The Thermality of Quantum Approximate Markov Chains
with implications to the Locality of Edge States and Entanglement Spectrum

Kohtaro Kato (Univ. Tokyo)
Fernando G. S. L. Brandao (Caltech)

QIP2017
Motivation

When many-body systems are described by local (short-range) Hamiltonians, states have special correlation properties.

Area law for gapped ground states: restricts entanglement (rigorously proven for 1D systems [Hastings, 07])

Area law for Gibbs (thermal) states: restricts correlations (proven for any dim. [Wolf, et al., 07])

Efficient descriptions of many-body states (MPS, PEPS, MPO,...)

A useful consequence of area laws: small “conditional mutual information (CMI)” on certain regions (Applications: [Kim, ‘12,’13], [Swingle & Kim, 14], [Kastryano & Brandao, ‘16] ...)

Q. How to characterize?
Motivation

When many-body systems are described by local (short-range) Hamiltonians, states have special correlation properties.

Area law for gapped ground states: restricts entanglement (rigorously proven for 1D systems [Hastings, 07])

Area law for Gibbs (thermal) states: restricts correlations (proven for any dim. [Wolf, et al., 07])

A useful consequence of area laws: small “conditional mutual information (CMI)” on certain regions

This talk:

1. Characterizing states with small CMI in terms of Gibbs states (cf. previous talk by Kastoryano)

2. An application to “entanglement spectrum” of 2D gapped systems

Efficient descriptions of many-body states (MPS, PEPS, MPO,...)

Q. How to characterize?
Outline of this talk

Part I: A characterization of approximate Markov chains
- Area law for Gibbs States
- Quantum Markov Chains & Approximate Quantum Markov Chains
- Equivalence to Gibbs states of short-range Hamiltonians

Part II: An application to entanglement spectrum in 2D systems
- Topological Entanglement Entropy and Entanglement Spectrum
- Previous Results on Entanglement Spectrum
- Locality of Entanglement Hamiltonian and Spectrum
Part I:
A characterization of approximate Markov chains
Area law for Gibbs states

Hamiltonian

\[H = \sum_i h_{i,i+1}, \quad \|h_i\| \leq J. \]

WLOG: nearest-neighbor

Gibbs state

\[\rho = \frac{1}{Z} e^{-\beta H}, \quad Z = \text{tr} e^{-\beta H}. \]

[Wolf, et al., '07]

\[I(A: B)_\rho := S(A)_\rho + S(B)_\rho - S(AB)_\rho \leq 2\beta J |\partial A| \]

\[\triangleright S(A)_\rho := -\text{tr} \rho_A \log_2 \rho_A \]
Conditional Mutual Information of Gibbs States

The conditional mutual information:

\[I(A: C | B) \rho := I(A: BC) \rho - I(A: B) \rho \geq 0 \]

- Monotonicity of MI: \(I(A: BC) \rho \geq I(A: B) \rho \)

\[\rightarrow I(A: B_1) \rho \leq I(A: B_1 B_2) \rho \leq \cdots \leq I(A: B_1 \ldots B_m) \rho \leq 2\beta J|\partial A| \]

small for large \(m \)!
Quantum Markov Chain (for three systems)

If $I(A: C|B)_\rho = 0$, quantum state ρ_{ABC} is called a Quantum Markov Chain $A - B - C$.

1. There exists a CPTP-map $\Lambda_{B\rightarrow BC} : B \rightarrow BC$ s.t.

$$\rho_{ABC} = \text{id}_A \otimes \Lambda_{B\rightarrow BC}(\rho_{AB})$$

2. There exists a Hamiltonian $H_{ABC} = H_{AB} + H_{BC}$ s.t.

$$\rho_{ABC} = e^{-H_{ABC}}, [H_{AB}, H_{BC}] = 0 \quad (\rho_{ABC} > 0)$$

[Hayden, et al., 03], [Brown & Poulin, ‘12]
Longer Chains

The quantum Markov chain \(\rho_A \) on the chain \(A_1 A_2 \ldots A_n \) is a (quantum) Markov chain if

\[
I(A_1 \ldots A_{i-1} : A_{i+1} \ldots A_n | A_i)_{\rho} = 0
\]

for arbitrary \(i \in [n] \).

