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ABSTRACT

In the last decade, we have witnessed a huge success of the pee
to-peer (P2P) computing model. This has lead to the devedapm
of many Internet-scale applications and systems that @e cem-
mercially. Recently, the problem of computing statistieerodata

in Internet-scale systems has received attention. In tiqiep we
discuss the problem of cardinality estimation of XPath tpseover
distributed XML data stored in an Internet-scale environtrezich

as a P2P network. Such cardinality estimates are useful@urexy
optimization and statistical hypothesis testing in dorea@nch as
health informatics. We present a novel gossip algorithnhedal
XGossip, which given an XPath query, estimates the number of
XML documents that contain a match for the query. XGossip is
designed to be scalable, decentralized, and robust todaiuprop-
erties that are desirable in a large-scale distributedsysXGos-

sip employs a novel divide-and-conquer strategy for loddriza

ing and reducing bandwidth consumption. We conduct thealet
analyses on the quality of cardinality estimates, messagmpiex-

ity, and bandwidth consumption. We present a preliminarjope
mance evaluation on PlanetLab and discuss our ongoing work.

Categories and Subject Descriptors

H.2 [Database M anagement]: Systems—Query Processing
General Terms

Design
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1. INTRODUCTION

We have witnessed a huge success of the P2P model of comput
ing in the last decade. This has culminated in the developwien
Internet-scale applications such as Kazaa, BitTorrerd, $kype.

ness and has lead to the development of many Internet-sgsle s
tems. Innovations in P2P computing, most notably the cancep
of Distributed Hash Table (DHT)e(g, Chord [65], Pastry [60],
CAN [58], Tapestry [74], Kademlia [45]), has been embracgd b
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FOR $gene IN service
("http://cabio.osu.edu/GeneService.wsdl") /Gene,
$go IN service
("http://cabio.osu.edu/GeneOntologyService.wsdl") /GeneOntology,
$microarray IN service
("http://caarray.duke.edu/caArrayService.wsdl") /Microarray
LET $subject := $microarray/experiment/subject
WHERE

$go/term='vacuole' AND $gene/goAcc=$go/acc AND

$gene/gbAcc=$microarray/data/geneId AND

count ($microarray/data[geneId=$gene/$gbAcc]/condition)>50
RETURN
<subject>

<subjectId>{ $subject/lsid }</subjectId>

<species>{ $subject/species }</species>

<microarrayData>

{ $microarray/data }

</microarrayData>

</subject>

Figurel: An example XQuery

key-value stores of production quality such as Dynamo [2@ls-
sandra [41], and Voldemort [5].

Meanwhile, the overwhelming success of XML, coupled with
the growing popularity of P2P systems, has lead to research i
indexing and query processing over XML data in a P2P environ-
ment [39, 26, 9, 19, 56]. One compelling use case for emptpyin
XML and P2P technologies is for large-scale sharing of bidiced
and healthcare data. This is because of two reasons: Fiss$Lig-
gested that scalable clinical data sharing systems canibe$ing
a P2P architecture [64]. Second, HL7 version 3, an XML based
standard for representation and interchange of healtlicdaet. g,
discharge summaries, lab reports), is becoming a standahf
abling semantic interoperability across systems [46].

The Cancer Biomedical Informatics Grid (caBIG) [22, 8], AR i
tiative of the National Cancer Institute, exemplifies a neakld
data sharing platform for collaborative e-science. It Hasua 120
participating institutions across the US. The underlyirgwork
infrastructure of caBIG, called caGrid [61, 6], is a modsisen,

service-oriented architecture. The data services aresexpm a
well-documented and interoperable form. A federated qpeoy

P2P computing has also become popular in ecommerce and ebusiC€SSO" allows a user to query across multiple data sounséact

caGrid has implemented the XML Data Service interface fergu
ing and retrieving data from XML databases [7, 50]. Curnerdl
user query is mapped to an appropriate XPath query and exkcut
over the XML database. As caGrid is based on a service-edent
architecture, we believe a P2P architecture can enhancedita-
bility for large-scale sharing of distributed XML repogites.
Consider a distributed XQuery query supported by caBIG-(Fig
ure 1). The queryinds all the expression data where there are at
least 50 conditions for genes found in the vacy@le It performs
joins across data exposed by three data services, namelg, Ge-
neOntology, and Microarray. A more powerful query can be-con
structed wherein the locations of the documents in the mitene
not explicitly specified. Such a query can be processed byldirs
cating relevant XML documents based on XPath expressiotiein



query using any of the prior techniques [39, 26, 9, 19, 56]tard
applying existing distributed XQuery processing teche&(59,
23,73, 3].

