
Towards Internet-Scale Cardinality Estimation of XPath
Queries over Distributed XML Data

Vasil G. Slavov
University of Missouri-Kansas City

Kansas City, MO 64110
vsfgd@umkc.edu

Praveen R. Rao
University of Missouri-Kansas City

Kansas City, MO 64110
raopr@umkc.edu

ABSTRACT
In the last decade, we have witnessed a huge success of the peer-
to-peer (P2P) computing model. This has lead to the development
of many Internet-scale applications and systems that are used com-
mercially. Recently, the problem of computing statistics over data
in Internet-scale systems has received attention. In this paper, we
discuss the problem of cardinality estimation of XPath queries over
distributed XML data stored in an Internet-scale environment such
as a P2P network. Such cardinality estimates are useful for XQuery
optimization and statistical hypothesis testing in domains such as
health informatics. We present a novel gossip algorithm called
XGossip, which given an XPath query, estimates the number of
XML documents that contain a match for the query. XGossip is
designed to be scalable, decentralized, and robust to failures – prop-
erties that are desirable in a large-scale distributed system. XGos-
sip employs a novel divide-and-conquer strategy for load balanc-
ing and reducing bandwidth consumption. We conduct theoretical
analyses on the quality of cardinality estimates, message complex-
ity, and bandwidth consumption. We present a preliminary perfor-
mance evaluation on PlanetLab and discuss our ongoing work.

Categories and Subject Descriptors
H.2 [Database Management]: Systems—Query Processing

General Terms
Design

Keywords
XML, peer-to-peer, gossip algorithms, cardinality estimation

1. INTRODUCTION
We have witnessed a huge success of the P2P model of comput-

ing in the last decade. This has culminated in the development of
Internet-scale applications such as Kazaa, BitTorrent, and Skype.
P2P computing has also become popular in ecommerce and ebusi-
ness and has lead to the development of many Internet-scale sys-
tems. Innovations in P2P computing, most notably the concept
of Distributed Hash Table (DHT) (e.g., Chord [65], Pastry [60],
CAN [58], Tapestry [74], Kademlia [45]), has been embraced by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetDB’11,June 12, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0652-2/11/06 ...$10.00.

Figure 1: An example XQuery

key-value stores of production quality such as Dynamo [20],Cas-
sandra [41], and Voldemort [5].

Meanwhile, the overwhelming success of XML, coupled with
the growing popularity of P2P systems, has lead to research in
indexing and query processing over XML data in a P2P environ-
ment [39, 26, 9, 19, 56]. One compelling use case for employing
XML and P2P technologies is for large-scale sharing of biomedical
and healthcare data. This is because of two reasons: First, it is sug-
gested that scalable clinical data sharing systems can be built using
a P2P architecture [64]. Second, HL7 version 3, an XML based
standard for representation and interchange of healthcaredata (e.g.,
discharge summaries, lab reports), is becoming a standard for en-
abling semantic interoperability across systems [46].

The Cancer Biomedical Informatics Grid (caBIG) [22, 8], an ini-
tiative of the National Cancer Institute, exemplifies a realworld
data sharing platform for collaborative e-science. It has about 120
participating institutions across the US. The underlying network
infrastructure of caBIG, called caGrid [61, 6], is a model-driven,
service-oriented architecture. The data services are exposed in a
well-documented and interoperable form. A federated querypro-
cessor allows a user to query across multiple data sources. In fact,
caGrid has implemented the XML Data Service interface for query-
ing and retrieving data from XML databases [7, 50]. Currently, a
user query is mapped to an appropriate XPath query and executed
over the XML database. As caGrid is based on a service-oriented
architecture, we believe a P2P architecture can enhance itsscala-
bility for large-scale sharing of distributed XML repositories.

Consider a distributed XQuery query supported by caBIG (Fig-
ure 1). The queryfinds all the expression data where there are at
least 50 conditions for genes found in the vacuole[2]. It performs
joins across data exposed by three data services, namely, Gene, Ge-
neOntology, and Microarray. A more powerful query can be con-
structed wherein the locations of the documents in the network are
not explicitly specified. Such a query can be processed by first lo-
cating relevant XML documents based on XPath expressions inthe

query using any of the prior techniques [39, 26, 9, 19, 56] andthen
applying existing distributed XQuery processing techniques [59,
23, 73, 3].

Knowing the cardinality estimates of XPath expressions will aid
the process of query optimization. We formulate our problemof
interest as follows:Given an XPath expressionp, estimate the to-
tal number of XML documents distributed across a P2P network
that contain a match forp with provable guarantee on the qual-
ity of the estimate.The above estimate is useful in the following
ways, though it does not provide the size of the result set of an
XPath query. A query optimizer can select appropriate queryplans
based on how the relevant documents are distributed in the network.
For instance, consider the query in Figure 1. If we know the car-
dinality estimates of XPath expressions such as/Gene/goAcc,
/Gene[term=’vacuole’],/Microarray/data[geneId]
/condition, etc., a particular join ordering can be chosen. An-
other use case is for designing clinical studies: Researchers and
medical professionals can quickly determine (using cardinality es-
timates) whether sufficient samples are available for a study, with-
out having to query the network of distributed data sources.

Computing statistics over structured data stored in an Internet-
scale environment has received attention [49, 51]. However, none
has focused on the XML data model. In an Internet-scale envi-
ronment, XML documents are distributed across a large number of
participating peers and thus, collecting all the XML documents at
any one peer to apply existing techniques for XML selectivity es-
timation [54, 24, 43], is prohibitively expensive. Furthermore, the
network is dynamic with peers joining, leaving, and failingat any
time. Under these circumstances, there are important design re-
quirements for an effective cardinality estimation algorithm. First,
the algorithm should be scalable and operate on a large number of
peers. Second, it should be decentralized and not rely on anycen-
tral authority. Third, it should consume minimum network band-
width and be robust to the dynamism of the network. Fourth, it
should provide provable guarantees on the quality of the estimates.

