

Two-way assisted capacities for quantum and private communication

Riccardo Laurenza University of York

Based on the **PLOB** paper:

Pirandola, Laurenza, Ottaviani, Banchi

"Fundamental limits of repeaterless quantum communications" arXiv:1510.08863 (2015) – *Hopefully* soon on Nature Comms

QIP2017 - Westin, Seattle, Washington, USA (January 14-20, 2017)

Basic Problem

Consider the following tasks over a quantum channel:

QC = Quantum Communication – *transmission of qubits*

ED = Entanglement Distribution – sharing of ebits

QKD = Quantum Key Distribution – generation of secret bits

Basic Problem

Consider the following tasks over a quantum channel:

QC = **Q**uantum **C**ommunication

ED = Entanglement Distribution

QKD = Quantum Key Distribution – generation of secret bits

- transmission of qubits
- sharing of ebits

What are the maximum rates achievable by point-to-point protocols?

Basic Problem

Consider the following tasks over a quantum channel:

QC = **Q**uantum **C**ommunication

ED = Entanglement Distribution

QKD = Quantum Key Distribution

- transmission of qubits
- sharing of ebits
- generation of secret bits

What are the maximum rates achievable by point-to-point protocols?

2-way capacities of the channel Defined by optimizing the rates over **adaptive LOCCs**

(LOs assisted by unlimited 2-way CCs)

- Arbitrary task (can be QC, ED, QKD...)
- Arbitrary dimension (qubits, qudits, bosonic)

Quantum protocol assisted by adaptive LOCCs

Another adaptive LOCC and so on...

> LOCC-sequence defining the protocol $\mathcal{L} = \{\Lambda_0, \Lambda_1, \cdots, \Lambda_n\}$

LOCC-sequence defining the protocol \$\mathcal{L} = {\Lambda_0, \Lambda_1, \dots, \Lambda_n}\$
Output \$\rho_{ab}^n \approx \phi_n\$ target state defining the rate \$R_n\$ (bits/use)

> LOCC-sequence defining the protocol $\mathcal{L} = \{\Lambda_0, \Lambda_1, \cdots, \Lambda_n\}$

> Output $\rho_{ab}^n \approx \phi_n$ target state defining the rate R_n (bits/use)

Generic 2-way capacity of the channel

Two-way capacities and benchmarks

Two-way capacities and benchmarks

2-way capacities are **optimal point-to-point rates** No constraints on: U LOCCs Number of channel uses I Input energy

Therefore, general benchmarks for quantum repeaters

Bounding two-way capacities

$$\underbrace{Q_2(\mathcal{E}) \le K(\mathcal{E})}_{\mathcal{C}(\mathcal{E})} \le \mathbf{?}$$

General Reduction Method

- 1) Relative Entropy of Entanglement (REE)
- 2) LOCC-simulation of quantum channels
- 3) Teleportation Stretching of adaptive protocols

*Formulations are asymptotic for bosonic channels

$$Q_2(\mathcal{E}) \le K(\mathcal{E}) \le ?$$

REE bound for the channel

$$K(\mathcal{E}) \leq E_R^{\star}(\mathcal{E}) \coloneqq \sup_{\mathcal{L}} \lim_{n} \frac{E_R(\rho_{ab}^n)}{n}$$

[PLOB, Theorem 1]

$$Q_2(\mathcal{E}) \le K(\mathcal{E}) \le ?$$

REE bound for the channel

$$K(\mathcal{E}) \leq E_R^{\star}(\mathcal{E}) \coloneqq \sup_{\mathcal{L}} \lim_{n} \frac{E_R(\rho_{ab}^n)}{\mathbf{I}}$$
 [PLOB, Theorem 1]

REE computed on the output state

$$E_R(\rho_{\mathbf{ab}}^n) := \min_{\sigma \in \text{SEP}} S(\rho_{\mathbf{ab}}^n || \sigma)$$

$$Q_2(\mathcal{E}) \le K(\mathcal{E}) \le ?$$

REE bound for the channel

$$K(\mathcal{E}) \leq E_R^{\star}(\mathcal{E}) \coloneqq \sup_{\mathcal{L}} \lim_{n} \frac{E_R(\rho_{ab}^n)}{n}$$

[PLOB, Theorem 1]