Knowing the cardinality estimates of XPath expressions aid
the process of query optimization. We formulate our probt#m
interest as followsGiven an XPath expressign estimate the to-
tal number of XML documents distributed across a P2P network
that contain a match fop with provable guarantee on the qual-
ity of the estimate The above estimate is useful in the following
ways, though it does not provide the size of the result setnof a
XPath query. A query optimizer can select appropriate qpkmys
based on how the relevant documents are distributed in therie
For instance, consider the query in Figure 1. If we know the ca
dinality estimates of XPath expressions such @ne/ goAcc,

/ Gene[term=’ vacuol e’ ],/ M croarray/ dat a[ genel d]

/ condi ti on, etc., a particular join ordering can be chosen. An-
other use case is for designing clinical studies: Reseesded
medical professionals can quickly determine (using calidines-
timates) whether sufficient samples are available for aystuith-

out having to query the network of distributed data sources.

Computing statistics over structured data stored in arrrete
scale environment has received attention [49, 51]. Howexare
has focused on the XML data model. In an Internet-scale envi-
ronment, XML documents are distributed across a large nuwibe
participating peers and thus, collecting all the XML docuseat
any one peer to apply existing techniques for XML selegtieis-
timation [54, 24, 43], is prohibitively expensive. Furthere, the
network is dynamic with peers joining, leaving, and failiaigany
time. Under these circumstances, there are important miesig
quirements for an effective cardinality estimation altfom. First,
the algorithm should be scalable and operate on a large nushbe
peers. Second, it should be decentralized and not rely ocemy
tral authority. Third, it should consume minimum networlnta
width and be robust to the dynamism of the network. Fourth, it
should provide provable guarantees on the quality of thenagts.

In this paper, we present a novel gossip algorithm calleds&o
for cardinality estimation of XPath queries in an Intergetle en-
vironment. Gossip (or epidemic) algorithms are attradtivéarge-
scale distributed systems due to their simplicity, scéitshtecen-
tralized nature, ability to tolerate failures and the dyrsaamof the
network, and ability to provide probabilistic guarante@ne real-
life use case of gossip algorithms is in Amazon S3 data center
for spreading server state information [1].) However, desig a
gossip algorithm for cardinality estimation over XML dagariot
straightforward and introduces new challenges due to thena-
ture of the XML data model. While Ntarmeag al. [49] argue that
gossip algorithms may not be suitable due to high bandwieth r
quirement and hop-count, we aim to show that it is indeedibless
to design efficient gossip algorithms for statistics getiena

and edges representing parent-child or ancestor-desuensla-
tionships. XQuery [16] is a functional query language that-s
sumes XPath, and allows the creation of new XML content.
Accurate statistics over XML data is necessary for effickvit

query processing. The topic of cardinality/selectivityiraation
over XML data in a local environment has been well studied,(
Path trees/Markov tables [10], Correlated subpath tre§ 8-
join [70], StatiX [25], XPathLearner [42], Bloom Histograj@9],
XSKETCH [54], IMAX [55], XCLUSTER [53], XSEED [72], lossy
compression based synopsis [24], sampling based techiigje

Information Exchange and Aggregate Computation Via
Gossip Algorithms.

Gossip algorithms provide a means for communication, compu
tation, and information spreading [63, 62]. Prior work orsgjp al-
gorithms have mainly focused on information exchange (orau
spreading) [28, 36, 52, 21, 27, 13] and computing aggredates
separable functions) [37, 38, 17, 35, 47]. The essence eétak
gorithms lies in the exchange of information or aggregagtaéen
a pair of peers (picked randomly if the peers form a compleiply
or among neighbors using a probability matrix assuming terp
form an arbitrary graph). It has been shown that after a jnigva
finite number of rounds and a provably finite number of message
exchanges, the information has reached all the peers ogtive-a
gates (and separable functions) have converged to thedtue.v

Statistics Computation in a Distributed Environment.
In the area of information retrieval, document frequendynes
tion in a P2P network has received some attention [12, 48} Re
cently, techniques for statistics generation in largdesdatributed
networks have been developed for relational datg,(aggregates
and histograms [49], self-join size estimation [51]). A fews-
sip algorithms have been developed for statistics comiputan
large-scale networkse(g, computing frequent elements [40], dis-
tribution estimation [33, 31]).

