Semidefinite programming strong converse bounds for quantum channel capacities

Xin Wang

UTS: Centre for Quantum Software and Information

Joint work with Wei Xie, Runyao Duan (UTS:QSI)
Before

In last year’s QIP,

- Aram Harrow gave the tutorial of Quantum Shannon theory (also ask for non-trivial upper bounds for classical capacity),
- John Watrous gave the tutorial of Quantum Interactive Proofs and Semidefinite Programs.
In last year’s QIP,

- Aram Harrow gave the tutorial of Quantum Shannon theory (also ask for non-trivial upper bounds for classical capacity),
- John Watrous gave the tutorial of Quantum Interactive Proofs and Semidefinite Programs.

Let’s combine them!
Channel & capacity

- **Quantum Channel**: completely positive (CP) trace-preserving (TP) linear map \mathcal{N}.

\[\rho \rightarrow \text{Tr}_E (V \rho V^\dagger), \text{ with isometry } V : A \rightarrow B \otimes E \]

\[\rho_{AN} (\rho) \rightarrow \rho_{AB} (V \rho V^\dagger) \]

Capacity is the maximum rate for asymptotically error-free (classical, quantum or private) data transmission using the channel \mathcal{N} many times.
Channel & capacity

- **Quantum Channel**: completely positive (CP) trace-preserving (TP) linear map \mathcal{N}.
 - Stinespring rep. $\mathcal{N} : \rho \rightarrow \text{Tr}_E(V\rho V^\dagger)$, with isometry $V : A \rightarrow B \otimes E$
 - Complementary $\mathcal{N}^c : \rho \rightarrow \text{Tr}_B(V\rho V^\dagger)$
Introduction One-shot information theory Strong converse bounds Summary

Channel & capacity

- **Quantum Channel**: completely positive (CP) trace-preserving (TP) linear map \mathcal{N}.

- Stinespring rep. $\mathcal{N} : \rho \rightarrow \operatorname{Tr}_E(V \rho V^\dagger)$, with isometry $V : A \rightarrow B \otimes E$

- Complementary $\mathcal{N}^c : \rho \rightarrow \operatorname{Tr}_B(V \rho V^\dagger)$

- Choi-Jamiołkowski representation of \mathcal{N}:

$$J_{\mathcal{N}} = \sum_{ij} |i\rangle\langle j|_{A'} \otimes \mathcal{N}(|i\rangle\langle j|_A) = (\operatorname{id}_{A'} \otimes \mathcal{N})|\Phi_{A' A}\rangle |\Phi_{A' A}\rangle,$$

with $|\Phi_{A' A}\rangle = \sum_k |k_{A'}\rangle |k_A\rangle$.

Capacity is the maximum rate for asymptotically error-free (classical, quantum or private) data transmission using the channel \mathcal{N} many times.
Channel & capacity

- **Quantum Channel**: completely positive (CP) trace-preserving (TP) linear map \mathcal{N}.
- Stinespring rep. $\mathcal{N} : \rho \rightarrow \text{Tr}_E(V\rho V^\dagger)$, with isometry $V : A \rightarrow B \otimes E$
- Complementary $\mathcal{N}^c : \rho \rightarrow \text{Tr}_B(V\rho V^\dagger)$
- Choi-Jamiołkowski representation of \mathcal{N}:

$$J_{\mathcal{N}} = \sum_{ij} |i\rangle\langle j|_{A'} \otimes \mathcal{N}(|i\rangle\langle j|_A) = (\text{id}_{A'} \otimes \mathcal{N})|\Phi_{A'A}|\langle \Phi_{A'A}|,$$

with $|\Phi_{A'A}\rangle = \sum_k |k_{A'}\rangle|k_A\rangle$.
- Capacity is the maximum rate for asymptotically error-free (classical, quantum or private) data transmission using the channel \mathcal{N} many times.
Classical communication via quantum channels

- Classical capacity (Holevo’73, 98; Schumacher & Westmoreland’97):

\[
C(\mathcal{N}) = \sup_{k \to \infty} \frac{1}{k} \chi(\mathcal{N}^\otimes k),
\]

with \(\chi(\mathcal{N}) = \max\{(p_i;\rho_i)\} H(\sum_i p_i \mathcal{N}(\rho_i)) - \sum_i p_i H(\mathcal{N}(\rho_i)). \)
Classical communication via quantum channels

- Classical capacity (Holevo’73, 98; Schumacher & Westmoreland’97):

\[
C(\mathcal{N}) = \sup_{k \to \infty} \frac{1}{k} \chi(\mathcal{N}^\otimes k),
\]

with \(\chi(\mathcal{N}) = \max_{\{(p_i, \rho_i)\}} H(\sum_i p_i \mathcal{N}(\rho_i)) - \sum_i p_i H(\mathcal{N}(\rho_i)) \).

- Difficulties of evaluating \(C(\mathcal{N}) \)
 - \(\chi(\mathcal{N}) \): NP-hard (Beigi & Shor’07)
Classical communication via quantum channels

- Classical capacity (Holevo’73, 98; Schumacher & Westmoreland’97):
 \[C(N) = \sup_{k \to \infty} \frac{1}{k} \chi(N^\otimes k), \]
 with \(\chi(N) = \max_{\{p_i, \rho_i\}} H(\sum_i p_i N(\rho_i)) - \sum_i p_i H(N(\rho_i)). \)

- Difficulties of evaluating \(C(N) \):
 - \(\chi(N) \): NP-hard (Beigi & Shor’07)
 - Worse: \(\chi(N) \) is not additive (Hastings’09)
Classical communication via quantum channels

- Classical capacity (Holevo’73, 98; Schumacher & Westmoreland’97):

\[
C(\mathcal{N}) = \sup_{k \to \infty} \frac{1}{k} \chi(\mathcal{N} \otimes k),
\]

with \(\chi(\mathcal{N}) = \max\{ (p_i, \rho_i) \} \sum_i p_i H(\mathcal{N}(\rho_i)) - \sum_i p_i H(\mathcal{N}(\rho_i)) \).