In this paper, we present a novel gossip algorithm called XGossip
for cardinality estimation of XPath queries in an Internet-scale en-
vironment. Gossip (or epidemic) algorithms are attractivefor large-
scale distributed systems due to their simplicity, scalability, decen-
tralized nature, ability to tolerate failures and the dynamism of the
network, and ability to provide probabilistic guarantees.(One real-
life use case of gossip algorithms is in Amazon S3 data centers
for spreading server state information [1].) However, designing a
gossip algorithm for cardinality estimation over XML data is not
straightforward and introduces new challenges due to the very na-
ture of the XML data model. While Ntarmoset al. [49] argue that
gossip algorithms may not be suitable due to high bandwidth re-
quirement and hop-count, we aim to show that it is indeed possible
to design efficient gossip algorithms for statistics generation.

The remainder of the paper is organized as follows. Section 2
provides background and motivations; Section 3 presents our gos-
sip algorithms, their theoretical analyses, and optimizations; Sec-
tion 4 presents our preliminary performance evaluation; and finally,
we discuss our ongoing work in Section 5.

2. BACKGROUND AND MOTIVATIONS

Statistics Computation over XML Data.
An XML document is typically modeled as an ordered, labeled

tree. XPath [14] is a query language for navigating and select-
ing nodes in an XML document. XPath queries can be repre-
sented bytwig patterns. A twig pattern is essentially a tree-like
pattern with nodes representing elements, attributes, andvalues,

and edges representing parent-child or ancestor-descendant rela-
tionships. XQuery [16] is a functional query language that sub-
sumes XPath, and allows the creation of new XML content.

Accurate statistics over XML data is necessary for efficientXML
query processing. The topic of cardinality/selectivity estimation
over XML data in a local environment has been well studied (e.g.,
Path trees/Markov tables [10], Correlated subpath tree [18], pH-
join [70], StatiX [25], XPathLearner [42], Bloom Histogram[69],
XSKETCH [54], IMAX [55], XCLUSTER [53], XSEED [72], lossy
compression based synopsis [24], sampling based technique[43]).

Information Exchange and Aggregate Computation Via
Gossip Algorithms.

Gossip algorithms provide a means for communication, compu-
tation, and information spreading [63, 62]. Prior work on gossip al-
gorithms have mainly focused on information exchange (or rumor
spreading) [28, 36, 52, 21, 27, 13] and computing aggregates(and
separable functions) [37, 38, 17, 35, 47]. The essence of these al-
gorithms lies in the exchange of information or aggregates between
a pair of peers (picked randomly if the peers form a complete graph
or among neighbors using a probability matrix assuming the peers
form an arbitrary graph). It has been shown that after a provably
finite number of rounds and a provably finite number of message
exchanges, the information has reached all the peers or the aggre-
gates (and separable functions) have converged to the true value.

Statistics Computation in a Distributed Environment.
In the area of information retrieval, document frequency estima-

tion in a P2P network has received some attention [12, 48]. Re-
cently, techniques for statistics generation in large-scale distributed
networks have been developed for relational data (e.g., aggregates
and histograms [49], self-join size estimation [51]). A fewgos-
sip algorithms have been developed for statistics computation in
large-scale networks (e.g., computing frequent elements [40], dis-
tribution estimation [33, 31]).

Motivations.
To the best of our knowledge, there is no published work on

XPath cardinality estimation in an Internet-scale environment. Such
cardinality estimates are useful for distributed XQuery optimiza-
tion as well as statistical hypothesis testing. One may wonder if
a technique such as Distributed Hash Sketches [49], designed for
structured data, can be adapted for XML data. This would require
us to first map each XPath pattern that appears in the XML docu-
ment to one dimensional space. However, enumerating all possi-
ble XPath patterns is computationally expensive and can result in
a very large number of patterns due to the hierarchical nature of
XML, the presence of many different element and attribute names
in a document, and the presence of axes such as ‘//’ (ancestor-
descendant) in the queries.

Although gossip algorithms seem simple1, dealing with XML in-
troduces several challenges. First, if gossip is begun whena query
is posed, like in Push-Sum [38], then one has to wait for a finite
number of rounds before the cardinality estimate of an XPathex-
pression is available. If gossip is continuously run in the back-
ground, then it is infeasible to gossip every unique XPath pattern
due to the large number of distinct patterns – we expect a hetero-
geneous collection of XML documents in a P2P environment. Sec-
ond, our algorithm should scale with increasing number of XML
documents and peers in the network and yield effective load balanc-
ing. Third, network bandwidth is a critical resource in an Internet-
scale environment. Our gossip algorithm should rely on exchang-

1The proofs and analyses, however, are mathematically rigorous.

ing a finite number of small sized messages – an essential property
of a gossip algorithm [15].

3. OUR PROPOSED APPROACH
In this section, we present the Push-Sum protocol introduced

by Kempeet al. [38]. We draw inspiration from Push-Sum and
present a gossip algorithm called VanillaXGossip for XPathcardi-
nality estimation. Finally, we employ a novel divide-and-conquer
approach to overcome the limitations of VanillaXGossip andpresent
an improved algorithm called XGossip. We also present the theo-
retical analysis of VanillaXGossip and XGossip. In the interest of
space, proofs of theorems are available in a technical report [57].

3.1 System Model
We assume that the peers are connected using the Chord DHT

overlay network, although other DHTs may be employed. Asuc-
cessor of a keyin Chord is a peer mapped to a Chord ID that is the
closest to the key (greater than or equal to) in the clockwisedirec-
tion [65]. As in a typical P2P network, a peer owns a set of XML
documents. A peer is said to “publish” those documents that it
wishes to share with others in the network. The original documents
reside at the publishing peer’s end. We assume that our cardinality
estimation algorithm (VanillaXGossip or XGossip) runs continu-
ously in the background. At any time, a peer may receive a query.
The peer looks at its local state or contacts a few other peersto
compute the cardinality estimate.

3.2 Push-Sum Protocol
Suppose a P2P network hasn peers and each peerpi has a non-

negative valuexi. Suppose we want to estimate the “average”i.e.,
1
n

Pn

i=1 xi. In the Push-Sum protocol [38], each peer maintains a
sumst and weightwt in roundt. In round 0, each peerpi sends
(xi, 1) to itself. In any roundt > 0, a peer computes the new sum
(or weight) by adding the sum (or weights) of the messages it re-
ceives. It sends half of the sum and half of the weight to a randomly
selected peer and the remaining half of the sum and weight to it-
self. In a particular round, the ratio of the current sum and weight
is the estimated average. Push-Sum employs uniform gossip where
a peer can contact any other peer during a gossip round – in terms
of connectivity, the peers form a complete graph.