Motivations.

To the best of our knowledge, there is no published work on
XPath cardinality estimation in an Internet-scale envinent. Such
cardinality estimates are useful for distributed XQueryirojza-
tion as well as statistical hypothesis testing. One may woiifd
a technique such as Distributed Hash Sketches [49], dabifgme
structured data, can be adapted for XML data. This wouldirequ
us to first map each XPath pattern that appears in the XML docu-
ment to one dimensional space. However, enumerating adiipos
ble XPath patterns is computationally expensive and cautries
a very large number of patterns due to the hierarchical aatfir
XML, the presence of many different element and attributees
in a document, and the presence of axes such as ‘//' (aneestor
descendant) in the queries.

The remainder of the paper is organized as follows. Section 2 ajthough gossip algorithms seem simbldealing with XML in-

provides background and motivations; Section 3 presentgaat
sip algorithms, their theoretical analyses, and optinons; Sec-
tion 4 presents our preliminary performance evaluatiod;farally,

we discuss our ongoing work in Section 5.

2. BACKGROUND AND MOTIVATIONS

Statistics Computation over XML Data.

An XML document is typically modeled as an ordered, labeled
tree. XPath [14] is a query language for navigating and selec
ing nodes in an XML document. XPath queries can be repre-
sented bytwig patterns A twig pattern is essentially a tree-like
pattern with nodes representing elements, attributes,vahes,

troduces several challenges. First, if gossip is begun vatreunery

is posed, like in Push-Sum [38], then one has to wait for aefinit
number of rounds before the cardinality estimate of an XRath
pression is available. If gossip is continuously run in tlek
ground, then it is infeasible to gossip every unique XPattepa
due to the large number of distinct patterns — we expect adiete
geneous collection of XML documents in a P2P environment- Se
ond, our algorithm should scale with increasing number ofLXM
documents and peers in the network and yield effective |adahic-
ing. Third, network bandwidth is a critical resource in atemet-
scale environment. Our gossip algorithm should rely on argh

The proofs and analyses, however, are mathematicallyaigor



ing a finite number of small sized messages — an essentiaiyop
of a gossip algorithm [15].

3. OUR PROPOSED APPROACH

In this section, we present the Push-Sum protocol introdluce
by Kempeet al. [38]. We draw inspiration from Push-Sum and
present a gossip algorithm called VanillaXGossip for XRatdi-
nality estimation. Finally, we employ a novel divide-anzhquer
approach to overcome the limitations of VanillaXGossip present
an improved algorithm called XGossip. We also present the-th
retical analysis of VanillaXGossip and XGossip. In the iatd of
space, proofs of theorems are available in a technical rpdj

3.1 System Model

We assume that the peers are connected using the Chord DH
overlay network, although other DHTs may be employedsuk-
cessor of a kein Chord is a peer mapped to a Chord ID that is the
closest to the key (greater than or equal to) in the clockwdisee-
tion [65]. As in a typical P2P network, a peer owns a set of XML
documents. A peer is said to “publish” those documents that i
wishes to share with others in the network. The original doents
reside at the publishing peer’s end. We assume that oumeaitgti
estimation algorithm (VanillaXGossip or XGossip) runs tion-
ously in the background. At any time, a peer may receive ayquer
The peer looks at its local state or contacts a few other peers
compute the cardinality estimate.

3.2 Push-Sum Protocol

Suppose a P2P network hagpeers and each pegy has a non-
negative valuer;. Suppose we want to estimate the “averaige.
% >, xi. Inthe Push-Sum protocol [38], each peer maintains a
sums; and weightw; in round¢. In round 0, each peer; sends
(zi,1) toitself. In any round > 0, a peer computes the new sum
(or weight) by adding the sum (or weights) of the messages-it r
ceives. It sends half of the sum and half of the weight to agerid
selected peer and the remaining half of the sum and weightt to i
self. In a particular round, the ratio of the current sum aright
is the estimated average. Push-Sum employs uniform go$sepaw
a peer can contact any other peer during a gossip round —is ter
of connectivity, the peers form a complete graph.