- Difficulties of evaluating \(C(\mathcal{N}) \):
 - \(\chi(\mathcal{N}) \): NP-hard (Beigi & Shor’07)
 - Worse: \(\chi(\mathcal{N}) \) is not additive (Hastings’09)
 - Classical capacity of amplitude damping channel is unknown.
Practical setting and assisted communication

- Resource is finite and we are in the early stage of quantum information processing.
Practical setting and assisted communication

- Resource is finite and we are in the early stage of quantum information processing.
- **Practical question**: given n uses of the channel, how to efficiently evaluate or optimize the trade-off between
 - **Rate R**: the amount of information transmitted per channel use
 - **Error probability ϵ** of the information processing
Practical setting and assisted communication

- Resource is finite and we are in the early stage of quantum information processing.
- **Practical question**: given n uses of the channel, how to efficiently evaluate or optimize the trade-off between
 - **Rate** R: the amount of information transmitted per channel use
 - **Error probability** ϵ of the information processing
- Assisted capacities (use auxiliary resources)
 - **Motivation**: Increase capacities and simplify problem
Practical setting and assisted communication

- Resource is finite and we are in the early stage of quantum information processing.
- **Practical question**: given n uses of the channel, how to efficiently evaluate or optimize the trade-off between
 - **Rate R**: the amount of information transmitted per channel use
 - **Error probability ϵ** of the information processing

- Assisted capacities (use auxiliary resources)
 - **Motivation**: Increase capacities and simplify problem
 - Entanglement-assisted capacity (Bennett, Shor, Smolin, Thapliyal 1999, 2002)
Main question and outline

- **Non-asymptotic** communication capability
 - $p_{\text{succ}}(\mathcal{N}, R)$ - the maximum success probability of transmitting classical information at rate R
Main question and outline

- **Non-asymptotic** communication capability
 - $p_{\text{succ}}(\mathcal{N}, R)$ - the maximum success probability of transmitting classical information at rate R
 - $C^{(1)}(\mathcal{N}, \epsilon)$ - the maximum rate for transmission with error tolerance ϵ (or the one-shot ϵ-error capacity)
Main question and outline

- **Non-asymptotic** communication capability
 - $p_{\text{succ}}(\mathcal{N}, R)$ - the maximum success probability of transmitting classical information at rate R
 - $C^{(1)}(\mathcal{N}, \epsilon)$ - the maximum rate for transmission with error tolerance ϵ (or the one-shot ϵ-error capacity)

- **Asymptotic** communication capability
 - Non-trivial upper bounds for classical and quantum capacities of general quantum channels
Main question and outline

- **Non-asymptotic** communication capability
 - $\rho_{\text{succ}}(\mathcal{N}, R)$ - the maximum success probability of transmitting classical information at rate R
 - $C^{(1)}(\mathcal{N}, \epsilon)$ - the maximum rate for transmission with error tolerance ϵ (or the one-shot ϵ-error capacity)

- **Asymptotic** communication capability
 - Non-trivial upper bounds for classical and quantum capacities of general quantum channels
 - Estimation of the capacities for basic channels
Main question and outline

- **Non-asymptotic** communication capability
 - $p_{\text{succ}}(\mathcal{N}, R)$ - the maximum success probability of transmitting classical information at rate R
 - $C^{(1)}(\mathcal{N}, \epsilon)$ - the maximum rate for transmission with error tolerance ϵ (or the one-shot ϵ-error capacity)

- **Asymptotic** communication capability
 - Non-trivial upper bounds for classical and quantum capacities of general quantum channels
 - Estimation of the capacities for basic channels

- All these results are given by SDPs.
 - An analytical tool in proof (Watrous’ Book)
 - There are efficient algorithms.
 - Implementations: CVX for MATLAB, toolbox QETLAB.
Non-asymptotic communication capability
Optimal success probability and capacity

- (Shannon, 1948) The fundamental problem of communication is that of reproducing at one point, either exactly or approximately, a message selected at another point.

\[k \in \{1, \ldots, m\} \xrightarrow{A} E \xrightarrow{N} D \xrightarrow{B} \hat{k} \in \{1, \ldots, m\} \]

\[M = D \circ N \circ E \]
Optimal success probability and capacity

- (Shannon, 1948) The fundamental problem of communication is that of reproducing at one point, either exactly or approximately, a message selected at another point.

\[k \in \{1, \ldots, m\} \xrightarrow{A} \mathcal{E} \xrightarrow{\mathcal{N}} \mathcal{D} \xrightarrow{B} \hat{k} \in \{1, \ldots, m\} \]

\[\mathcal{M} = \mathcal{D} \circ \mathcal{N} \circ \mathcal{E} \]

- Optimal success probability

\[p_s(\mathcal{N}, m) := \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} p(k = \hat{k}) \]

\[= \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} \text{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|]. \]
Optimal success probability and capacity

- (Shannon, 1948) The fundamental problem of communication is that of reproducing at one point, either exactly or approximately, a message selected at another point.

\[k \in \{1, \ldots, m\} \xrightarrow{A} \mathcal{E} \xrightarrow{\mathcal{N}} \mathcal{D} \xrightarrow{B} \hat{k} \in \{1, \ldots, m\} \]

\[\mathcal{M} = \mathcal{D} \circ \mathcal{N} \circ \mathcal{E} \]

- Optimal success probability

\[p_s(\mathcal{N}, m) := \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} p(k = \hat{k}) \]

\[= \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} \text{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|]. \]

- Classical capacity \(C(\mathcal{N}) := \sup\{r : \lim_{n \to \infty} p_s(\mathcal{N}^\otimes n, 2^r n) = 1\}. \)
Optimal success probability and capacity

- (Shannon, 1948) The fundamental problem of communication is that of reproducing at one point, either exactly or approximately, a message selected at another point.

\[k \in \{1, \ldots, m\} \quad \xrightarrow{A} \quad \mathcal{E} \xrightarrow{\mathcal{N}} \mathcal{D} \xrightarrow{B} \hat{k} \in \{1, \ldots, m\} \]

\[\mathcal{M} = \mathcal{D} \circ \mathcal{N} \circ \mathcal{E} \]

- Optimal success probability

\[p_s(\mathcal{N}, m) : = \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} p(k = \hat{k}) \]

\[= \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} \text{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|]. \]

- Classical capacity \(C(\mathcal{N}) := \sup\{r : \lim_{n \to \infty} p_s(\mathcal{N}^\otimes n, 2^{rn}) = 1\} \).

- Question: how to solve or estimate \(p_s(\mathcal{N}, m) \)?
General codes

\[p_s(\mathcal{N}, m) = \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} \text{Tr} \mathcal{M}(|k\langle k|)|k\rangle\langle k|, \text{ with } \mathcal{M} = \mathcal{D} \circ \mathcal{N} \circ \mathcal{E}. \]
General codes

- $p_s(N, m) = \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} \text{Tr} \mathcal{M}(|k\langle k|) |k\rangle\langle k|$, with $\mathcal{M} = \mathcal{D} \circ \mathcal{N} \circ \mathcal{E}$.

- **No-signalling code** Π is bipartite channel $\Pi : \mathcal{L}(A_i) \otimes \mathcal{L}(B_i) \rightarrow \mathcal{L}(A_o) \otimes \mathcal{L}(B_o)$ with NS constraints (Leung & Matthews’16; Duan & Winter’16), i.e., A and B cannot use the channel to communicate classical information.

