}=X_{k} X_{j}$
(We've written linear equations multiplicatively)

Quantum solutions of $A x=b$

Observables X_{j} such that
(1) $X_{j}^{2}=I$ for all j
(2) $\prod_{j=1}^{n} X_{j}^{A_{i j}}=(-I)^{b_{i}}$ for all i
(3) If $A_{i j}, A_{i k} \neq 0$, then $X_{j} X_{k}=X_{k} X_{j}$
(We've written linear equations multiplicatively)

Theorem (Cleve-Mittal,Cleve-Liu-S)

Let G be the game for linear system $A x=b$. Then:

- G has a perfect strategy in $C_{q s}$ if and only if $A x=b$ has a finite-dimensional quantum solution
- G has a perfect strategy in $C_{q c}$ if and only if $A x=b$ has a quantum solution

Group theory ct'd

The solution group Γ of $A x=b$ is the group generated by X_{1}, \ldots, X_{n}, J such that
(1) $X_{j}^{2}=\left[X_{j}, J\right]=J^{2}=e$ for all j
(2) $\prod_{j=1}^{n} X_{j}^{A_{i j}}=J^{b_{i}}$ for all i
(3) If $A_{i j}, A_{i k} \neq 0$, then $\left[X_{j}, X_{k}\right]=e$
where $[a, b]=a b a^{-1} b^{-1}, e=$ group identity

Theorem (Cleve-Mittal,Cleve-Liu-S)

Let G be the game for linear system $A x=b$. Then:

- G has a perfect strategy in $C_{q s}$ if and only if Γ has a finite-dimensional representation with $J \neq I$
- G has a perfect strategy in $C_{q c}$ if and only if $J \neq e$ in Γ

Groups and local compatibility

Suppose we can write down any group relations we want...
But: generators in the relation will be forced to commute!

Groups and local compatibility

Suppose we can write down any group relations we want...
But: generators in the relation will be forced to commute!
Call this condition local compatibility
Local compatibility is (a priori) a very strong constraint

Groups and local compatibility

Suppose we can write down any group relations we want...
But: generators in the relation will be forced to commute!
Call this condition local compatibility
Local compatibility is (a priori) a very strong constraint
For instance, S_{3} is generated by a, b subject to the relations

$$
a^{2}=b^{2}=e,(a b)^{3}=e
$$

If $a b=b a$, then $(a b)^{3}=a^{3} b^{3}=a b$
So relations imply $a=b$, and S_{3} becomes \mathbb{Z}_{2}

Group embedding theorem

Solution groups satisfy local compatibility
Nonetheless:
Solution groups are as complicated as general groups

Theorem (S)

Let G be any finitely-presented group, and suppose we are given J_{0} in the center of G such that $J_{0}^{2}=e$.

Then there is an injective homomorphism $\phi: G \hookrightarrow \Gamma$, where Γ is the solution group of a linear system $A x=b$, with $\phi\left(J_{0}\right)=J$.

How do we prove the embedding theorem?

Linear system $A x=b$ over \mathbb{Z}_{2} equivalent to labelled hypergraph:
Edges are variables
Vertices are equations
v is adjacent to e if and only if $A_{\text {ve }} \neq 0$
v is labelled by $b_{i} \in \mathbb{Z}_{2}$

How do we prove the embedding theorem?

Linear system $A x=b$ over \mathbb{Z}_{2} equivalent to labelled hypergraph:
Edges are variables
Vertices are equations
v is adjacent to e if and only if $A_{\text {ve }} \neq 0$
v is labelled by $b_{i} \in \mathbb{Z}_{2}$
Given finitely-presented group G, we get Γ from a linear system
But what linear system?
Can answer this pictorially by writing down a hypergraph?

The hypergraph by example

$$
\left\langle x, y, z, u, v: x y x z=x u v u=e=x^{2}=y^{2}=\cdots=v^{2}\right\rangle
$$

Further directions

(1) Further refinements to address C_{q} vs $C_{q a}$
(2) Is $\omega^{q}(G)<1$ decidable?

Further directions

(1) Further refinements to address C_{q} vs $C_{q a}$
(2) Is $\omega^{q}(G)<1$ decidable?
(3) Embedding theorem: for any f.p. group G, get a non-local game such that Alice and Bob are forced to use G to play perfectly
(Caveat: but might need to use infinite-dimensional commuting-operator strategy to achieve this)

Applications to self-testing / device independent protocols?

The end

Thank-you!

Extra slide: Higman's group

$$
G=\left\langle a, b, c, d: a b a^{-1}=b^{2}, b c b^{-1}=c^{2}, c d c^{-1}=d^{2}, d a d^{-1}=a^{2}\right.
$$

Only finite-dimensional representation is the trivial representation
On the other hand, a, b, c, d are all non-trivial in G