THEOREM1 (PusH-Sum ProTOCOL[38]). Suppose there are
n peerspi, .. ., pn in a network. Each peer; has a valuer; > 0.
With at least probabilityl — §, there is a round-, = O(log(n) +
log(1) + log(%)), such that in all rounds > r,, at peerp;, the
relative error of the estimate of the average valté"" | z; is at
moste.

The proof is based on an important propertyntdss conserva-
tion [38]. What this means is that in any round, the average of the
sums on all the peers is the true average, and the sum of weight
all peers is always. To compute the “sum’,e, Y ., z;, Push-
Sum is run with only one peer starting with a weight of 1 and the
rest of the peers starting with a weight of 0 [38].

3.3 VanillaXGossip

We draw inspiration from Push-Sum to develop our gossip-algo
rithms VanillaXGossip and XGossip. We select Push-Sum as th
basis due to several reasons. Push-Sum relies on uniforsipgos

where peers form a complete graph. Because we assume that pee of three listsT}, Ty, and T

are connected through a DHT-based structured overlay mietwo
any peer can contact any other peer @log(n)) hops). In ad-
dition, Push-Sum is synchronous, but peers can follow tloel

clocks and the convergence holds as long as mass consaristio
preserved [38]. (The analysis of a synchronous model islsimp
than that of an asynchronous model [38]). In both VanillaX&p
and XGossip, we also compute “average” instead of “sum” beea
these algorithms run in the background and to guaranteeotia
one peer will set its weight to 1 and the rest to 0, would resgjuir
sophisticated distributed synchronization.

Next, we describe VanillaXGossip. Rather than gossipingtkP
patterns in each XML document, a peer gossips the signatane o
XML document, which is computed based on the method proposed
by Rao and Moon [56]. A signature of a document is a product of
irreducible polynomials assigned to its edges such thatitoe-
ment’s structural properties and content are captured dgitna-
ture. A useful necessary condition of this signature repregion
js thatif a document contains a match for a query, then the query
signature divides the document signat{Bé]. Another benefit of
these document signatures is that they are much smallexdrgn
the original XML documents [56].

A document signature can also be viewed as a multiset of irre-
ducible polynomials. So we use the terms “multiset” andrisig
ture” interchangeably in subsequent discussions. Supfiose-
notes the frequency of a multiset/signatureVanillaXGossip has
two phases. In the initialization phase, each peer creasested
list of tuples calledl” using only its local state. Each tuple is of
the form (s, (fs,w)), wheres is a signature of a XML document
published by the peer anfl, is the number of XML documents
having the same signatukeandw is its weight. (Two different
XML documents can have the same signature [56].) The wesght i
initialized to 1 like in Push-Sum. A tupleL, (0, 1)) is also added
to T, where L is a special multiset that is the largest among all the
possible multisets. The list is sorted by the first item of tilygle
(i.e., s), which serves as a primary key.

We use the following notations: T.begin(), T.end(), andeXif)
allow us to iterate over T; For a tuple € T, c.s, c.f and c.w
refer to individual elements in the tupl&}s] refers to a tuple with
signatures.

REMARK 1. A tuple with multisetL plays the role of a place-
holder in VanillaXGossip for multisets that are not yet knaw a
peer during a gossip round. This preserves the importanpgry
of mass conservation like in Push-Sum.

After initialization, the peers begin the gossip phase aet@te
RunGossip() in Algorithm 1. During a round, a peer first collects
the lists received during the gossip round including the thiag it
sentto itself. It then merges the lists to updafe w) of each tuple.
After merging, the peer sends the list with halved frequesneind
weights to a randomly selected peer, and sends another €tpto
list to itself. (We select a random peer by picking a randoror@h
id and routing the message to the successor of that id.)

The merging process is unique to VanillaXGossip and is de-
scribed by proceduré/ergeLists() in Algorithm 1. Because the
lists are sorted by the primary key, the merging phase resiin-
ear time to complete. The minimum key/multiset is selectetlits
updated sum and weight are computed across all the recésved |
If a list does not contain the key, then the sum and weight afe
used. (The sum value far is always 0.) In any round, for a tuple
(s, (f,w)) in the merged list;,,, an estimate of the average of the
frequency ofs in the network is%.

ExamMpPLE 1. Figure 2 shows an example of how the merging
is done usingV/ergeLists().