- Also see causal operations (Beckman, Gottesman, Nielsen, Preskill’01; Eggeling, Schlingemann, Werner’02, Piani, Horodecki et al.’06).
General codes

- \(p_s(\mathcal{N}, m) = \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} \text{Tr} \mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|, \) with \(\mathcal{M} = \mathcal{D} \circ \mathcal{N} \circ \mathcal{E}. \)

- **No-signalling code** \(\Pi \) is bipartite channel
 \(\Pi : \mathcal{L}(A_i) \otimes \mathcal{L}(B_i) \rightarrow \mathcal{L}(A_o) \otimes \mathcal{L}(B_o) \)
 with NS constraints (Leung & Matthews’16; Duan & Winter’16), i.e., \(A \) and \(B \) cannot use the channel to communicate classical information.

- Also see causal operations (Beckman, Gottesman, Nielsen, Preskill’01; Eggeling, Schlingemann, Werner’02, Piani, Horodecki et al.’06).

- Classical (Cubitt, Leung, Matthews, Winter’11; Matthews’12)
General codes

- \(p_s(N, m) = \sup_{\mathcal{E}, \mathcal{D}} \frac{1}{m} \sum_{k=1}^{m} \text{Tr} \mathcal{M}(|k\rangle\langle k|) |k\rangle\langle k|, \) with \(\mathcal{M} = \mathcal{D} \circ N \circ \mathcal{E}. \)

- **No-signalling code** \(\Pi \) is bipartite channel \(\Pi : \mathcal{L}(A_i) \otimes \mathcal{L}(B_i) \rightarrow \mathcal{L}(A_o) \otimes \mathcal{L}(B_o) \) with NS constraints (Leung & Matthews’16; Duan & Winter’16), i.e., A and B cannot use the channel to communicate classical information.

- Also see causal operations (Beckman, Gottesman, Nielsen, Preskill’01; Eggeling, Schlingemann, Werner’02, Piani, Horodecki et al.’06).

- Classical (Cubitt, Leung, Matthews, Winter’11; Matthews’12)

- A **hierarchy** of codes by adding constraints on \(\Pi \), e.g., Positive-partial-transpose preserving (PPT) constraint (Rains’01; Leung & Matthews’16).
Optimal success probability

Optimal success probability of Ω codes ($\Omega = \text{NS}$ or $\text{NS} \cap \text{PPT}$ in this talk)

$$p_{s,\Omega}(\mathcal{N}, m) = \sup_{\Pi \in \Omega} \frac{1}{m} \sum_{k=1}^{m} \text{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|], \quad \mathcal{M} \text{ given by } \mathcal{N}, \Pi.$$
Result 1: Optimal success probability for NS/PPT codes

Theorem

For any \mathcal{N}, the optimal success probability to transmit m messages assisted by $\text{NS}\cap\text{PPT}$ codes is given by the following SDP:

$$p_{s,\text{NS}\cap\text{PPT}}(\mathcal{N}, m) = \max \text{Tr} \ J_{\mathcal{N}} F_{AB}$$

s.t. $0 \leq F_{AB} \leq \rho_A \otimes 1_B$, $\text{Tr} \rho_A = 1$,

$$\text{Tr}_A F_{AB} = 1_B / m,$$

$$0 \leq F_{AB}^T \leq \rho_A \otimes 1_B \ (\text{PPT}),$$

where $J_{\mathcal{N}}$ is the Choi-Jamiołkowski matrix of \mathcal{N}.

When assisted by NS codes, one can remove PPT constraint to obtain

$$p_{s,\text{NS}}(\mathcal{N}, m) = \max \text{Tr} \ J_{\mathcal{N}} F_{AB} \ s.t. \ 0 \leq F_{AB} \leq \rho_A \otimes 1_B$, $\text{Tr} \rho_A = 1$,

$$\text{Tr}_A F_{AB} = 1_B / m.$$
Sketch of proof

- Target:

\[p_{s,\Omega}(\mathcal{N}, m) = \sup_{\Pi \in \Omega} \frac{1}{m} \sum_{k=1}^{m} \text{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|], \quad (1) \]
Sketch of proof

- **Target:**
 \[p_{s,\Omega}(\mathcal{N}, m) = \sup_{\Pi \in \Omega} \frac{1}{m} \sum_{k=1}^{m} \text{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|] \quad (1) \]

- Recall \(J_{\mathcal{M}} = \sum_{ij} |i\rangle\langle j|_{A_i} \otimes \mathcal{M}(|i\rangle\langle j|_{A_i}) \) and let \(V = \sum_{k=1}^{m} |kk\rangle\langle kk| \)

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle
Sketch of proof

- Target:
 \[p_{s, \Omega}(\mathcal{N}, m) = \sup_{\Pi \in \Omega} \frac{1}{m} \sum_{k=1}^{m} \text{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|], \quad (1) \]

- Recall \(J_{\mathcal{M}} = \sum_{ij} |i\rangle\langle j|_{A_i} \otimes \mathcal{M}(|i\rangle\langle j|_{A_i}) \) and let \(V = \sum_{k=1}^{m} |kk\rangle\langle kk| \)

 Key: \[\frac{1}{m} \sum_{k=1}^{m} \text{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|] = \frac{1}{m} \text{Tr}[J_{\mathcal{M}} V_{A_iB_o}]. \quad (2) \]
Sketch of proof

- **Target:**

\[
p_{s,\Omega}(\mathcal{N}, m) = \sup_{\Pi \in \Omega} \frac{1}{m} \sum_{k=1}^{m} \text{Tr}[\mathcal{M}(|k\rangle\langle k|) |k\rangle\langle k|],
\]

(1)

- **Recall** \(J_\mathcal{M} = \sum_{ij} |i\rangle\langle j|_{A_i} \otimes \mathcal{M}(|i\rangle\langle j|_{A_i}) \) and let \(V = \sum_{k=1}^{m} |kk\rangle\langle kk| \)

Key:

\[
\frac{1}{m} \sum_{k=1}^{m} \text{Tr}[\mathcal{M}(|k\rangle\langle k|) |k\rangle\langle k|] = \frac{1}{m} \text{Tr}[J_\mathcal{M} V_{A_i B_o}].
\]

(2)

- **Moreover,** \(J_\mathcal{M} \) can be represented by \(J_\mathcal{N} \) and \(J_\Pi \) (Leung & Matthews’16; based on Chiribella, D’Ariano, Perinotti’08)

\[
J_\mathcal{M} = \text{Tr}_{A_o B_i} (J_\mathcal{N}^T \otimes 1_{A_i B_o}) J_\Pi.
\]