THEOREM 1 (PUSH-SUM PROTOCOL[38]). Suppose there are
n peersp1, . . . , pn in a network. Each peerpi has a valuexi ≥ 0.
With at least probability1 − δ, there is a roundro = O(log(n) +
log(1

ǫ
) + log(1

δ
)), such that in all roundsr ≥ ro, at peerpi, the

relative error of the estimate of the average value1
n

Pn

i=1 xi is at
mostǫ.

The proof is based on an important property ofmass conserva-
tion [38]. What this means is that in any round, the average of the
sums on all the peers is the true average, and the sum of weights on
all peers is alwaysn. To compute the “sum”,i.e.,

Pn

i=1 xi, Push-
Sum is run with only one peer starting with a weight of 1 and the
rest of the peers starting with a weight of 0 [38].

3.3 VanillaXGossip
We draw inspiration from Push-Sum to develop our gossip algo-

rithms VanillaXGossip and XGossip. We select Push-Sum as the
basis due to several reasons. Push-Sum relies on uniform gossip
where peers form a complete graph. Because we assume that peers
are connected through a DHT-based structured overlay network,
any peer can contact any other peer (inO(log(n)) hops). In ad-
dition, Push-Sum is synchronous, but peers can follow theirlocal

clocks and the convergence holds as long as mass conservation is
preserved [38]. (The analysis of a synchronous model is simpler
than that of an asynchronous model [38]). In both VanillaXGossip
and XGossip, we also compute “average” instead of “sum” because
these algorithms run in the background and to guarantee, that only
one peer will set its weight to 1 and the rest to 0, would require
sophisticated distributed synchronization.

Next, we describe VanillaXGossip. Rather than gossiping XPath
patterns in each XML document, a peer gossips the signature of an
XML document, which is computed based on the method proposed
by Rao and Moon [56]. A signature of a document is a product of
irreducible polynomials assigned to its edges such that thedocu-
ment’s structural properties and content are captured by the signa-
ture. A useful necessary condition of this signature representation
is that if a document contains a match for a query, then the query
signature divides the document signature[56]. Another benefit of
these document signatures is that they are much smaller in size than
the original XML documents [56].

A document signature can also be viewed as a multiset of irre-
ducible polynomials. So we use the terms “multiset” and “signa-
ture” interchangeably in subsequent discussions. Supposefs de-
notes the frequency of a multiset/signatures. VanillaXGossip has
two phases. In the initialization phase, each peer creates asorted
list of tuples calledT using only its local state. Each tuple is of
the form(s, (fs, w)), wheres is a signature of a XML document
published by the peer andfs is the number of XML documents
having the same signatures andw is its weight. (Two different
XML documents can have the same signature [56].) The weight is
initialized to 1 like in Push-Sum. A tuple(⊥, (0, 1)) is also added
to T , where⊥ is a special multiset that is the largest among all the
possible multisets. The list is sorted by the first item of thetuple
(i.e., s), which serves as a primary key.

We use the following notations: T.begin(), T.end(), and T.next()
allow us to iterate over T; For a tuplec ∈ T , c.s, c.f and c.w

refer to individual elements in the tuple;T [s] refers to a tuple with
signatures.

REMARK 1. A tuple with multiset⊥ plays the role of a place-
holder in VanillaXGossip for multisets that are not yet known to a
peer during a gossip round. This preserves the important property
of mass conservation like in Push-Sum.

After initialization, the peers begin the gossip phase and execute
RunGossip() in Algorithm 1. During a round, a peer first collects
the lists received during the gossip round including the onethat it
sent to itself. It then merges the lists to update(fs, w) of each tuple.
After merging, the peer sends the list with halved frequencies and
weights to a randomly selected peer, and sends another copy of that
list to itself. (We select a random peer by picking a random Chord
id and routing the message to the successor of that id.)

The merging process is unique to VanillaXGossip and is de-
scribed by procedureMergeLists() in Algorithm 1. Because the
lists are sorted by the primary key, the merging phase requires lin-
ear time to complete. The minimum key/multiset is selected and its
updated sum and weight are computed across all the received lists.
If a list does not contain the key, then the sum and weight of⊥ are
used. (The sum value for⊥ is always 0.) In any round, for a tuple
(s, (f, w)) in the merged listTm, an estimate of the average of the
frequency ofs in the network isf

w
.

EXAMPLE 1. Figure 2 shows an example of how the merging
of three listsT1, T2, andT3 is done usingMergeLists().

THEOREM 2 (VANILLA XGOSSIP). Givenn peersp1, . . . , pn,
let a signatures be published by somem peers with frequencies

Algorithm 1: Execution phase of VanillaXGossip

proc RunGossip(p)
Let T1, T2, ..., TR denote the lists received in the current round1:
by peerp
Tm ←MergeLists(T1, T2, ..., TR)2:
SendTm to a random peerpr and the participating peerp3:

end
proc MergeLists(T1, T2, ..., TR)

Tm ← ∅4:
for r=1 to R do5:

cr ← Tr.begin()6:

while end of every list is not reacheddo7:
smin ←min{c1.s, ..., cR.s}8:
sumf ← 0; sumw ← 0;9:
for r=1 to R do10:

if cr.s = smin then11:
sumf ← sumf + cr.f12:
sumw ← sumw + cr.w13:

cr ← Tr.next()14:
else

sumf ← sumf + Tr[⊥].f15:

sumw ← sumw + Tr[⊥].w16:

Insert(smin, (
sumf

2
, sumw

2
)) into Tm17:

return Tm18:
end

s1,(f3,w3)

s3,(f5,w5)

(fb,wb)⊥,

s1,(f1,w1)

s2,(f2,w2)

(fa⊥, ,wa)

s1,(f4,w4)

(fc,wc)⊥,

T1 T2 T3

s1,(sumf1
,sumw1

)

s2,(sumf2
,sumw2

)

s3,(sumf3
,sumw3

)

(sumf4
,sumw4

)⊥,
sumf1

= (f1+f3+f4)/2

sumf2
= (f2+fb+fc)/2

sumw1
= (w1+w3+w4)/2

sumw2
= (w2+wb+wc)/2 sumw4

= (wa+wb+wc)/2

sumf4
= (fa+fb+fc)/2

w3
= (wa+w5+wc)/2sum

sumf3
= (fa+f5+fc)/2

fa= fb = fc = 0

MergeLists(...)