THEOREM2 (VANILLA XGOSsIP. Givenn peersp,. .., pn,
let a signatures be published by some: peers with frequencies



Algorithm 1: Execution phase of VanillaXGossip

proc RunGossip(p)
1. LetTy, T, ..., Tr denote the lists received in the current round
by peerp

2. Ty — MergeLists(Th,T5, ..., Tr)
3: SendT,, to a random pees, and the participating peer

end
proc MergeLists(T1,T5, ..., Tr)
s T —
. for r=1to Rdo
| ¢« Tr.begin()
while end of every list is not reacheatb
Smin < min{ci.s,...,CRr.S}
9 sumy « 0; sumy, < 0;

oN o9 R

10: for r=1to Rdo

11 if ¢.5 = Symin then

12: sumys «— sumys + c,. f
13 SUMyy <— SUMy + Cr. W
14: cr — Tr.next()

else
15: sumy «— sumys + Tr[L].f
16: SUMy — Sumay + Tr[L]w

17 | Insert(smin, (<5t , 2454)) into Ty,

18 return Ty,
end

Tl T2 T3 Tm
sp(fpwy)  [SulfaWs) s (f,wy) MergeLists(..) sy.(sum sum, )
su(fwy)  [ssfswg) B (o) Sy,(sum,,sum, )
D (fa'wa) D (fb'Wb)
S3,(sum,,sum,,)

f=f=7=0 [ (sum,sum,)

sum = (f;+f5+,)/2
sumy, = (Wy+wztw,)/2

sum = (ftfs+f.)/2
sum,, = (Wytws+we)/2
sum = (fo+,+f)/2
sum,,= (Wytwy+Wwe)/2

sum = (f+y+io)/2
sumy, = (WytW,+We)/2

Figure2: Merging of listsduring VanillaXGossip

fi,-- ., fm, Wherem < n. With at least probabilityl — ¢, there
is a roundr, = O(log(n) + log(2) + log(%)), such that in all
roundsr > r,, at peerp;, the relative error of the estimate of the
average frequency af i.e, % oo, fi,is at mosk.

Discussion.VvanillaxGossip differs from Push-Sum in the fol-
lowing aspects. Push-Sum is initiated when a query is paaed,
therefore, all peers are aware of the query and only gossipgh
gregate value for that query. But VanillaXGossip runs aumiusly

in the background and hence peers gossip the aggregates wdlue
all the signatures that they are aware of. VanillaXGosgjpires a
placeholder to provide mass conservation and to guarante@c
gence similar to Push-Sum.

3.4 XGossip: A Divide-and-Conquer Approach

One may notice that in VanillaXGossip, each peer eventually
maintains a list with all distinct multisets in the networlhis
is inefficient in practice due to limited amount of main megnor
available at each peer. To overcome this limitation of \ax#
Gossip, we employ a novel divide-and-conquer strategygusin
cality sensitive hashing/NVe call this improved algorithm XGossip.
In XGossip, each peer will gossip only a provably finite frawct

hs

(a) Initialization phase (b) Execution phase
Figure 3: Examplefor XGossip

of the distinct multisets in the network. The benefit of XApss
over VanillaXGossip is three-fold. Firstly, each peer witihsume
less memory. Secondly, each peer will consume less barfwidt
Thirdly, the convergence property of XGossip will be faster

The concept of locality sensitive hashing (LSH), introdiicsy
Indyk and Motwani [34], has been employed in many domains,
including indexing high dimensional data and similarityarszh-
ing [11, 44], similarity searching over web data [32] and &PP
networks [32, 30], ranges queries in P2P networks [29], and s
forth. For similarity on sets based on Jaccard index, LSH sata
s can be performed as follows [32, 11]: Pigkx [ random linear
hash functions of the forth(z) = (az + b) mod p, wherep is a
prime, anda andb are integers s.t0 < a < pand0 < b < p.
Computeg(s) = min({h(z)}) over all items in the set as the out-
put hash value foe. It is established that given two seis and

s2, Prob(g(s1) = g(s2)) = % Each group of hash values
can be hashed again using another hash fungt{on Thusk hash
values are output for a set.

In XGossip, we apply LSH on each document signature. We
selectf(-) to be the SHA-1 hash function. This way the hash val-
ues output by LSH for a signature are 160 bits and map onto the
Chord DHT ring. We use the notatidr, to denote the vector of
hash values output by LSH an We say thab; = (hs1, ..., hsk)
definesk teams fors. Each hash value denotes the id of a team.
SupposeA denotes the size of each team. Then for any team
(with id) hs;, we calculate the Chord ids describing that team to be
{hoir hoi +1 X 22 by +2x 28 b+ (A—1) x 22
(The addition operation will cause the result to wrap arothel
ring.)