(3)
Sketch of proof

- Target:
 \[p_{s,\Omega}(\mathcal{N}, m) = \sup_{\Pi \in \Omega} \frac{1}{m} \sum_{k=1}^{m} \text{Tr}[\mathcal{M}(\langle k|k\rangle)|k\rangle\langle k|], \]
 \hspace{1cm} (1)

- Recall \(J_{\mathcal{M}} = \sum_{ij} \langle i| j_{A_i}' \otimes \mathcal{M}(\langle i| j_{A_i}) \) and let \(V = \sum_{k=1}^{m} |kk\rangle\langle kk| \)

 Key:
 \[\frac{1}{m} \sum_{k=1}^{m} \text{Tr}[\mathcal{M}(\langle k|k\rangle)|k\rangle\langle k|] = \frac{1}{m} \text{Tr}[J_{\mathcal{M}} V_{A_i B_o}]. \]
 \hspace{1cm} (2)

- Moreover, \(J_{\mathcal{M}} \) can be represented by \(J_{\mathcal{N}} \) and \(J_{\Pi} \) (Leung & Matthews’16; based on Chiribella, D’Ariano, Perinotti’08)

 \[J_{\mathcal{M}} = \text{Tr}_{A_o B_i} (J_{\mathcal{N}}^T \otimes 1_{A_i B_o}) J_{\Pi}. \]
 \hspace{1cm} (3)

- Combining Eqs. (1), (2), (3), we have

 \[p_{s,\Omega}(\mathcal{N}, m) = \max_{\Pi \in \Omega} \text{Tr}[(J_{\mathcal{N}}^T \otimes 1_{A_i B_o}) J_{\Pi}(1_{A_o B_i} \otimes V_{A_i B_o})]/m, \]
Sketch of proof

- **Target:**
 \[p_{s,\Omega}(\mathcal{N}, m) = \sup_{\Pi \in \Omega} \frac{1}{m} \sum_{k=1}^{m} \text{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|], \quad (1) \]

- **Recall** \(J_{\mathcal{M}} = \sum_{ij} |i\rangle\langle j|_{A_i} \otimes \mathcal{M}(|i\rangle\langle j|_{A_i}) \) and let \(V = \sum_{k=1}^{m} |kk\rangle\langle kk| \)

 Key:
 \[\frac{1}{m} \sum_{k=1}^{m} \text{Tr}[\mathcal{M}(|k\rangle\langle k|)|k\rangle\langle k|] = \frac{1}{m} \text{Tr}[J_{\mathcal{M}} V_{A_iB_o}]. \quad (2) \]

- **Moreover,** \(J_{\mathcal{M}} \) can be represented by \(J_{\mathcal{N}} \) and \(J_{\Pi} \) (Leung & Matthews’16; based on Chiribella, D’Ariano, Perinotti’08)
 \[J_{\mathcal{M}} = \text{Tr}_{A_oB_i}(J_{\mathcal{N}}^T \otimes 1_{A_iB_o}) J_{\Pi}. \quad (3) \]

- **Combining Eqs. (1), (2), (3), we have**
 \[p_{s,\Omega}(\mathcal{N}, m) = \max_{\Pi \in \Omega} \frac{\text{Tr}[(J_{\mathcal{N}}^T \otimes 1_{A_iB_o}) J_{\Pi}(1_{A_oB_i} \otimes V_{A_iB_o})]}{m}, \]

- Imposing the NS and PPT constraints of \(\Pi \) to obtain the SDP.
- Exploit the **permutation invariance** of \(V_{A_iB_o} \) to simplify SDP.
Example: assess the performance of AD channel

- For amplitude damping channel $\mathcal{N}_\gamma^{AD}(\rho) = \sum_{i=0}^{1} E_i \rho E_i^\dagger$ with $E_0 = |0\rangle\langle 0| + \sqrt{1 - \gamma} |1\rangle\langle 1|$ and $E_1 = \sqrt{\gamma} |0\rangle\langle 1|$, if we use the channel 3 times, the optimal success probability to transmit 1 bit is given as follows:
Example: assess the preformance of AD channel

- For amplitude damping channel $\mathcal{N}^{AD}_\gamma(\rho) = \sum_{i=0}^{1} E_i \rho E_i^\dagger$ with $E_0 = |0\rangle\langle 0| + \sqrt{1 - \gamma}|1\rangle\langle 1|$ and $E_1 = \sqrt{\gamma}|0\rangle\langle 1|$,
- if we use the channel 3 times, the optimal success probabilty to transmit 1 bit is given as follows:

![Graph showing success probability vs. γ from 0 to 1]
Result 2: One-shot capacities

- One-shot ϵ-error capacity assisted with Ω-codes:

$$C^{(1)}_{\Omega}(N, \epsilon) := \sup \{\log \lambda : 1 - p_{s,\Omega}(N, \lambda) \leq \epsilon\}.$$
Result 2: One-shot capacities

- One-shot ϵ-error capacity assisted with Ω-codes:

$$C^{(1)}_\Omega(\mathcal{N}, \epsilon) := \sup \{ \log \lambda : 1 - p_{s,\Omega}(\mathcal{N}, \lambda) \leq \epsilon \}.$$

Theorem

For given channel \mathcal{N} and error threshold ϵ,

$$C^{(1)}_{\text{NS} \cap \text{PPT}}(\mathcal{N}, \epsilon) = -\log \min \eta \text{ s.t.} \quad 0 \leq F_{AB} \leq \rho_A \otimes 1_B, \ Tr \rho_A = 1,$$

$$Tr_A F_{AB} = \eta 1_B, \ Tr J_N F_{AB} \geq 1 - \epsilon,$$

$$0 \leq F_{AB}^{TB} \leq \rho_A \otimes 1_B \ (\text{PPT}).$$

To obtain $C^{(1)}_{\text{NS}}(\mathcal{N}, \epsilon)$, one only needs to remove the PPT constraint:

$$C^{(1)}_{\text{NS}}(\mathcal{N}, \epsilon) = -\log \min \eta \text{ s.t.} \quad 0 \leq F_{AB} \leq \rho_A \otimes 1_B, \ Tr \rho_A = 1,$$

$$Tr_A F_{AB} = \eta 1_B, \ Tr J_N F_{AB} \geq 1 - \epsilon.$$
Result 2: One-shot capacities

- One-shot ϵ-error capacity assisted with Ω-codes:

\[
C_{\Omega}^{(1)}(\mathcal{N}, \epsilon) := \sup \{ \log \lambda : 1 - p_{s,\Omega}(\mathcal{N}, \lambda) \leq \epsilon \}.
\]