We can generalize the concept of Markov chains to general graphs as Markov networks.
Hammersley-Clifford Theorem (1D)

[Hammersley&Clifford, ’71]:
Random variables $X_1, X_2, ..., X_n$ forms a (positive) Markov chain if, and only if, the distribution can be written as

$$p_{X_1X_2...X_n}(x_1, x_2, ..., x_n) = \frac{1}{Z} \exp \left(- \sum_i h_i(x_i, x_{i+1}) \right)$$

$X_1 \ X_2 \ \ h_i(x_i, x_{i+1}) \ \ ... \ X_n$

* also holds for Markov networks

Positive Markov chains

\uparrow

Gibbs distributions of 1D short-range Hamiltonians
Quantum Hammersley-Clifford Theorem (1D)

[Leifer & Poulin, ’08], [Brown & Poulin, ’12]:

A quantum state $\rho_{A_1 \ldots A_n} > 0$ on a chain forms a Markov chain if, and only if, the state can be written as

$$
\rho_{A_1 \ldots A_n} = \frac{1}{Z} \exp \left(- \sum_i h_{A_i A_{i+1}} \right), \quad [h_{A_i A_{i+1}}, h_{A_j A_{j+1}}] = 0
$$

Positive quantum Markov chains

2. There exists a Hamiltonian $H_{ABC} = H_{AB} + H_{BC}$ s.t.

$$
\rho_{ABC} = e^{-H_{ABC}}, [H_{AB}, H_{BC}] = 0
$$

Gibbs states of 1D commuting short-range Hamiltonians

* also holds for Markov networks
Quantum Hammersley-Clifford Theorem (1D)

[Leifer & Poulin, ‘08], [Brown & Poulin, ‘12]:

A quantum state $\rho_{A_1...A_n} > 0$ on a chain forms a Markov chain if, and only if, the state can be written as

$$\rho_{A_1...A_n} = \frac{1}{Z} \exp\left(-\sum_i h_{A_iA_{i+1}}\right), \quad [h_{A_iA_{i+1}}, h_{A_jA_{j+1}}] = 0$$

$A_1A_2...A_n$

* also holds for Markov networks

2. There exists a Hamiltonian $H_{ABC} = H_{AB} + H_{BC}$ s.t.

$$\rho_{ABC} = e^{-H_{ABC}}, [H_{AB}, H_{BC}] = 0$$
Properties of Approximate Markov Chains

How about states having small but non-zero CMI?

Naïve guess: all properties of Markov chains approximately hold for approximate Markov chains

Classical:

\[
I(X:Z|Y)_{p} = \min_{q: \text{Markov}} S(p_{XYZ} \| q_{XYZ})
\]

\[
I(X:Z|Y)_{p} \leq \varepsilon \iff p_{XYZ} \approx_{\varepsilon} q_{XYZ}
\]

However...

Quantum:

\[
I(A:C|B)_{\rho} \neq \min_{\sigma: \text{Markov}} S(\rho_{ABC} \| \sigma_{ABC}) \quad [\text{Ibinson, et al., '06}]
\]

\exists \text{ property of Markov chains which is invalid for approximate Markov chains}
Local Recoverability of States with Small CMI

Some properties still approximately hold for approximate Markov chains

[Fawzi & Renner, ‘15]:
There exists a CPTP-map $\Lambda_{B\rightarrow BC}$ s.t.
$$I(A: C|B)_\rho \geq -2\log_2 F(\rho_{ABC}, \Lambda_{B\rightarrow BC}(\rho_{AB}))$$

$$I(A: C|B)_\rho \approx 0 \iff$$

1. There exists a CPTP-map $\Lambda_{B\rightarrow BC}: B \rightarrow BC$ s.t.
$$\rho_{ABC} \approx \text{id}_A \otimes \Lambda_{B\rightarrow BC}(\rho_{AB})$$

The converse part can be shown by using the Alicki-Fannes inequality.
Question

Q. How about the quantum Hammersley-Clifford theorem for approximate Markov chains?

Quantum approximate Markov chains

Gibbs states of 1D short-range Hamiltonians
Approximate Quantum HC Theorem (1D)