The peers that are successors of the Chord ids defining a team,
constitute the members of the team. These peers gossip only a
subset of all the distinct signatures in the network. Alseytwill
only select a peer belonging to the team during a gossip round
Given two signatures with similarity, the probability that there is
at least one team that gossips both signatures [ —p')*. Thisis
an important property of LSH that XGossip builds on. Thusilsim
signatures are gossiped by the same team with high pratyabili
This increases the chances of finding all signatures thaegréred
to estimate the cardinality of an XPath query. Furthermesgh
peer gossips only a subset of the signatures in the network.

EXAMPLE 2. Consider the DHT ring shown in Figure 3(a).
Supposé: = 3 and a signatures produces hash valuds, (red),
ho (blue), andhg (green) after applying LSH. Each team is of size
4. The teanh; is shown by a dotted square box. In this example,
peersp1, p2, ps, andps are responsible for the teamy .

The divide-and-conquer approach in XGossip raises angsiter
ing issue. Recall that in VanillaXGossip, a single specialtiset
1, required for mass conservation, is used by all peers in¢he n
work and is sent to a peer picked at random during a gossiglroun
But in XGossip, a peer cannot maintain one special multiset



Algorithm 2: Initialization phase of XGossip

Algorithm 3: Execution phase of XGossip

global: T - tuple list
proc InitGossipSend(p)
1. LetT be initialized as in VanillaXGossip
2. foreach ¢ € T'andc.s #.1 do
3 hs < LSH(c.s)
4 foreach hs; € hs do
5: Create a team,; and pick one id say for the team at
random and sen(t.s, (c.f, c.w)) andhs; to the peer
responsible foy; according to the DHT protocol

end
proc InitGossipReceive(p, (s, (f,w)), h)
[* Keep one tuple list per team while receiving */
[* p is the peer that receives the message */
6. if T}, does not existthen createl},
7. if s is a regular multiset and’, [s] existsthen
8. | Update the frequency in the tuple by addifig
9. else if sis aregular multiset and}[s] does not existhen
10: Insert(s, (f,w)) into Tp,
1L if L, does not exist iff}, then
12: | Insert(Lp, (0,1))into Th; InformTeam(p, L)
13 else if T},[s] does not existhen
14: | Insert(s, (f,w)) into Ty; InformTeam(p,s)
end
proc InformTeam(p, Ln,)

[* p is the peer executingnitGossipReceive */
15: Supposers, - - - , ha denote the other Chord ids for the team

ha
16: Let peerp be the successor &f;
17 Send(Lr,, (0,1)) to the successor @f; mod a)+1
end

Rather a peer maintains one special multiset per team tohwhic
belongs to. It sends that special multiset to peers thahbeimthat

proc RunGossip(p)
1. LetTy, T, ..., Tr denote the lists received in the current round
by peerp

2: Group the lists based on their teams by checking their specia
multisets. Suppose each group is denoted:by

3. foreach groupG; do

Merge the lists inG; according taM ergeLists(-)

Let T, denote the merged list

Compactr,, to save bandwidth

Lethi,- -, ha denote the Chord ids of the team

Pick an indexj € [1, A] at random such thatis not the

successor of;

SendT’, to the peer that is the successomhgfand top

®© N aR

©

end

(black dotted arrows). Whep, andp, learn for the first time about
teamh, they forward the special multiset to their next peers in
teamh; (red dotted arrows).

During the execution phase of XGossip, each peer groups the
messages based on the teams from which they arrive. These are
exactly the teams that the peer became aware of duringlirétia
tion. For each groupM ergeLists() is invoked. Each merged list
is then sent to a randomly picked peer belonging to the saame.te
The execution phase is described in Algorithm 3.

ExXAaMPLE 4. Consider Figure 3(b) and the team. Since
peerspi, p2, ps, and ps are the members of the team, they ex-
change messages belonging to that team during the gossgepha
A particular round may have peers exchange messages as shown
with solid black arrows.

THEOREM3 (XGossIP. Givenn peerspi,...,py inanet-

team during gossip. In fact, a peer may belong to more than onework, let a signatures be published by some peers with frequen-

team. For a team, its special multiset is denoted hy,.