Theorem

For given channel \mathcal{N} and error threshold ϵ,

\[
C_{\text{NS} \cap \text{PPT}}^{(1)}(\mathcal{N}, \epsilon) = -\log \min \eta \quad \text{s.t.} \quad 0 \leq F_{AB} \leq \rho_A \otimes 1_B, \quad \text{Tr} \rho_A = 1,
\]
\[
\text{Tr}_A F_{AB} = \eta 1_B, \quad \text{Tr} J_{\mathcal{N}} F_{AB} \geq 1 - \epsilon,
\]
\[
0 \leq F_{AB}^{T_B} \leq \rho_A \otimes 1_B \quad \text{(PPT)},
\]

To obtain $C_{\text{NS}}^{(1)}(\mathcal{N}, \epsilon)$, one only needs to remove the PPT constraint:

\[
C_{\text{NS}}^{(1)}(\mathcal{N}, \epsilon) = -\log \min \eta \quad \text{s.t.} \quad 0 \leq F_{AB} \leq \rho_A \otimes 1_B, \quad \text{Tr} \rho_A = 1,
\]
\[
\text{Tr}_A F_{AB} = \eta 1_B, \quad \text{Tr} J_{\mathcal{N}} F_{AB} \geq 1 - \epsilon.
\]

- Study zero-error capacity by setting $\epsilon = 0$, e.g., $C_{\text{NS}}^{(1)}(\mathcal{N}, 0)$ recovers the one-shot NS assisted zero-error capacity in (Duan & Winter’16).
Comparison with previous converse bounds

- Converse for classical channel (Polyanskiy, Poor, Verdú 2010) and classical-quantum channel (Wang & Renner 2010).
- (Matthews & Wehner 2014) shows SDP converse bounds

\[
C_E^{(1)}(\mathcal{N}, \epsilon) \leq \max_{\rho_A} \min_{\sigma_B} D^\epsilon_H((id_A' \otimes \mathcal{N})(\rho_{A'}A)||\rho_{A'} \otimes \sigma_B),
\]

\[
C^{(1)}(\mathcal{N}, \epsilon) \leq \max_{\rho_A} \min_{\sigma_B} D^\epsilon_{H,PPT}((id_A' \otimes \mathcal{N})(\rho_{A'}A)||\rho_{A'} \otimes \sigma_B),
\]

where \(D^\epsilon_H\) and \(D^\epsilon_{H,PPT}\) are hypothesis testing relative entropies.

- (Datta & Hsieh’13) gives converse for \(C_E^{(1)}(\mathcal{N}, \epsilon)\) (hard to compute).
Comparsion with previous converse bounds

- Converse for classical channel (Polyanskiy, Poor, Verdú 2010) and classical-quantum channel (Wang & Renner 2010).
- (Matthews & Wehner 2014) shows SDP converse bounds

\[
C_E^{(1)}(\mathcal{N}, \epsilon) \leq \max_{\rho_A} \min_{\sigma_B} D_H^\epsilon((id_{A'} \otimes \mathcal{N})(\rho_{A'A}) \| \rho_{A'} \otimes \sigma_B),
\]

\[
C^{(1)}(\mathcal{N}, \epsilon) \leq \max_{\rho_A} \min_{\sigma_B} D_{H,PPT}^\epsilon((id_{A'} \otimes \mathcal{N})(\rho_{A'A}) \| \rho_{A'} \otimes \sigma_B),
\]

where \(D_H^\epsilon \) and \(D_{H,PPT}^\epsilon \) are hypothesis testing relative entropies.

- (Datta & Hsieh’13) gives converse for \(C_E^{(1)}(\mathcal{N}, \epsilon) \) (hard to compute).
- One-shot \(\epsilon \)-error capacities can provide better efficiently computable converse bounds:

\[
C_E^{(1)}(\mathcal{N}, \epsilon) \leq C_{NS}^{(1)}(\mathcal{N}, \epsilon) \leq \max_{\rho_A} \min_{\sigma_B} D_H^\epsilon((id_{A'} \otimes \mathcal{N})(\rho_{A'A}) \| \rho_{A'} \otimes \sigma_B),
\]

\[
C^{(1)}(\mathcal{N}, \epsilon) \leq C_{NS\cap PPT}^{(1)}(\mathcal{N}, \epsilon) \leq \max_{\rho_A} \min_{\sigma_B} D_{H,PPT}^\epsilon((id_{A'} \otimes \mathcal{N})(\rho_{A'A}) \| \rho_{A'} \otimes \sigma_B).
\]

The blue inequalities can be strict for amplitude damping channels.
Asymptotic communication capability
The converse part of the HSW theorem due to Holevo (1973) only establishes a **weak converse**, which states that there cannot be an error-free communication scheme if rate exceeds capacity.
Weak vs Strong Converse

- The converse part of the HSW theorem due to Holevo (1973) only establishes a **weak converse**, which states that there cannot be an error-free communication scheme if rate exceeds capacity.
- A **strong converse bound**: $p_{\text{succ}} \rightarrow 0$ as n increases if the rate exceeds this bound.
• The converse part of the HSW theorem due to Holevo (1973) only establishes a weak converse, which states that there cannot be an error-free communication scheme if rate exceeds capacity.

• A strong converse bound: $p_{\text{succ}} \to 0$ as n increases if the rate exceeds this bound.

• If the capacity of a channel is also its strong converse bound, then the strong converse property holds.
Result 3: Strong converse bound for classical capacity

- Known strong converse bound: the entanglement-assisted capacity (Bennett, Shor, Smolin, Thapliyal 1999, 2002)

Theorem (SDP strong converse bound for C)

For any quantum channel \mathcal{N},

$$C(\mathcal{N}) \leq C_\beta(\mathcal{N}) = \log \min \text{Tr} S_B$$

s.t. $-R_{AB} \leq J_{\mathcal{N}}^{TB} \leq R_{AB}$,

$$-\mathbb{1}_A \otimes S_B \leq R_{AB}^{TB} \leq \mathbb{1}_A \otimes S_B.$$

And $p_{\text{succ}} \to 0$ when the rate exceeds $C_\beta(\mathcal{N})$.