PLOB gives <u>alternative</u> but equivalent proofs:

$$Q_2(\mathcal{E}) \le K(\mathcal{E}) \le ?$$

REE bound for the channel

$$K(\mathcal{E}) \leq E_R^{\star}(\mathcal{E}) \coloneqq \sup_{\mathcal{L}} \lim_{n} \frac{E_R(\rho_{ab}^n)}{n}$$

[PLOB, Theorem 1]

PLOB gives alternative but equivalent proofs:

*For **both DVs and CVs** justified by known arguments [Christiandl et al., CMP 311, 397 (2012)]

$$Q_2(\mathcal{E}) \le K(\mathcal{E}) \le ?$$

REE bound for the channel

$$K(\mathcal{E}) \leq E_R^{\star}(\mathcal{E}) \coloneqq \sup_{\mathcal{L}} \lim_{n} \frac{E_R(\rho_{ab}^n)}{n}$$

[PLOB, Theorem 1]

PLOB gives <u>alternative</u> but equivalent proofs:

Proof 1: Size grows (at most) exponentially* Proof 2: Energy grows (at most) exponentially

$$Q_2(\mathcal{E}) \le K(\mathcal{E}) \le ?$$

REE bound for the channel

$$K(\mathcal{E}) \leq E_R^{\star}(\mathcal{E}) \coloneqq \sup_{\mathcal{L}} \lim_{n} \frac{E_R(\rho_{ab}^n)}{n}$$

[PLOB, Theorem 1]

PLOB gives alternative but equivalent proofs:

Dimension of key system only

$$Q_2(\mathcal{E}) \le K(\mathcal{E}) \le ?$$

REE bound for the channel

$$K(\mathcal{E}) \leq E_R^{\star}(\mathcal{E}) \coloneqq \sup_{\mathcal{L}} \lim_{n} \frac{E_R(\rho_{ab}^n)}{n}$$

[PLOB, Theorem 1]

Difficult bound We need to simplify the output state (2) LOCC-simulation & (3) Teleportation stretching

LOCC-simulation of (any) quantum channel

*Asymptotic formulation for bosonic channels (LOCC may include parts of the channel)

- Precursory teleportation-based tool in BDSW, restricted to Pauli channels BDSW = [Bennett et al., PRA 54, 3824 (1996)]
- Different non-local tool in NC, restricted to programmable channels

NC = [Nielsen & Chuang, PRL 79, 321 (1997)]

Teleportation-stretching:

Reduction of an adaptive protocol to a block one

Transmission between adaptive LOCCs

Teleportation-stretching:

Reduction of an adaptive protocol to a block one

LOCC-simulation of the channel

Teleportation-stretching:

Reduction of an adaptive protocol to a block one

LOCC-simulation of the channel

Teleportation-stretching:

Reduction of an adaptive protocol to a block one

Stretching of the resource state

Teleportation-stretching:

Reduction of an adaptive protocol to a block one

Iteration and collapse of the LOCCs

Teleportation-stretching:

Reduction of an adaptive protocol to a block one

Teleportation-stretching:

- Maintain the task (QC, ED, QKD, any task!)
- Any channel
- Any dimension (finite or infinite)

Teleportation-stretching:

- Maintain the task (QC, ED, QKD, any task!)
- Any channel
- Any dimension (finite or infinite)

Precursory but restricted argument in BDSW:

- From QC to ED (task changing)
- Restricted to Pauli channels in finite dimension

BDSW = [Bennett et al., PRA 54, 3824 (1996)]

Combining the ingredients: REE + teleportation stretching

$$\mathcal{C}(\mathcal{E}) \leq E_R(\mathcal{E}) \coloneqq \sup_{\mathcal{L}} \lim_{n} \frac{E_R(\rho_{ab}^n)}{n}$$
 REE bound

Combining the ingredients: REE + teleportation stretching

$$\begin{aligned} \mathcal{C}(\mathcal{E}) &\leq E_R(\mathcal{E}) \coloneqq \sup_{\mathcal{L}} \lim_{n \to \infty} \frac{E_R(\rho_{\mathbf{ab}}^n)}{n} \quad \text{REE bound} \\ \text{Stretching} \quad \rho_{\mathbf{ab}}^n &= \overline{\Lambda}(\sigma^{\otimes n}) \\ & & \downarrow \\ E_R(\rho_{\mathbf{ab}}^n) &\leq nE_R(\sigma) \end{aligned}$$

Monotonicity & subadditivity of the REE

Combining the ingredients: REE + teleportation stretching

$$C(\mathcal{E}) \leq E_R(\mathcal{E}) \coloneqq \sup_{\mathcal{L}} \lim_{n \to \infty} \frac{E_R(\rho_{ab}^n)}{n} \quad \text{REE bound}$$