XGossip also has two phases. The first phase is the initisiza
phase and each peer ruiisitGossipSend() in Algorithm 2. Each
peer creates the sorted list of tuplEsbased on the signatures of
the XML documents it has published similar to the initiatina
phase of VanillaXGossip. For each tuple, the peer appliedd LS
on the tuple’s signature and createseams. For each team, the
peer randomly picks one of its Chord ids and sends the tuptesto
successor of that id along with the team id.

When a peer receives a message during initialization via
InitGossipReceive() in Algorithm 2, it checks if the signature in
the message is a regular multiseg,it is a document signature. If
S0, it updates its list along with the special multiset fattteam.
But if a peer does not receive any message during initiatizat
then it does not know which team(s) it belongs Tthen how can
it initialize its special multisetaVe propose the following: When
a peer receives a signature and the team id, it initializesgecial
multiset for that team. In addition, it contacts the nextrgesong-
ing to the team (in clock-wise direction along the DHT ring)a
sends only the special multiset. A peer receiving a speaidtiset
for a team, forwards it to its next peer of the team similaflihe
procedureln formTeam() in Algorithm 2 does this task.) Note
that the special multiset is only forwarded when a peer kéon
the first time about a team it belongs to.

ExAamMPLE 3. Consider Figure 3(a). Suppoge andps receive
a signatures during the initialization phase (solid black arrows).
Each informs its next peer in the team with the special natltis

ciesfi, ..., fm, wherem < n. Suppose; belongs to a team that
gossipss after applying locality sensitive hashing enLet A de-
note the size of the team. With at least probability s thereisa
roundr, = O(log(A)+log(2)+1log(Z)), such that in all rounds

r > r,, at peerp;, the relative error o? the estimate of the average
frequency of s, i.ex > is at mostk.

i=1J0

3.5 Cardinality Estimation of XPath Queries

We describe how the cardinality of an XPath query, introduce
in Section 1, is estimated. Suppose a quglyissued at peef. In
VanillaXGossip, the merged ligk,, atp is searched to find every
tuple (s, (fs,w)), s.t. s is divisible by the query signature. (The
divisibility test is a necessary condition for a query todavmatch
in the document [56].) Thed f; over all such tuples multiplied
by the number of peers in the network is the desired cardynali
estimate2 (We can assume that a good estimate of the number of
peers in the network is known via Push-Sum.) By solely logkih
the local state op, the cardinality estimate can be computed.

Now let us consider XGossip. Léi, denote the hash values
after applying LSH on the signature f For each tean; (1 <
i < k), p picks one member of that team at random and sends
¢'s signature andhy; to that team member. That team member
scans its sorted tuple list for tedg; and returns everys, (fs, w))

s.t. s is divisible by the signature of. (In fact, a hash of the
signature can be returned to save bandwidth.) Two or motegup

2\We compute “average” instead of “sum” and therefore mutipl
by the number of peers.



| Metric | VanillaXGossip | XGossip |
Accuracy re re 5
Confidence =) =) 51
Convergenceg O(log(n) +log(Z) | O(log(A) + log(L) 2 is I
(# of rounds) +log(3)) +log(5=)) ©
Bandwidth O(nD) O(log(n)kDA) 8
Messages O(n log(n)) 0("X™kDAlog(A) | §
Table 1. Comparison of VanillaXGossip and XGossip =

each returned by a different peer, may have identical sigest

In such a case, only one of the tuples should be retained &nd th
rest can be discarded. Finally; f_uf over the tuples received from

k peers (after discarding the necessary tuples) multipliechbs

the desired cardinality estimate. Unlike VanillaXGossfiGossip
contactsk peers at query time and requir@$k log(n)) hops.

3.6 Analysisof VanillaXGossip and XGossip

Accuracy, Confidence, and Convergence.