Properties:

- A relaxed bound: $C(\mathcal{N}) \leq C_\beta(\mathcal{N}) \leq \log d_B \| J_{\mathcal{N}}^{TB} \|_\infty$.
- For qudit noiseless channel I_d, $C(I_d) = C_\beta(I_d) = \log d$.
- $C_\beta(\mathcal{N}_1 \otimes \mathcal{N}_2) = C_\beta(\mathcal{N}_1) + C_\beta(\mathcal{N}_2)$ for any \mathcal{N}_1 and \mathcal{N}_2.
Sketch of proof

- **Subadditive** bounds on p_s (Tool: duality of SDP)

 \[
 p_{s,\text{NS} \cap \text{PPT}}(\mathcal{N} \otimes n, 2^{rn}) \leq p_s^+(\mathcal{N} \otimes n, 2^{rn}) \leq p_s^+(\mathcal{N}, 2^r)^n, \tag{4}
 \]

 where

 \[
 p_s^+(\mathcal{N}, m) = \min \text{ Tr } Z_B \text{ s.t. } -R_{AB} \leq J^T_B \leq R_{AB},
 \]

 \[
 -m1_A \otimes Z_B \leq R^T_{AB} \leq m1_A \otimes Z_B. \tag{5}
 \]
Sketch of proof

- **Subadditive** bounds on p_s (Tool: duality of SDP)

\[
p_{s,\text{NS}\cap\text{PPT}}(\mathcal{N}^\otimes n, 2^{rn}) \leq p_s^+(\mathcal{N}^\otimes n, 2^{rn}) \leq p_s^+(\mathcal{N}, 2^r)^n,
\]

where

\[
p_s^+(\mathcal{N}, m) = \min \quad \text{Tr } Z_B \quad \text{s.t.} \quad -R_{AB} \leq J_B^T_{\mathcal{N}} \leq R_{AB},
- m1_A \otimes Z_B \leq R_{AB}^T \leq m1_A \otimes Z_B.
\]

- For any $r > C_\beta(\mathcal{N})$, one can prove that $p_s^+(\mathcal{N}, 2^r) < 1$. Thus,

\[
p_{s,\text{NS}\cap\text{PPT}}(\mathcal{N}^\otimes n, 2^{rn}) \leq p_s^+(\mathcal{N}, 2^r)^n \rightarrow 0, \quad \text{(when } n \text{ increases)}
\]
Application 1: Amplitude damping channel

For amplitude damping channel,

\[C(\mathcal{N}_{\gamma}^{AD}) \leq C_{\beta}(\mathcal{N}_{\gamma}^{AD}) = \log(1 + \sqrt{1 - \gamma}). \]
Application 1: Amplitude damping channel

For amplitude damping channel,

\[C(\mathcal{N}_\gamma^{AD}) \leq C_\beta(\mathcal{N}_\gamma^{AD}) = \log(1 + \sqrt{1 - \gamma}). \]

- **Solid line** depicts our bound.
- **Dashed line** depicts the previously best upper bound (Brandão, Eisert, Horodecki, Yang 2011).
- **Dotted line** depicts the lower bound (Giovannetti and Fazio 2005).
Application 1: Amplitude damping channel

For amplitude damping channel,

\[C(\mathcal{N}^{AD}_\gamma) \leq C_\beta(\mathcal{N}^{AD}_\gamma) = \log(1 + \sqrt{1 - \gamma}). \]

- **Solid line** depicts our bound.
- **Dashed line** depicts the previously best upper bound (Brandão, Eisert, Horodecki, Yang 2011).
- **Dotted line** depicts the lower bound (Giovannetti and Fazio 2005).
- Note that \(C_\beta(\mathcal{N}^{AD}_\gamma) \geq 1 \) when \(\gamma \leq 0.5 \).
Application 1: Amplitude damping channel

For amplitude damping channel,

\[C(\mathcal{N}^{AD}_\gamma) \leq C_\beta(\mathcal{N}^{AD}_\gamma) = \log(1 + \sqrt{1 - \gamma}). \]

- **Solid line** depicts our bound.
- **Dashed line** depicts the previously best upper bound (Brandão, Eisert, Horodecki, Yang 2011).
- **Dotted line** depicts the lower bound (Giovannetti and Fazio 2005).
- Note that \(C_E(\mathcal{N}^{AD}_\gamma) \geq 1 \) when \(\gamma \leq 0.5 \).
- Problem: how to further improve the lower bound or upper bound?
Application 2: Strong converse property for new channels

- Previous known channels:
 - classical-quantum channels (Ogawa, Nagaoka’99; Winter’99)
 - particular covariant quantum channels (Koenig and Wehner’09)
 - entanglement-breaking, Hadamard channels (Wilde, Winter, Yang’14).
 - Optical quantum channels (Bardhan, et al.’16)

Applying the strong converse bound C_{β}, $C(N_\alpha) = C_{NS} \cap \text{PPT}(N_\alpha) = C_{\beta}(N_\alpha) = 1$.

In (W. & D.,1608.04508), $C_{E}(N_\alpha) = 2 < \log \vartheta(N)$, and $\vartheta(N)$ is the quantum Lovász number (Duan, Severini, Winter’13).

In particular, $Q(N_\alpha) < 1 = P(N_\alpha) = C(N_\alpha) = \frac{1}{2}C_{E}(N_\alpha)$.
Application 2: Strong converse property for new channels

- Previous known channels:
 - classical-quantum channels (Ogawa, Nagaoka’99; Winter’99)
 - particular covariant quantum channels (Koenig and Wehner’09)
 - entanglement-breaking, Hadamard channels (Wilde, Winter, Yang’14).
 - Optical quantum channels (Bardhan, et al.’16)
- The channel from A to B is given by $\mathcal{N}_\alpha(\rho) = E_0 \rho E_0^\dagger + E_1 \rho E_1^\dagger$ ($0 < \alpha \leq \pi/4$) with

 $E_0 = \sin \alpha |0\rangle\langle 1| + |1\rangle\langle 2|$, $E_1 = \cos \alpha |2\rangle\langle 1| + |1\rangle\langle 0|$.

Applying the strong converse bound C_β, $C(\mathcal{N}_\alpha) = C_{\beta\text{NS} \cap \text{PPT}}(\mathcal{N}_\alpha) = C_\beta(\mathcal{N}_\alpha) = 1$.

In (W. & D.,1608.04508), $C_E(\mathcal{N}_\alpha) = 2 < \log \vartheta(\mathcal{N})$, and $\vartheta(\mathcal{N})$ is the quantum Lovász number (Duan, Severini, Winter’13).

In particular, $Q(\mathcal{N}_\alpha) < 1 = P(\mathcal{N}_\alpha) = C(\mathcal{N}_\alpha) = 1/2 C_E(\mathcal{N}_\alpha)$.