Tm

Figure 2: Merging of lists during VanillaXGossip

f1, . . . , fm, wherem ≤ n. With at least probability1 − δ, there
is a roundro = O(log(n) + log(1

ǫ
) + log(1

δ
)), such that in all

roundsr ≥ ro, at peerpi, the relative error of the estimate of the
average frequency ofs, i.e., 1

n

Pm

i=1 fi, is at mostǫ.

Discussion.VanillaXGossip differs from Push-Sum in the fol-
lowing aspects. Push-Sum is initiated when a query is posed,and
therefore, all peers are aware of the query and only gossip the ag-
gregate value for that query. But VanillaXGossip runs continuously
in the background and hence peers gossip the aggregate values of
all the signatures that they are aware of. VanillaXGossip requires a
placeholder to provide mass conservation and to guarantee conver-
gence similar to Push-Sum.

3.4 XGossip: A Divide-and-Conquer Approach
One may notice that in VanillaXGossip, each peer eventually

maintains a list with all distinct multisets in the network.This
is inefficient in practice due to limited amount of main memory
available at each peer. To overcome this limitation of VanillaX-
Gossip, we employ a novel divide-and-conquer strategy using lo-
cality sensitive hashing. We call this improved algorithm XGossip.
In XGossip, each peer will gossip only a provably finite fraction

h1
⊥

h1
⊥

h1
⊥

h1
⊥

h3

h1

h2

p1

p2p3

p4

s

s

h3

h1

h2

p1

p2p3

p4

to p2

to p1

to p3

to p2

(a) Initialization phase (b) Execution phase

Figure 3: Example for XGossip

of the distinct multisets in the network. The benefit of XGossip
over VanillaXGossip is three-fold. Firstly, each peer willconsume
less memory. Secondly, each peer will consume less bandwidth.
Thirdly, the convergence property of XGossip will be faster.

The concept of locality sensitive hashing (LSH), introduced by
Indyk and Motwani [34], has been employed in many domains,
including indexing high dimensional data and similarity search-
ing [11, 44], similarity searching over web data [32] and in P2P
networks [32, 30], ranges queries in P2P networks [29], and so
forth. For similarity on sets based on Jaccard index, LSH on aset
s can be performed as follows [32, 11]: Pickk × l random linear
hash functions of the formh(x) = (ax + b) mod p, wherep is a
prime, anda andb are integers s.t.0 < a < p and0 ≤ b < p.
Computeg(s) = min({h(x)}) over all items in the set as the out-
put hash value fors. It is established that given two setss1 and
s2, Prob(g(s1) = g(s2)) = |s1∩s2|

|s1∪s2|
. Each group ofl hash values

can be hashed again using another hash functionf(·). Thusk hash
values are output for a set.

In XGossip, we apply LSH on each document signature. We
selectf(·) to be the SHA-1 hash function. This way the hash val-
ues output by LSH for a signature are 160 bits and map onto the
Chord DHT ring. We use the notationhs to denote the vector of
hash values output by LSH ons. We say thaths = (hs1, . . . , hsk)
definesk teams fors. Each hash value denotes the id of a team.
Suppose∆ denotes the size of each team. Then for any team
(with id) hsi, we calculate the Chord ids describing that team to be
{hsi, hsi + 1× 2160

∆
, hsi + 2× 2160

∆
, . . . , hsi + (∆− 1)× 2160

∆
}.

(The addition operation will cause the result to wrap aroundthe
ring.)

The peers that are successors of the Chord ids defining a team,
constitute the members of the team. These peers gossip only a
subset of all the distinct signatures in the network. Also, they will
only select a peer belonging to the team during a gossip round.
Given two signatures with similarityp, the probability that there is
at least one team that gossips both signatures is1−(1−pl)k. This is
an important property of LSH that XGossip builds on. Thus similar
signatures are gossiped by the same team with high probability.
This increases the chances of finding all signatures that arerequired
to estimate the cardinality of an XPath query. Furthermore,each
peer gossips only a subset of the signatures in the network.

EXAMPLE 2. Consider the DHT ring shown in Figure 3(a).
Supposek = 3 and a signatures produces hash valuesh1 (red),
h2 (blue), andh3 (green) after applying LSH. Each team is of size
4. The teamh1 is shown by a dotted square box. In this example,
peersp1, p2, p3, andp4 are responsible for the teamh1.

The divide-and-conquer approach in XGossip raises an interest-
ing issue. Recall that in VanillaXGossip, a single special multiset
⊥, required for mass conservation, is used by all peers in the net-
work and is sent to a peer picked at random during a gossip round.
But in XGossip, a peer cannot maintain one special multiset⊥.

Algorithm 2: Initialization phase of XGossip

global: T - tuple list
proc InitGossipSend(p)

Let T be initialized as in VanillaXGossip1:
foreach c ∈ T andc.s 6=⊥ do2:

hs ← LSH(c.s)3:

foreach hsi ∈ hs do4:
Create a teamhsi and pick one id sayq for the team at5:

random and send(c.s, (c.f, c.w)) andhsi to the peer
responsible forq according to the DHT protocol

end
proc InitGossipReceive(p, (s, (f, w)), h)

/* Keep one tuple list per team while receiving */
/* p is the peer that receives the message */
if Th does not existsthen createTh6:

if s is a regular multiset andTh[s] existsthen7:
Update the frequency in the tuple by addingf8:

else if s is a regular multiset andTh[s] does not existthen9:
Insert(s, (f, w)) into Th10:
if ⊥h does not exist inTh then11:

Insert(⊥h, (0, 1)) into Th; InformTeam(p,⊥h)12:

else if Th[s] does not existthen13:
Insert(s, (f, w)) into Th; InformTeam(p, s)14:

end
proc InformTeam(p,⊥h1

)
/* p is the peer executingInitGossipReceive */
Supposeh2, · · · , h∆ denote the other Chord ids for the team15:
h1
Let peerp be the successor ofhi16:

Send(⊥h1
, (0, 1)) to the successor ofh(i mod ∆)+117:

end

Rather a peer maintains one special multiset per team to which it
belongs to. It sends that special multiset to peers that belong to that
team during gossip. In fact, a peer may belong to more than one
team. For a teamh, its special multiset is denoted by⊥h.