To fairly compare VanillaXGossip and XGossip, we set the de-
sired accuracy and confidence for cardinality estimatidnguisoth
algorithms tore and (1 — §), assuming that there aredistinct
document signatures that are divisible by a query signatieeus
denote these document signaturesiby

The number of rounds required by VanillaXGossip to achieee t
desired accuracy and confidence is shown in Table 1. Howteer,
confidence of XGossip is affected by an additional paranduer
to the application of LSH. Suppogg..» denotes the minimum
similarity betweeng’s signature and a signature . Then the
probability of finding all signatures i by contactingk teams at
query time is at least = 1 — (1 — pl,;, )", wherek and! are the
parameters for LSH. Therefore, the net confidence of thenasti
output by XGossip isx - (1 — 6'), whered’ is the value chosen in
Theorem 3. To achieve the same confidence as VanillaXGdhsip,
following equation should holdi1 — §) = «- (1 — 5’). Therefore,

§ = % While in VanillaXGossip, there is one team of size

n, in XGossip, each team is of size. Usingé’ andA, the number
of rounds required by XGossip is shown in Table 1.

Message Complexity and Bandwidth Consumption.
In VanillaXGossip, eventually all peers gossip every uBigig-
nature in the network. Suppoge denotes the number of unique

signatures. Therefore, the worst case bandwidth consugneddh
peer isO(D). The message complexity of VanillaXGossip is simi-
lar to Push-Sum and i9(n log(n)).

To analyze, XGossip, we will first discuss the property ofsien
tent hashing in Chord [65]. Suppose there.ageers ands keys.
Chord guarantees that with high probability each peer veseit
most 2K keys, wherg is bound byO(log(n)) [65]. In XGos-
sip, we have at mogtD team ids/Chord ids. So each peer becomes
the successor for at mo@(%kD) teams. Since there ark

members per team, we have at mogt2"™) k DA) distinct signa-
tures per team, which denotes the worst case bandwidth iegmsu
tion. Given that each team in XGossip exchang&\log(A))
messages, the overall message complexity is shown in Table 1

3.7 Churn and Failures

Kempe et al.have discussed a few failure scenarios in Push-
Sum [38]. When a message is not delivered successfully tea pe
during a gossip round, then the sending peer will consummtse
sage as if the message were never sent and update its locahsum
weight to conserve mass. If a peer decides to leave the rietitror

"Spreading (p1) —o-— 2e+06 ————
i R B B BT T R
Convergence (pl) —=— | g 8 EEQQ{ £§§§:§§d§ N
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Figure 4: Resultsfor VanillaXGossip
should send its sum and weight to another peer. Similarisolig
adopted by VanillaXGossip and XGossip. Another issue aiiise
XGossip. Suppose the successor of any of the Chord ids dgfinin
team changes, then a message sent by a peer of the team may be re
ceived by a peer who initially did not belong to the team. Ttien
receiving peer should reject the message so that the sepdarg
can consume the message to conserve mass.

4. PRELIMINARY EVALUATION

We report a preliminary evaluation of VanillaXGossip. Weda
conducted the evaluation on PlanetLab [4] using 100 nodes aF
gorithms were implemented in C++ using the Chord packagk [66

Using 38 DTDs published on the Internet [67, 68, 71], we gen-
erated synthetic datasets using IBM’s synthetic data gemerThe
average number of documents per DTD was 2,457 and a total of
90,936 documents was used. The average size of a document sig
nature was 65 bytes. We randomly picked 4 peers for a DTD and
distributed the documents for that DTD equally across tipesss.

We ran VanillaXGossip with 100 peers after the DHT routirigéa
had stabilized.

Figure 4(a) shows the convergence of VanillaXGossip for two
randomly selected peerd andp2. Beyond round 6, the mean of
the absolute relative error of the average frequency etima a
subset of signatures stayed below 8%. We also plot the spfeed o
information spreading by measuring the fraction of uniggma-
tures learnt by a peer in the network. Figure 4(a) shows that b
round 8, the two peers learnt about all the unique signatorése
network. Figure 4(b) shows the mear) @mount of data transmit-
ted and received by a peer during a gossip round. It also stimvs
std. deviation ¢) of the amount of data received by a peer. Note
that o remained at 0 starting from round 15. This is because all
the peers learnt about all the unique signatures in the mktia
round 15. We expect XGossip to converge faster and conswsge le
bandwidth than VanillaXGossip.

5. ONGOING WORK

The application of locality sensitive hashing enables lsingig-
natures to be gossiped by the same team with high probafilitys
itis likely that the signatures sent to a particular peeirdpya gos-
sip round have high similarity. We are developing a schenceno-
pact similar signatures exchanged by a team and therebygeedu
the bandwidth consumption. We are also investigating howatKP
queries with value predicates be handled. We are currevdlyat-
ing XGossip on PlanetLab and a local area network and comgpari
it with VanillaXGossip.
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