Result 1.
For any \(\epsilon \)-approximate Markov chain \(\rho_{A_1A_2...A_n} \), there exists a Hamiltonian \(H_A = \sum h_{A_iA_{i+1}} \) s.t.,

\[
S(\rho_A || e^{-H_A}) \leq n\epsilon.
\]

Application to gapped systems (next part)

Any approximate Markov chain can be approximated by local Gibbs states

\(\rho_A \) is an \(\epsilon \)-approximate Markov chain if

\[
I(A_1 ... A_{i-1} : A_{i+1} ... A_n | A_i)_{\rho} \leq \epsilon
\]

for arbitrary \(i \in [n] \).
Approximate Quantum HC Theorem (1D)

Result 2. For any Gibbs state ρ of a short-range Hamiltonian H at temperature T,

$$I(A: C | B)_\rho \leq c e^{-q(T)\sqrt{l}}$$

for $q(T) = e^{-c' T^{-1}}, c \geq 0, c' > 0$ and any partition ABC as in the diagram.

Application to Gibbs state preparation (see previous talk)

All 1D Gibbs states of short-range Hamiltonians are approximate Markov chains (Strengthen the area law of 1D Gibbs states)
Approximate Quantum HC Theorem (1D)

Result 2. For any Gibbs state ρ of a short-range Hamiltonian H at temperature T,

$$I(A:C|B)_\rho \leq ce^{-q(T)\sqrt{l}}$$

for $q(T) = e^{-c'T^{-1}}, c \geq 0, c' > 0$ and any partition ABC as in the diagram.

Quantum approximate Markov chains

Application to Gibbs state preparation (see previous talk)

All 1D Gibbs states of short-range Hamiltonians are approximate Markov chains (Strengthen the area law of 1D Gibbs states)
PartII: An application to entanglement spectrum in 2D systems
Area Law in 2D Gapped Systems

- Ground states of 2D gapped local Hamiltonians typically obey area law:

\[S(A)_\rho = \alpha |\partial A| - n_{\partial A} \gamma + o(1) \]

\(\gamma \): topological entanglement entropy

[Ref: Kitaev & Preskill, ‘06], [Levin & Wen ‘06]

\((\gamma > 0 \leftrightarrow \text{the g.s. is in a topologically ordered phase (??)})\)

A strong type of area law (rest of this talk)

\[S(A)_\rho = \alpha |\partial A| - n_{\partial A} \gamma + e^{-|\partial A|/\xi} \]

For any \(ABC\) with no holes,

\[I(A: C | B)_\rho \leq e^{-cl} \]

\(\rho_{ABC} \) is an approximate Markov chain
Entanglement Hamiltonian and Spectrum

- Other tools to study gapped g.s.

\[\rho_A =: e^{-H_A} \quad \text{entanglement Hamiltonian} \]

\[\lambda(H_A): \text{entanglement spectrum} \]

- Correspondence to edge theory in FQHE [Li & Haldane, ‘08] also has been studied in other systems [Ali, et al., ‘09, Lauchli & Bergholtz, ‘10, ...]

- Previous observations in the PEPS formalism [Cirac et al., ‘11], [Schuch, et al., ‘13], [Cirac, et al., ‘16]

\[\rho_l = V \sigma_b^2 V^\dagger \quad V: \text{isometry} \]

\[H_b = \begin{cases}
\text{short-range} \\
\text{(in trivial phase)}
\end{cases} \]

\[\text{short-range + global interactions} \]

\[\text{(in topologically ordered phases)} \]
Entanglement Hamiltonian and Spectrum

• Other tools to study gapped g.s.

\[\rho_A = e^{-H_A} \]

Entanglement Hamiltonian

\(\lambda(H_A) \): entanglement spectrum

(logarithm of the Schmidt coefficients)

This talk: connection to the topological entanglement entropy
also has been studied in other systems [Ali, et al., ’09, Lauchli & Bergholtz, ’10,...]