XGossip also has two phases. The first phase is the initialization
phase and each peer runsInitGossipSend() in Algorithm 2. Each
peer creates the sorted list of tuplesT based on the signatures of
the XML documents it has published similar to the initialization
phase of VanillaXGossip. For each tuple, the peer applies LSH
on the tuple’s signature and createsk teams. For each team, the
peer randomly picks one of its Chord ids and sends the tuple tothe
successor of that id along with the team id.

When a peer receives a message during initialization via
InitGossipReceive() in Algorithm 2, it checks if the signature in
the message is a regular multiset,i.e.it is a document signature. If
so, it updates its list along with the special multiset for that team.
But if a peer does not receive any message during initialization,
then it does not know which team(s) it belongs to.Then how can
it initialize its special multiset?We propose the following: When
a peer receives a signature and the team id, it initializes its special
multiset for that team. In addition, it contacts the next peer belong-
ing to the team (in clock-wise direction along the DHT ring) and
sends only the special multiset. A peer receiving a special multiset
for a team, forwards it to its next peer of the team similarly.(The
procedureInformTeam() in Algorithm 2 does this task.) Note
that the special multiset is only forwarded when a peer learns for
the first time about a team it belongs to.

EXAMPLE 3. Consider Figure 3(a). Supposep1 andp3 receive
a signatures during the initialization phase (solid black arrows).
Each informs its next peer in the team with the special multiset

Algorithm 3: Execution phase of XGossip

proc RunGossip(p)
Let T1, T2, ..., TR denote the lists received in the current round1:
by peerp
Group the lists based on their teams by checking their special2:
multisets. Suppose each group is denoted byGi.
foreach groupGi do3:

Merge the lists inGi according toMergeLists(·)4:
Let Tm denote the merged list5:
CompactTm to save bandwidth6:
Let h1, · · · , h∆ denote the Chord ids of the team7:

Pick an indexj ∈ [1, ∆] at random such thatp is not the8:
successor ofhj

SendTm to the peer that is the successor ofhj and top9:

end

(black dotted arrows). Whenp2 andp4 learn for the first time about
teamh1, they forward the special multiset to their next peers in
teamh1 (red dotted arrows).

During the execution phase of XGossip, each peer groups the
messages based on the teams from which they arrive. These are
exactly the teams that the peer became aware of during initializa-
tion. For each group,MergeLists() is invoked. Each merged list
is then sent to a randomly picked peer belonging to the same team.
The execution phase is described in Algorithm 3.

EXAMPLE 4. Consider Figure 3(b) and the teamh1. Since
peersp1, p2, p3, and p4 are the members of the team, they ex-
change messages belonging to that team during the gossip phase.
A particular round may have peers exchange messages as shown
with solid black arrows.

THEOREM 3 (XGOSSIP). Givenn peersp1, . . . , pn in a net-
work, let a signatures be published by somem peers with frequen-
ciesf1, . . . , fm, wherem ≤ n. Supposepi belongs to a team that
gossipss after applying locality sensitive hashing ons. Let∆ de-
note the size of the team. With at least probability1− δ

′

, there is a
roundro = O(log(∆)+ log(1

ǫ
)+ log(1

δ
′)), such that in all rounds

r ≥ ro, at peerpi, the relative error of the estimate of the average
frequency of s, i.e.,1

∆

Pm

i=1 fi, is at mostǫ.

3.5 Cardinality Estimation of XPath Queries
We describe how the cardinality of an XPath query, introduced

in Section 1, is estimated. Suppose a queryq is issued at peerp. In
VanillaXGossip, the merged listTm at p is searched to find every
tuple (s, (fs, w)), s.t. s is divisible by the query signature. (The
divisibility test is a necessary condition for a query to have a match
in the document [56].) Then

P fs

w
over all such tuples multiplied

by the number of peers in the network is the desired cardinality
estimate.2 (We can assume that a good estimate of the number of
peers in the network is known via Push-Sum.) By solely looking at
the local state ofp, the cardinality estimate can be computed.

Now let us consider XGossip. Lethq denote the hash values
after applying LSH on the signature ofq. For each teamhqi (1 ≤
i ≤ k), p picks one member of that team at random and sends
q’s signature andhqi to that team member. That team member
scans its sorted tuple list for teamhqi and returns every(s, (fs, w))
s.t. s is divisible by the signature ofq. (In fact, a hash of the
signature can be returned to save bandwidth.) Two or more tuples,
2We compute “average” instead of “sum” and therefore multiply
by the number of peers.

Metric VanillaXGossip XGossip
Accuracy rǫ rǫ

Confidence (1− δ) (1− δ)
Convergence O(log(n) + log(1

ǫ
) O(log(∆) + log(1

ǫ
)

(# of rounds) +log(1
δ
)) +log(α

α+δ−1
))

Bandwidth O(nD) O(log(n)kD∆)

Messages O(n log(n)) O(log(n)
n

kD∆log(∆))

Table 1: Comparison of VanillaXGossip and XGossip

each returned by a different peer, may have identical signatures.
In such a case, only one of the tuples should be retained and the
rest can be discarded. Finally,

P fs

w
over the tuples received from

k peers (after discarding the necessary tuples) multiplied by ∆ is
the desired cardinality estimate. Unlike VanillaXGossip,XGossip
contactsk peers at query time and requiresO(k log(n)) hops.

3.6 Analysis of VanillaXGossip and XGossip

Accuracy, Confidence, and Convergence.
To fairly compare VanillaXGossip and XGossip, we set the de-

sired accuracy and confidence for cardinality estimation using both
algorithms torǫ and (1 − δ), assuming that there arer distinct
document signatures that are divisible by a query signature. Let us
denote these document signatures byR.

The number of rounds required by VanillaXGossip to achieve the
desired accuracy and confidence is shown in Table 1. However,the
confidence of XGossip is affected by an additional parameterdue
to the application of LSH. Supposepmin denotes the minimum
similarity betweenq’s signature and a signature inR. Then the
probability of finding all signatures inR by contactingk teams at
query time is at leastα = 1− (1− pl

min)k, wherek andl are the
parameters for LSH. Therefore, the net confidence of the estimate
output by XGossip isα · (1− δ

′

), whereδ
′

is the value chosen in
Theorem 3. To achieve the same confidence as VanillaXGossip,the
following equation should hold:(1− δ) = α · (1− δ

′

). Therefore,
δ
′

= α+δ−1
α

. While in VanillaXGossip, there is one team of size

n, in XGossip, each team is of size∆. Usingδ
′

and∆, the number
of rounds required by XGossip is shown in Table 1.