Stretching $\rho_{ab}^n = \overline{\Lambda}(\sigma^{\otimes n})$
 $E_R(\rho_{ab}^n) \leq nE_R(\sigma)$

Monotonicity & subadditivity of the REE

Single-letter bounds for 2-way capacities

Combining the ingredients: REE + teleportation stretching

$$\mathcal{C}(\mathcal{E}) \leq E_R(\sigma)$$

[PLOB, Theorem 5]

Single-letter bounds for 2-way capacities

Combining the ingredients: REE + teleportation stretching

$$\mathcal{C}(\mathcal{E}) \leq E_R(\sigma)$$

[PLOB, Theorem 5]

Tele-covariance[PLOB, Proposition 2]

If
$$\mathcal{E}$$
 is teleportation-covariant $\mathcal{E}(U\rho U^{\dagger}) = V\mathcal{E}(\rho)V^{\dagger}$

then $\sigma = \rho_{\mathcal{E}}$ (Choi-stretchable channel)

Single-letter bounds for 2-way capacities

Combining the ingredients: REE + teleportation stretching

$$\mathcal{C}(\mathcal{E}) \leq E_R(\sigma)$$

[PLOB, Theorem 5]

Tele-covariance[PLOB, Proposition 2]

If
$$\mathcal{E}$$
 is teleportation-covariant $\mathcal{E}(U\rho U^{\dagger}) = V\mathcal{E}(\rho)V^{\dagger}$

then $\sigma = \rho_{\mathcal{E}}$ (Choi-stretchable channel)

For a Choi-stretchable channel \mathcal{E} we have

$$\mathcal{C}(\mathcal{E}) \leq E_R(\rho_{\mathcal{E}})$$

*Asymptotic formulation for bosonic channels

Stretchable and Distillable Channels

Choi-stretchable channels

- Bosonic Gaussian channels
- Pauli channels

 $\mathcal{C}(\mathcal{E}) \leq E_R(\rho_{\mathcal{E}})$

Stretchable and Distillable Channels

Choi-stretchable channels

- Bosonic Gaussian channels
- Pauli channels

 $\mathcal{C}(\mathcal{E}) \leq E_R(\rho_{\mathcal{E}})$

Distillable channels

- Bosonic lossy channels
- Quantum-limited amplifiers
- Dephasing channels
- Erasure channels

 $D_1(\rho_{\mathcal{E}}) = \mathcal{C}(\mathcal{E}) = E_R(\rho_{\mathcal{E}})$

2-way capacities all established

Two-way capacities of distillable channels

 \Box Lossy channel (transmissivity η)

□ Quantum-limited amplifier (gain g)

Dephasing channel (probability p)

Erasure channel (probability p)

$$Q_2 = K = -\log_2(1-\eta)$$

$$Q_2 = K = -\log_2(1 - g^{-1})$$

$$Q_2 = K = 1 - H_2(p)^*$$

$$Q_2 = K = 1 - p$$

Only result previously known! [Bennett et al. PRL 78, 3217 (1997)]

*Similar results for arbitrary dim $d \ge 2$

See also the independent proof in [Goodenough et al. arXiv:1511.08710]

Two-way capacities of distillable channels

 \Box Lossy channel (transmissivity η)

$$Q_2 = K = -\log_2(1-\eta)$$

At long distances $(\eta \simeq 0)$ rate-loss scaling for repeaterless quantum communications (QKD) $K \simeq 1.44 \eta$ bits/use

*Standard fibre loss-rate (0.2dB/km)

Conclusions

New methodology

Channel's REE + Teleportation Stretching

Reduction of adaptive protocols to single-letter bounds

Our main results

- 2-way capacities of many channels (lossy, amplifiers, dephasing, erasure)
- Fundamental rate-loss scaling for optical quantum comms (1.44 bits/use)
- Benchmarks for quantum repeaters

Some recent developments and follow-up works

- Theory extended to repeaters and networks [Pirandola, arXiv:1601.00966]
- Single-hop multiuser networks (broadcast, multiple-access, interference channel) [Laurenza & Pirandola, arXiv:1603.07262]
- Quantum metrology and channel discrimination [Pirandola & Lupo, arXiv:1609.02160]
- Strong converse rates [Wilde, Tomamichel, Berta, arXiv:1602.08898] NEXT TALK