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Abstract
User simulators are a principal offline method for training and
evaluating human-computer dialog systems. In this paper, we
examine simple sequence-to-sequence neural network architec-
tures for training end-to-end, natural language to natural lan-
guage, user simulators, using only raw logs of previous inter-
actions without any additional human labelling. We compare
the neural network-based simulators with a language model
(LM)-based approach for creating natural language user simu-
lators. Using both an automatic evaluation using LM perplexity
and a human evaluation, we demonstrate that the sequence-to-
sequence approaches outperform the LM-based method. We
show correlation between LM perplexity and the human eval-
uation on this task, and discuss the benefits of different neural
network architecture variations.
Index Terms: dialog systems, sequence-to-sequence mod-
elling, user simulators

1. Introduction
Simulated users have long been used to enable both offline train-
ing and evaluation of spoken dialog systems (SDSs) [1, 2, 3, 4,
5, 6, 7] in the absence of large numbers of users, or tolerance
of users to poor performance during the initial training phase.
With newer training methods allowing rapid bootstrapping of
SDSs [8], or training directly from data, the need for user simu-
lators for training has somewhat declined. However, they retain
an important role in evaluation, especially of industrial systems
[9, 10]. An enduring advantage of simulated users is that they
generalize from static log data, which can allow offline testing
of SDSs that differ from those on which the data was collected.
Our long-term aim in pursuing this work is the ability to of-
fline measure incremental improvements of the dialog engine
and check for regressions.

Previous simulated users in the literature usually have in-
puts and outputs that operate at the dialog act level [1, 5, 11]
instead of natural language (NL). Typically, they are addressing
the functionality of the dialog manager in exclusion of other
components. To this end, data-driven simulated users require
human annotation of log data with both system and user dialog
acts and, for agenda based [12, 5] simulated users, the manual
design and construction of some internal simulated user state, to
track against the associated agenda. Agendas address an impor-
tant problem in SDSs training: without some form of context
tracking to ensure consistency, the dialog manager can end up
dictating both the conversation and the simulated user’s require-
ments, e.g. everyone gets a down-town Italian restaurant.

With the advent of deep-learning it is possible to train
sequence-to-sequence (seq-2-seq) models as simulated users
that track an external agenda [11]. It would seem likely that
this can be extended to also learning their own internal state.

We would like to thank Zhalleh Feizollahi for invaluable help in
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Furthermore, if such models are trained to operate with NL in-
put and output, then no additional human annotation would be
required to train the models from log data. This paper presents
some initial steps in this direction, with sequence-to-sequence
models trained as NL-to-NL user simulators with no additional
human annotation. We also explore the effect of adding some
basic dialog context as input to these models.

The remainder of the paper is laid out as follows. Section 2
describes related work, section 3 describes the models, section
4 the automatic and human evaluations, and section 5 concludes
with a brief discussion and future work.

2. Background
Many previous approaches, including for agenda-based sys-
tems, operate at the dialog act level [1, 5], requiring human
annotation of user dialog acts. Even those that interact with
SDSs at the level of NL or speech [2, 7] have required manual
curation of data and often hand crafting of interaction statistics.
Asri et. al. [11] present a seq-2-seq user simulator model that
takes into account context. However, this model operates at the
dialog act level rather than the NL-to-NL level. Other similar
seq-2-seq models have been recently proposed. Our architec-
ture is, for example, very close to that proposed by Serban et.
al. [13], however their target is chat-oriented dialog systems
whereas ours is task-oriented user simulation.

We are not aware of any published work on seq-2-seq, NL-
to-NL user simulators. The contribution of this paper is the
initial investigation of such models.