Xin Wang (UTS:QSI) | SDP strong converse bounds for quantum channel capacities | QIP 17, Microsoft Research, Seattle
Application 2: Strong converse property for new channels

- Previous known channels:
 - classical-quantum channels (Ogawa, Nagaoka’99; Winter’99)
 - particular covariant quantum channels (Koenig and Wehner’09)
 - entanglement-breaking, Hadamard channels (Wilde, Winter, Yang’14).
 - Optical quantum channels (Bardhan, et al.’16)
- The channel from A to B is given by $\mathcal{N}_\alpha(\rho) = E_0 \rho E_0^\dagger + E_1 \rho E_1^\dagger$ ($0 < \alpha \leq \pi/4$) with

 \[E_0 = \sin \alpha |0\rangle\langle 1| + |1\rangle\langle 2|, \ E_1 = \cos \alpha |2\rangle\langle 1| + |1\rangle \langle 0|. \]

- Applying the strong converse bound C_β,

 \[C(\mathcal{N}_\alpha) = C_{\text{NS} \cap \text{PPT}}(\mathcal{N}_\alpha) = C_\beta(\mathcal{N}_\alpha) = 1. \]
Application 2: Strong converse property for new channels

- Previous known channels:
 - classical-quantum channels (Ogawa, Nagaoka’99; Winter’99)
 - particular covariant quantum channels (Koenig and Wehner’09)
 - entanglement-breaking, Hadamard channels (Wilde, Winter, Yang’14).
 - Optical quantum channels (Bardhan, et al.’16)

- The channel from A to B is given by $\mathcal{N}_\alpha(\rho) = E_0 \rho E_0^\dagger + E_1 \rho E_1^\dagger$ ($0 < \alpha \leq \pi/4$) with

$$E_0 = \sin \alpha |0\rangle\langle 1| + |1\rangle\langle 2|, \quad E_1 = \cos \alpha |2\rangle\langle 1| + |1\rangle\langle 0|.$$

- Applying the strong converse bound C_β,

$$C(\mathcal{N}_\alpha) = C_{\text{NSnPPT}}(\mathcal{N}_\alpha) = C_\beta(\mathcal{N}_\alpha) = 1.$$

- In (W. & D., 1608.04508), $C_E(\mathcal{N}_\alpha) = 2 < \log \vartheta(\mathcal{N})$, and $\vartheta(\mathcal{N})$ is the quantum Lovász number (Duan, Severini, Winter’13).
Application 2: Strong converse property for new channels

- Previous known channels:
 - classical-quantum channels (Ogawa, Nagaoka’99; Winter’99)
 - particular covariant quantum channels (Koenig and Wehner’09)
 - entanglement-breaking, Hadamard channels (Wilde, Winter, Yang’14).
 - Optical quantum channels (Bardhan, et al.’16)

- The channel from \(A \) to \(B \) is given by
 \[
 \mathcal{N}_\alpha(\rho) = E_0 \rho E_0^\dagger + E_1 \rho E_1^\dagger
 \]
 \((0 < \alpha \leq \pi/4)\) with
 \[
 E_0 = \sin \alpha |0\rangle\langle 1| + |1\rangle\langle 2|, \quad E_1 = \cos \alpha |2\rangle\langle 1| + |1\rangle\langle 0|.
 \]

- Applying the strong converse bound \(C_\beta \),
 \[
 C(\mathcal{N}_\alpha) = C_{\text{NSnPPT}}(\mathcal{N}_\alpha) = C_\beta(\mathcal{N}_\alpha) = 1.
 \]

- In (W. & D., 1608.04508), \(C_E(\mathcal{N}_\alpha) = 2 < \log \vartheta(\mathcal{N}) \), and \(\vartheta(\mathcal{N}) \) is the quantum Lovász number (Duan, Severini, Winter’13).

- In particular,
 \[
 Q(\mathcal{N}_\alpha) < 1 = P(\mathcal{N}_\alpha) = C(\mathcal{N}_\alpha) = \frac{1}{2} C_E(\mathcal{N}_\alpha).
 \]
Quantum capacity

- Quantum capacity is established by (Lloyd, Shor, Devetak 97-05) & (Barnum, Nielsen, Schumacher 96-00)

\[Q(\mathcal{N}) = \lim_{m \to \infty} \frac{1}{m} I_c(\mathcal{N}^\otimes m). \]

- Coherent information \(I_c(\mathcal{N}) := \max_{\rho} [H(\mathcal{N}(\rho)) - H(\mathcal{N}^c(\rho))] \)
- \(Q(\mathcal{N}) \) is also difficult to evaluate.
Quantum capacity

- Quantum capacity is established by (Lloyd, Shor, Devetak 97-05) & (Barnum, Nielsen, Schumacher 96-00)

\[Q(\mathcal{N}) = \lim_{m \to \infty} \frac{1}{m} I_c(\mathcal{N}^\otimes m). \]

- Coherent information \(I_c(\mathcal{N}) := \max_{\rho} [H(\mathcal{N}(\rho)) - H(\mathcal{N}^c(\rho))] \)

- \(Q(\mathcal{N}) \) is also difficult to evaluate.

- Known strong converse bounds:
 - Partial Transposition bound (Holevo, Werner 2001; Muller-Hermes, Reeb, Wolf 2016)
 - Rains information (Tomamichel, Wilde, Winter 2015)
 - Channel’s entanglement cost (Berta, Brandao, Christandl, Wehner 2013)
Theorem (SDP strong converse bound for Q)

For any quantum channel \mathcal{N},

$$Q(\mathcal{N}) \leq Q_\Gamma(\mathcal{N}) = \log \max \text{Tr } J_{\mathcal{N}} R_{AB}$$

s.t. $R_{AB}, \rho_A \geq 0, \text{Tr } \rho_A = 1,$

$$-\rho_A \otimes 1_B \leq R_{AB}^{T_B} \leq \rho_A \otimes 1_B.$$

The fidelity of transmission goes to zero if the rate exceeds $Q_\Gamma(\mathcal{N})$.

The fidelity of transmission goes to zero if the rate exceeds $Q_\Gamma(\mathcal{N})$.

This is based on the optimal fidelity of transmitting quantum information assisted with PPT codes (Leung and Matthews'16). The proof idea is similar to previous bound for classical capacity. For noiseless quantum channel I_d, $Q(I_d) = Q_\Gamma(I_d) = \log_2 d$. $Q_\Gamma(N \otimes M) = Q_\Gamma(M) + Q_\Gamma(N)$ (by utilizing SDP duality).
SDP strong converse bound for quantum capacity

Theorem (SDP strong converse bound for Q)

For any quantum channel \mathcal{N},

$$Q(\mathcal{N}) \leq Q\Gamma(\mathcal{N}) = \log \max \text{Tr } J_{\mathcal{N}} R_{AB}$$

s.t. $R_{AB}, \rho_A \geq 0, \text{Tr} \rho_A = 1$,

$$-\rho_A \otimes 1_B \leq R_{AB} T^B_B \leq \rho_A \otimes 1_B.$$

The fidelity of transmission goes to zero if the rate exceeds $Q\Gamma(\mathcal{N})$.