• Previous observations in the PEPS formalism
[Cirac et al., ’11], [Schuch, et al., ’13], [Cirac, et al., ’16]

\[\rho_l = V \sigma_b^2 V^\dagger \]

V: isometry

\[H_b = \begin{cases}
\text{short-range} \\
\text{(in trivial phase)} \\
\text{short-range + global interactions} \\
\text{(in topologically ordered phases)}
\end{cases} \]

Q. How general this observation in PEPS?
Locality of Entanglement Spectrum \((\gamma = 0)\)

Suppose \(|\psi_{YXY'}\rangle\) satisfies the area law and \(\gamma = 0\) (trivial phase).

\[\rightarrow \rho_{X_1\ldots X_m} \text{ is an approx. Markov chain} \]

\[\rightarrow \rho_{X_1\ldots X_m} \approx \frac{1}{Z} \exp(-\sum h_{X_iX_{i+1}}) \]

- \(|\psi_{YXY'}\rangle\) is pure \(\rightarrow \lambda(\rho_{YY'}) = \lambda(\rho_{X_1\ldots X_m})\)
- \(I(Y:Y')_\rho = I(Y:Y'|X)_\psi \approx 0 \rightarrow \rho_{YY'} \approx \rho_Y \otimes \rho_{Y'} = \rho_Y \otimes^2\)

\[H_Y^{(2)} := \log \rho_Y \otimes I + I \otimes \log \rho_Y \]

\[\Rightarrow \left\| \lambda \left(H_Y^{(2)} \right) - \lambda\left(\sum h_{X_iX_{i+1}} \right) \right\|_1 \leq e^{-cl} \]

for some \(c > 0\).
How about the case of $\gamma > 0$?

Result 3.
Under our assumption, for some $c > 0$ and sufficiently large l,

$$2\gamma = \min_{H_X \in \mathcal{H}_2} S(\rho_X || e^{-H_X}) + e^{-cl} \geq 0 \ (l \gg 1)$$

$$\mathcal{H}_2 := \{ H = \sum h_{X_iX_{i+1}}, \|h_{X_iX_{i+1}}\| \leq \mathcal{O}(|X|) \}$$

$\gamma > 0 \rightarrow -\log \rho_X$ is non-local

Note: EH is local after tracing out X_i.

$$\text{tr}_{X_1} e^{-H_X} = \exp(-h_{X_2X_3} \cdots - h_{X_{m-1}X_m})$$

Conjecture (no rigorous proof): The non-local part is dominated by m-body interactions
Non-Locality of Entanglement Spectrum ($\gamma > 0$)

Result 3.
Under our assumption, for some $c > 0$ and sufficiently large l,

$$2\gamma = \min_{H_X \in \mathcal{H}_2} S(\rho_X \| e^{-H_X}) + e^{-cl}$$

$$\mathcal{H}_2 := \{ H = \sum h_{X_iX_{i+1}}, \| h_{X_iX_{i+1}} \| \leq \mathcal{O}(|X|) \}$$

$$\downarrow$$

$$\| \lambda(H_{Y}^{(2)}) - \lambda(H_X) \|_1 \leq e^{-cl}$$

for a non-local H_X.
Difference to The Previous Results

Assumption: PEPS formalism (fixed-point) [Cirac et al., ‘11], [Schuch, et al., ‘13], [Cirac, et al., ‘16]

\[\lambda(-\log \rho_l) = \lambda(H_b) \]

\[H_b = \begin{cases}
\text{short-range (in trivial phase)} \\
\text{short-range + global interactions (in topologically ordered phases)}
\end{cases} \]

Assumption: Strong type of area law (+ reflection symmetry) this talk

\[\left\| \lambda \left(H_Y^{(2)} \right) - \lambda(H_X) \right\|_1 \leq e^{-cl} \]

\[H_X = \begin{cases}
\text{short-range } (\gamma = 0) \\
\text{short-range + global interactions } (\gamma > 0)
\end{cases} \]
Take-home massages:
Part I: Quantum approximate Markov chains are Gibbs states of 1D short-range Hamiltonians.

Part II: The locality of the entanglement spectrum of gapped g.s. on a cylinder is related to the TEE.