Message Complexity and Bandwidth Consumption.
In VanillaXGossip, eventually all peers gossip every unique sig-

nature in the network. SupposeD denotes the number of unique
signatures. Therefore, the worst case bandwidth consumed by each
peer isO(D). The message complexity of VanillaXGossip is simi-
lar to Push-Sum and isO(n log(n)).

To analyze, XGossip, we will first discuss the property of consis-
tent hashing in Chord [65]. Suppose there aren peers andK keys.
Chord guarantees that with high probability each peer receives at
most (1+ρ)K

n
keys, whereρ is bound byO(log(n)) [65]. In XGos-

sip, we have at mostkD team ids/Chord ids. So each peer becomes
the successor for at mostO(log(n)

n
kD) teams. Since there are∆

members per team, we have at mostO(log(n)
n

kD∆) distinct signa-
tures per team, which denotes the worst case bandwidth consump-
tion. Given that each team in XGossip exchangesO(∆log(∆))
messages, the overall message complexity is shown in Table 1.

3.7 Churn and Failures
Kempe et al.have discussed a few failure scenarios in Push-

Sum [38]. When a message is not delivered successfully to a peer
during a gossip round, then the sending peer will consume themes-
sage as if the message were never sent and update its local sumand
weight to conserve mass. If a peer decides to leave the network, it

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16
 0

 0.25

 0.5

 0.75

 1

M
ea

n
ab

s.
 r

el
at

iv
e

er
ro

r

F
ra

ct
io

n
of

 u
ni

qu
e

si
gn

at
ur

es

Round number

Spreading (p1)
Spreading (p2)

Convergence (p1)
Convergence (p2)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 0 2 4 6 8 10 12 14 16

A
m

ou
nt

 o
f d

at
a

(b
yt

es
)

Round number

µ (amt transmitted)
µ (amt received)
σ (amt received)

(a) Convergence and Spreading (b) Bandwidth consumption

Figure 4: Results for VanillaXGossip
should send its sum and weight to another peer. Similar solution is
adopted by VanillaXGossip and XGossip. Another issue arises in
XGossip. Suppose the successor of any of the Chord ids defining a
team changes, then a message sent by a peer of the team may be re-
ceived by a peer who initially did not belong to the team. Thenthe
receiving peer should reject the message so that the sendingpeer
can consume the message to conserve mass.

4. PRELIMINARY EVALUATION
We report a preliminary evaluation of VanillaXGossip. We have

conducted the evaluation on PlanetLab [4] using 100 nodes. The al-
gorithms were implemented in C++ using the Chord package [66].

Using 38 DTDs published on the Internet [67, 68, 71], we gen-
erated synthetic datasets using IBM’s synthetic data generator. The
average number of documents per DTD was 2,457 and a total of
90,936 documents was used. The average size of a document sig-
nature was 65 bytes. We randomly picked 4 peers for a DTD and
distributed the documents for that DTD equally across thosepeers.
We ran VanillaXGossip with 100 peers after the DHT routing tables
had stabilized.

Figure 4(a) shows the convergence of VanillaXGossip for two
randomly selected peersp1 andp2. Beyond round 6, the mean of
the absolute relative error of the average frequency estimate on a
subset of signatures stayed below 8%. We also plot the speed of
information spreading by measuring the fraction of unique signa-
tures learnt by a peer in the network. Figure 4(a) shows that by
round 8, the two peers learnt about all the unique signaturesin the
network. Figure 4(b) shows the mean (µ) amount of data transmit-
ted and received by a peer during a gossip round. It also showsthe
std. deviation (σ) of the amount of data received by a peer. Note
that σ remained at 0 starting from round 15. This is because all
the peers learnt about all the unique signatures in the network by
round 15. We expect XGossip to converge faster and consume less
bandwidth than VanillaXGossip.

5. ONGOING WORK
The application of locality sensitive hashing enables similar sig-

natures to be gossiped by the same team with high probability. Thus
it is likely that the signatures sent to a particular peer during a gos-
sip round have high similarity. We are developing a scheme tocom-
pact similar signatures exchanged by a team and thereby reduce
the bandwidth consumption. We are also investigating how XPath
queries with value predicates be handled. We are currently evaluat-
ing XGossip on PlanetLab and a local area network and comparing
it with VanillaXGossip.

Acknowledgements
Praveen Rao would like to acknowledge the support from Univer-
sity of Missouri Research Board and IBM Smarter Planet Faculty
Innovation Award.

6. REFERENCES
[1] Amazon S3 Availability Event: July 20, 2008.

http://status.aws.amazon.com/s3-20080720.html.
[2] caBIG Architecture Workspace: Common Query Language SIG,

Summary and Initial Recommendations.
https://cabig.nci.nih.gov/archive/SIGs/Common%20Query%20Language/
ArchWSQuery%20SIG_Recomd_F2F_%20March05.ppt.

[3] DXQP - Distributed XQuery Processor.
http://sig.biostr.washington.edu/projects/dxqp/.

[4] PlanetLab. http://www.planet-lab.org.
[5] Project Voldemort. http://project-voldemort.com/.
[6] The caGrid Portal. http://cagrid-portal.nci.nih.gov/web/guest.
[7] The caGrid xService.

https://web.cci.emory.edu/confluence/display/xmlds/caGrid+xService.
[8] The Cancer Biomedical Informatics Grid. https://cabig.nci.nih.gov/.
[9] S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and C. Sun. XML

Processing in DHT Networks. InProc. of the 24th IEEE Intl.
Conference on Data Engineering, Cancun, Mexico, Apr. 2008.

[10] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton. Estimating the
Selectivity of XML Path Expressions for Internet Scale Applications.
In Proc. of the 27th International Conference on Very Large Data
Bases, pages 591–600, San Francisco, CA, 2001.

[11] M. Bawa, T. Condie, and P. Ganesan. LSH Forest: Self-tuning
Indexes for Similarity Search. InProceedings of the 14th
International Conference on World Wide Web, pages 651–660, 2005.

[12] M. Bender, S. Michel, P. Triantafillou, and G. Weikum. Global
Document Frequency Estimation in Peer-to-Peer Web Search.In
Proceedings of WebDB, 2006.