- This is based on the optimal fidelity of transmitting quantum information assisted with PPT codes (Leung and Matthews'16).
- The proof idea is similar to previous bound for classical capacity.
SDP strong converse bound for quantum capacity

Theorem (SDP strong converse bound for Q)

For any quantum channel \mathcal{N},

$$Q(\mathcal{N}) \leq Q_\Gamma(\mathcal{N}) = \log \max \operatorname{Tr} J_\mathcal{N} R_{AB}$$

s.t. $R_{AB}, \rho_A \geq 0, \operatorname{Tr} \rho_A = 1,$

$$-\rho_A \otimes 1_B \leq R_{AB}^T \leq \rho_A \otimes 1_B.$$

The fidelity of transmission goes to zero if the rate exceeds $Q_\Gamma(\mathcal{N})$.

- This is based on the optimal fidelity of transmitting quantum information assisted with PPT codes (Leung and Matthews'16).
- The proof idea is similar to previous bound for classical capacity.
- For noiseless quantum channel \mathcal{I}_d, $Q(\mathcal{I}_d) = Q_\Gamma(\mathcal{I}_d) = \log_2 d$.
- $Q_\Gamma(\mathcal{N} \otimes \mathcal{M}) = Q_\Gamma(\mathcal{M}) + Q_\Gamma(\mathcal{N})$ (by utilizing SDP duality).
Comparison with other bounds

- **Partial Transposition bound** (Holevo & Werner’01, Muller-Hermes, Reeb, Wolf’16)

\[Q(\mathcal{N}) \leq Q_\Theta(\mathcal{N}) = \log_2 \| J^T_B \|_{cb}, \]

where \(\| \cdot \|_{cb} \) uses an alternative expression from (Watrous’12).
Comparison with other bounds

- **Partial Transposition bound** (Holevo & Werner’01, Muller-Hermes, Reeb, Wolf’16)
 \[
 Q(\mathcal{N}) \leq Q_\Theta(\mathcal{N}) = \log_2 \| J_{\mathcal{N}}^{TB} \|_{cb},
 \]
 where \(\| \cdot \|_{cb} \) uses an alternative expression from (Watrous’12).

Improved efficiently computable bound

For any quantum channel \(\mathcal{N} \), \(Q_\Gamma(\mathcal{N}) \leq Q_\Theta(\mathcal{N}) \).
Comparison with other bounds

- **Partial Transposition bound** (Holevo & Werner’01, Muller-Hermes, Reeb, Wolf’16)

\[
Q(\mathcal{N}) \leq Q_\Theta(\mathcal{N}) = \log_2 \| J^T_B \|_{cb},
\]

where \(\| \cdot \|_{cb} \) uses an alternative expression from (Watrous’12).

Improved efficiently computable bound

For any quantum channel \(\mathcal{N} \), \(Q_\Gamma(\mathcal{N}) \leq Q_\Theta(\mathcal{N}) \).

- Example: \(\mathcal{N}_r = \sum_i E_i \cdot E_i^\dagger \)

with \(E_0 = |0\rangle \langle 0| + \sqrt{r} |1\rangle \langle 1| \)

and \(E_1 = \sqrt{1 - r} |0\rangle \langle 1| + |1\rangle \langle 2| \).

- **Solid line**: SDP bound \(Q_\Gamma \)

- **Dashed line**: PT bound \(Q_\Theta \)
Summary and Outlook

- Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ-error capacity is given by SDP
Summary and Outlook

- Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ-error capacity is given by SDP
- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity
Summary and Outlook

- Non-asymptotic classical communication (NS/NS\(\cap\)PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot \(\epsilon\)-error capacity is given by SDP
- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity
 - Improved upper bound for \(C(N^{AD})\)
 - Strong converse property for new class of quantum channels
Summary and Outlook

- Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ-error capacity is given by SDP
- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity
 - Improved upper bound for $C(N^{AD})$
 - Strong converse property for new class of quantum channels
 - SDP strong converse bound for quantum capacity (improve the Partial Transposition bound).
Summary and Outlook

- Non-asymptotic classical communication (NS/NS\cap PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ-error capacity is given by SDP
- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity
 - Improved upper bound for $C(N^{AD})$
 - Strong converse property for new class of quantum channels
 - SDP strong converse bound for quantum capacity (improve the Partial Transposition bound).
- Outlook
 - Tighter strong converse bounds without using additive SDP?
Summary and Outlook

- Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ-error capacity is given by SDP
- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity
 - Improved upper bound for $C(N^{AD})$
 - Strong converse property for new class of quantum channels
 - SDP strong converse bound for quantum capacity (improve the Partial Transposition bound).
- Outlook
 - Tighter strong converse bounds without using additive SDP?
 - Classical capacity of specific channels (AD channel)?
Summary and Outlook

- Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ-error capacity is given by SDP
- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity
 - Improved upper bound for $C(N^{AD})$
 - Strong converse property for new class of quantum channels
 - SDP strong converse bound for quantum capacity (improve the Partial Transposition bound).
- Outlook
 - Tighter strong converse bounds without using additive SDP?
 - Classical capacity of specific channels (AD channel)?
 - How to implement the NS and PPT-preserved codes?
Summary and Outlook

- Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ-error capacity is given by SDP

- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity
 - Improved upper bound for $C(N^{AD})$
 - Strong converse property for new class of quantum channels
 - SDP strong converse bound for quantum capacity (improve the Partial Transposition bound).

- Outlook
 - Tighter strong converse bounds without using additive SDP?
 - Classical capacity of specific channels (AD channel)?
 - How to implement the NS and PPT-preserving codes?
 - Relationship between Q_{Γ} and Rains information (TWW’15)?
Summary and Outlook

- Non-asymptotic classical communication (NS/NS∩PPT codes)
 - Optimal success probability of communication is given by SDP
 - One-shot ϵ-error capacity is given by SDP
- Limits for asymptotic classical/quantum communication
 - SDP strong converse bound for classical capacity
 - Improved upper bound for $C(N^{AD})$
 - Strong converse property for new class of quantum channels
 - SDP strong converse bound for quantum capacity (improve the Partial Transposition bound).
- Outlook
 - Tighter strong converse bounds without using additive SDP?
 - Classical capacity of specific channels (AD channel)?
 - How to implement the NS and PPT-preserving codes?
 - Relationship between Q_{Γ} and Rains information (TWW’15)?
 - Continuous-variable quantum channels?
arXiv:1610.06381 & 1601.06888

Wei Xie

Runyao Duan
Thank you for your attention!