Open problems:
Part I: Better bounds on CMI of 1D Gibbs states?
Generalization of the equivalence to Markov networks?
(→ application for Gibbs state preparation)

Part II: Weaker assumptions?
Do we really need double of the ES?
Consequences of the (non-)locality of ES?
THANK YOU!
Idea of the proof

Result 1.
For any ε–approximate Markov chain $\rho_{A_1A_2\ldots A_n}$, there exists a Hamiltonian $H_A = \sum h_{A_iA_{i+1}}$ s.t.,

$$S(\rho_A || e^{-HA}) \leq n\varepsilon.$$

- **The maximum entropy principle** [Jaynes, ‘57]
 The maximum entropy state σ_A satisfying

 $$\sigma_{A_iA_{i+1}} = \rho_{A_iA_{i+1}}, \forall i$$

 has the form

 $$\sigma_{A_iA_{i+1}} = e^{-\sum h_{A_iA_{i+1}}}.$$

- **A result from information geometry** [Knauf & Weis, ‘10]
 $$\inf_{H_A = \sum h_{A_iA_{i+1}}} S(\rho_A || e^{-HA}) = S(A)_\rho - S(A)_\sigma$$

 Small by the assumption + SSA
Idea of the proof

Result 2.
For any Gibbs state ρ of a short-range Hamiltonian H at temperature T,

$$I(A: C | B)_\rho \leq ce^{-q(T)\sqrt{l}}$$

for $q(T) = e^{-c'T^{-1}}$, $c \geq 0$, $c' > 0$ and any partition ABC as in the below.

Explicitly construct a recovery map $\Lambda_{B \rightarrow BC}$ s.t.

$$\|\rho_{ABC} - \Lambda_{B \rightarrow BC}(\rho_{AB})\|_1 \leq c'e^{-q'\sqrt{l}}$$

- **Quantum belief propagation equation** [Hastings, ‘07][Kim, ‘11]

For 1D Hamiltonian with short-range H, $\exists O_I$ s.t.

$$\|e^{-\beta(H+V)} - O_I e^{-\beta H} O_I^\dagger\| \leq e^{-q''l}$$
Idea of the proof

From the quantum belief propagation equation, there exists X_B s.t.

$$
\rho_{ABC} \approx \kappa_{B\rightarrow BC}(\rho_{AB}) = X_B \left(\text{tr}_{B^R} \left[X_B^{-1} \rho_{AB} (X_B^{-1})^\dagger \right] \otimes \rho_{B^R C} \right) X_B^\dagger
$$

Note: Probably $\kappa_{B\rightarrow BC}$ is not a quantum operation.
Repeat-until-success method

We normalize $\kappa_{B\rightarrow BC}$ and define a CPTD-map $\tilde{\Lambda}_{B\rightarrow BC}$.
→ Succeed to recover with a constant probability p (in 1D systems).

We normalize $\kappa_{B\rightarrow BC}$ and define a CPTD-map $\tilde{\Lambda}_{B\rightarrow BC}$.

Choose $N \sim l$ ($|B| = O(l^2)$).
We can construct a CPTP-map $\Lambda_{B\rightarrow BC}$ satisfying

$$
\|\rho_{ABC} - \text{id}_A \otimes \Lambda_{B\rightarrow BC} (\rho_{AB})\|_1 \leq e^{-O(l)}.
$$
Idea of the proof

Result 3.
Under our assumption, for some $c > 0$ and sufficiently large l,

$$2\gamma = \min_{H_x \in \mathcal{H}_2} S(\rho_x || e^{-H x}) + e^{-cl}$$

$$\mathcal{H}_2 := \{ H = \sum h_{X_i X_{i+1}}, \| h_{X_i X_{i+1}} \| \leq O(|X|) \}$$

By assumption, $I(X_1: X_3 X_{m-1} | X_2 X_m) \rho \approx 0$.

$\rightarrow \exists$ recovery map $\Lambda_{2m \rightarrow 12m}: X_2 X_m \rightarrow X_2 X_m X_1$

$$\sigma_X := \Lambda_{2m \rightarrow 12m}(\rho_{X_2 \ldots X_m})$$

Facts: $\sigma_{X_i X_{i+1}} \approx \rho_{X_i X_{i+1}}$

$\rightarrow \sigma_X \approx \arg\min_{H_x \in \mathcal{H}_2} S(\rho_x || e^{-H x}), \quad S(\rho_x || \sigma_X) \approx 2\gamma.$