[13] N. Berger, C. Borgs, J. T. Chayes, and A. Saberi. On the Spread of
Viruses on the Internet. InProc. of the 16th Annual ACM-SIAM
Symposium on Discrete algorithms, pages 301–310, 2005.

[14] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M.Kay,
J. Robie, and J. Simeon. XML path language (XPath) 2.0 W3C
working draft 16. Technical Report WD-xpath20-20020816, World
Wide Web Consortium, Aug. 2002.

[15] K. Birman. The Promise, and Limitations, of Gossip Protocols.
Operating Systems Review, 41(5):8–13, 2007.

[16] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J.Robie, and
J. Simeon. XQuery 1.0: An XML Query Language W3C working
draft 16. Technical Report WD-xquery-20020816, World WideWeb
Consortium, Aug. 2002.

[17] S. P. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip
Algorithms: Design, Analysis and Applications. InINFOCOM 2005,
pages 1653–1664, 2005.

[18] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan, R. T.
Ng, and D. Srivastava. Counting Twig Matches in a Tree. InProc. of
the 17th International Conference on Data Engineering, pages
595–604, Heidelberg, Germany, 2001.

[19] E. Curtmola, A. Deutsch, D. Logothetis, K. K. Ramakrishnan,
D. Srivastava, and K. Yocum. XTreeNet: Democratic Community
Search. InProc. of the 34th VLDB Conference, pages 1448–1451,
Auckland, New Zealand, 2008.

[20] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels. Dynamo: Amazon’s Highly Available Key-Value Store.
In Proc. of 21st ACM SIGOPS Symposium on Operating Systems
Principles, pages 205–220, Stevenson, Washington, 2007.

[21] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic Algorithmsfor
Replicated Database Maintenance. InProc. of the 6th Annual ACM
Symposium on Principles of Distributed Computing, pages 1–12,
1987.

[22] D. Fenstermacher, C. Street, T. McSherry, V. Nayak, C. Overby, and
M. Feldman. The Cancer Biomedical Informatics Grid (caBIG). In
Proc. of IEEE Engineering in Medicine and Biology Society, pages
743–746, Shanghai, China, 2005.

[23] M. Fernandez, T. Jim, K. Morton, N. Onose, and J. Simeon.DXQ: A
Distributed XQuery Scripting Language. In4th International
Workshop on XQuery Implementation Experience and Perspectives,
2007.

[24] D. K. Fisher and S. Maneth. Structural Selectivity Estimation for

XML Documents. InProc. of the 23th IEEE Intl. Conference on
Data Engineering, pages 626–635, Istanbul, Turkey, 2007.

[25] J. Freire, J. R. Harista, M. Ramanath, P. Roy, and J. Simone. StatiX:
Making XML Count. InProc. of the 2002 ACM-SIGMOD
Conference, Madison, Wisconsin, June 2002.

[26] L. Galanis, Y. Wang, S. R. Jeffery, and D. J. DeWitt. Locating Data
Sources in Large Distributed Systems. InProc. of the 29th VLDB
Conference, Berlin, 2003.

[27] A. Ganesh, L. Massoulie, and D. Towsley. The Effect of Network
Topology on the Spread of Epidemics. InINFOCOM 2005, pages
1455–1466, 2005.

[28] C. Georgiou, S. Gilbert, R. Guerraoui, and D. Kowalski.On the
Complexity of Asynchronous Gossip. InProc. of the 27th ACM
Symposium on Principles of Distributed Computing, pages 135–144,
Toronto, Canada, 2008.

[29] A. Gupta, D. Agrawal, and A. E. Abbadi. Approximate Range
Selection Queries in Peer-to-Peer Systems. InConference on
Innovative Data Systems Research (CIDR), 2003.

[30] P. Haghani, S. Michel, and K. Aberer. Distributed Similarity Search
in High Dimensions using Locality Sensitive Hashing. InProc. of the
12th International Conference on Extending Database Technology,
pages 744–755, 2009.

[31] M. Haridasan and R. van Renesse. Gossip-Based Distribution
Estimation in Peer-to-Peer Networks. InProc. of the 7th
International Conference on Peer-to-Peer Systems, Tampa Bay,
Florida, 2008.

[32] T. H. Haveliwala, A. Gionis, D. Klein, and P. Indyk. Evaluating
Strategies for Similarity Search on the Web. InProc. of the 11th
international conference on World Wide Web, pages 432–442,
Honolulu, Hawaii, 2002.

[33] Y. Hu, J. G. Lou, H. Chen, and J. Li. Distributed Density Estimation
Using Non-parametric Statistics. InProc. of 27th International
Conference on Distributed Computing Systems (ICDCS), pages
28–36, June 2007.

[34] P. Indyk and R. Motwani. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. InProc. of the 13th ACM
Symposium on Theory of Computing, pages 604–613, Dallas, Texas,
1998.

[35] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-Based
Aggregation in Large Dynamic Networks.ACM Transactions on
Computer Systems, 23:219–252, August 2005.

[36] R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking. Randomized
Rumor Spreading. InIEEE Symposium on Foundations of Computer
Science, pages 565–574, 2000.

[37] S. Kashyap, S. Deb, K. Naidu, R. Rastogi, and A. Srinivasan.
Efficient Gossip-Based Aggregate Computation. InProc. of the 35th
ACM Principles of Database Systems, Chicago, IL, 2006.

[38] D. Kempe, A. Dobra, and J. Gehrke. Gossip-Based Computation of
Aggregate Information. InProc. of the 44th Annual IEEE Symposium
on Foundations of Computer Science, Cambridge, MA, Oct 2003.

[39] G. Koloniari and E. Pitoura. Peer-to-Peer Management of XML
Data: Issues and Research Challenges.SIGMOD Record,
34(2):6–17, June 2005.

[40] B. Lahiri and S. Tirthapura. Identifying Frequent Items in a Network
using Gossip.Journal of Parallel and Distributed Computing,
70(12):1241–1253, 2010.

[41] A. Lakshman and P. Malik. Cassandra: A Structured Storage System
on a P2P network. InProc. of the 2008 ACM-SIGMOD Conference,
Vancouver, Canada, 2008.

[42] L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter, and R. Parr.
XPathLearner: An On-line Self-Tuning Markov Histogram forXML
Path Selectivity Estimation. InProc. of the 28th International
Conference on Very Large Data Bases, pages 442–453, Hong Kong,
China, 2002.

[43] C. Luo, Z. Jiang, W.-C. Hou, F. Yu, and Q. Zhu. A Sampling
Approach for XML Query Selectivity Estimation. InProc. of the
12th International Conference on Extending Database Technology,
pages 335–344, Saint Petersburg, Russia, 2009.

[44] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-Probe
LSH: Efficient Indexing for High-dimensional Similarity Search. In
Proc. of the 33rd VLDB Conference, pages 950–961, Vienna,

Austria, 2007.
[45] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-Peer

Information System Based on the XOR Metric. InProc. of 1st
International Workshop on Peer-to-Peer Systems, pages 53–65,
London, 2002.

[46] C. N. Mead. Data Interchange Standards in Healthcare IT–
Computable Semantic Interoperability: Now Possible but Still
Difficult, Do We Really Need a Better Mousetrap?Journal of
Healthcare Information Management, 20(1):71–78, 2006.

[47] D. Mosk-Aoyama and D. Shah. Fast Distributed Algorithms for
Computing Separable Functions.IEEE Transactions on Information
Theory, 54(7):2997–3007, July 2008.

[48] R. Neumayer, C. Doulkeridis, and K. Nørvåg. A Hybrid Approach
for Estimating Document Frequencies in Unstructured P2P
Networks.Information Systems, 36(3):579–595, 2011.

[49] N. Ntarmos, P. Triantafillou, and G. Weikum. Statistical Structures
for Internet-Scale Data Management.The VLDB Journal,
18(6):1279–1312, 2009.

[50] T. C. Pan, J. D. Permar, A. Sharma, D. W. Ervin, T. M. Kurc,and
J. H. Saltz. Virtualizing XML Resources As caGrid Data Services. In
Proc. of AMIA Translational Bioinformatics Summit, San Francisco,
CA, 2009.

[51] T. Pitoura and P. Triantafillou. Self-Join Size Estimation in
Large-scale Distributed Data Systems. InProc. of the 24th IEEE Intl.
Conference on Data Engineering, Cancun, Mexico, April 2008.

[52] B. Pittel. On Spreading a Rumor.SIAM Journal on Applied
Mathematics, 47(1):213–223, 1987.

[53] N. Polyzotis and M. Garofalakis. XCluster Synopses forStructured
XML Content. InProc. of the 22th IEEE Intl. Conference on Data
Engineering, page 63, Atlanta, GA, Apr. 2006.

[54] N. Polyzotis, M. Garofalakis, and Y. Ioannidis. Selectivity Estimation
for XML Twigs. In Proc. of the 20th IEEE Intl. Conference on Data
Engineering, Boston, MA, March 2004.

[55] M. Ramanath, L. Zhang, J. Freire, and J. R. Haritsa. IMAX:
Incremental Maintenance of Schema-Based XML Statistics. In Proc.
of the 21st International Conference on Data Engineering, pages
273–284, Tokyo, Japan, 2005.

[56] P. Rao and B. Moon. Locating XML Documents in a Peer-to-Peer
Network using Distributed Hash Tables.IEEE Transactions on
Knowledge and Data Engineering, 21(12):1737–1752, December
2009.

[57] P. Rao and V. Slavov. Towards Internet-Scale Cardinality Estimation
of XPath Queries over Distributed XML Data. Technical Report
TR-DB-2011-01, University of Missouri-Kansas City, June 2011.
http://r.faculty.umkc.edu/raopr/TR-DB-2011-01.pdf.

[58] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A
Scalable Content-Addressable Network. InProc. of the 2001
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, pages 161–172, San
Diego, CA, 2001.

[59] C. Re, J. Brinkley, K. Hinshaw, and D. Suciu. Distributed XQuery. In
Proc. of the Workshop on Information Integration on the Web, pages
116–121, 2004.

[60] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object
Location and Routing for Large-Scale Peer-to-Peer Systems. In Proc.
of the IFIP/ACM Intl. Conference on Distributed Systems Platforms
(Middleware 2001), Heidelberg, Germany, Nov. 2001.

[61] J. Saltz, S. Oster, S. Hastings, S. Langella, T. Kurc, W.Sanchez,
M. Kher, A. Manisundaram, K. Shanbhag, and P. Covitz. caGrid:
Design and Implementation of the Core Architecture of the Cancer
Biomedical Informatics Grid .Bioinformatics, 22(15):1910–1916,
2006.

[62] D. Shah. Gossip Algorithms.Foundations and Trends in Networking,
3(1):1–125, 2009.

[63] D. Shah. Network Gossip Algorithms. InIEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3673–3676, 2009.

[64] W. W. Stead and H. S. Lin. Computational Technology for Effective
Health Care: Immediate Steps and Strategic Directions.The National
Academies Press, Washington D.C., 2009.

[65] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and

H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications. InProc. of the 2001 ACM-SIGCOMM
Conference, pages 149–160, San Diego, CA, Aug. 2001.

[66] The Chord/DHash Project. Available from
http://pdos.csail.mit.edu/chord/.

[67] The Niagara Project. http://www.cs.wisc.edu/niagara/.
[68] UW XML Repository.

www.cs.washington.edu/research/xmldatasets.
[69] W. Wang, H. Jiang, H. Lu, and J. X. Yu. Bloom Histogram: Path

Selectivity Estimation for XML Data with Updates. InProc. of the
30th VLDB Conference, pages 240–251, Toronto, Canada, 2004.

[70] Y. Wu, J. M. Patel, and H. V. Jagadish. Estimating AnswerSizes for
XML Queries. InProc. of the 8th International Conference on
Extending Database Technology, pages 590–608, Prague, 2002.

[71] XML.org. Available from http://www.xml.org/xml.
[72] N. Zhang, M. T. Ozsu, A. Aboulnaga, and I. F. Ilyas. XSEED:

Accurate and Fast Cardinality Estimation for XPath Queries. In Proc.
of the 22th IEEE Intl. Conference on Data Engineering, page 61,
Atlanta, GA, 2006.

[73] Y. Zhang and P. A. Boncz. XRPC: Interoperable and Efficient
Distributed XQuery. InProc. of the International Conference on Very
Large Data Bases (VLDB), Vienna, Austria, September 2007.

[74] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and
J. Kubiatowicz. Tapestry: A Resilient Global-scale Overlay for
Service Deployment.IEEE Journal on Selected Areas in
Communications, 22(1):41–53, Jan. 2004.