3. Models
Given the general success across a wide set of tasks and the sim-
plicity of design of the seq-2-seq model proposed by Sutskever
at al. [14], we adopt this model as our starting point for our
investigation with one initial modification, see solid outlined
boxes in figure 1. The basic seq-2-seq model consists of an en-
coder (solid boxes labeled GRU in figure 1) that consumes the
input sequence, in this case the words of the system prompt,
and generates a fixed size summary vector. This vector is then
fed into a decoder (labeled LSTM) that generates an output se-
quence, in this case the words of the user response. Recurrence
in both encoder and decoder is lossy, with some information
earlier in the sequence being lost as encoding/decoding pro-
gresses. In this application, it is important that the decoder has
in mind the summary vector that represents the system prompt
(and later the system prompt and context) for each step of gen-
erating output words, especially for long user utterances. Thus,
we introduce connections from the summary vector to each time
step of the unrolled decoder. Within the Keras framework [15],
this is easiest achieved by inserting an additional dense layer
between the encoder and decoder. Additionally, in future work,
it is proposed to make this layer recurrent over dialog turns, i.e.
capture context information in the summarization layer. A sim-
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Figure 1: Architecture of seq-2-seq models with encoders (GRU) and decoder (LSTM) unrolled over ’time’ (word sequences).
ilar intermediate layer was adopted by Serban et. al. [13] in
construction of chat-bot dialog systems.

In this paper three models are tested: No-Context,
Concatenated-Context and Separate-Context. The No-Context
model, drawn with solid outlined boxes in figure 1, has a sin-
gle input encoder that receives only the NL system prompt.
Concatenated-Context also has a single encoder but it is ex-
tended to included context information which is prepended
ahead of the system prompt; label A in figure 1. The third,
Separate-Context, has an additional encoder for context (label
B) that is independent of the system prompt encoder. The out-
put vectors of these two encoders are concatenated as input to
the intermediate dense layer.

Multiple GRU units [16] make up the 1 or more encoders.
Input words to GRU layers are embedded using a pre-trained
embedding. The decoder consists of multiple LSTM units [17]
whose inputs, for each time step, are the summary vector of the
NL system prompt (plus context in the latter two models), and
an embedded vector representing the user simulator’s previous
word in its response. Input words to the LSTM are also embed-
ded using a pre-trained embedding. The LSTM layer’s output
is connected to a layer of softmax units, with one softmax unit
per word in the user simulator vocabulary. The softmax units
are trained with reference to 1-hot vectors of the words in the
target utterance; thus, they learn a distribution in the target word
space. This distribution is sampled from at evaluation time to
generate new utterances, with the likelihood of each word being
selected being proportional to the softmax unit activation.

GRUs were selected for the input layer due their relative
simplicity compared with the LSTM. LSTM was selected for
the output layer based the de-linkage between its internal state
and its output, this was thought likely to complement the exter-
nal recurrent loop that is feeding back selected words to the next
time-step. No experimentation was done to determine if this ar-
rangement was optimal compared to any other, e.g. we didn’t
investigate the use of GRUs or LSTMs for both input and out-
put recurrent layers. The intermediate dense layer uses rectified
linear units (ReLU) [18].

The embedding layers were trained separately from the
main model using the GSIM implementation of Word2Vec [19]
and the complete corpus of either system or user responses cap-
tured in the log data. The seq-2-seq models in this paper used
the following dimensions: embedding vectors of length 100,
512 unit GRU layers, dense ReLU layer and LSTM layer, soft-
max layer and user vocab size (words) 13,768, system vocab
size 11,507 words.

4. Experiments
4.1. Data and Evaluation
We perform experiments using data from the reminder domain
of the Cortana personal digital assistant. The reminder domain
allows users to set reminders by voice or typed input, using
a custom reminder text message and based on a variety of
triggers, such as at specific times or upon arrival at specific
locations. A confirmation-and-correction phase of the dialog
allows users to change previously-provided information. An

illustrative example is shown below.

User: Remind me to call Ann tomorrow at 4PM to cancel page.
Cortana: Alright, remind you to Call Ann at 4PM tomorrow. Is that
right?
U: No.
C: OK, should I change the reminder, date, or time?
U: The reminder.
C: What’s your reminder?
U: Call Ann, the cancer patient.
C: Ok, I’ll remind you to Call Ann, the cancer patient, at 4PM
tomorrow. Sound good?
U: Yes.
C: Got it.

Log data consisting of approximately 40,000 sessions
(136,000 turns) is split 60-20-20 into training, development, and
evaluation sets. All data was sessionized and automatically an-
notated by the Cortana runtime with system-side dialog acts.
Additionally, the user side utterances were automatically tagged
by a domain-matched intent and slot tagger [20], pre-trained us-
ing non-overlapping training data.

For this specific task Cortana supports 60 unique system di-
alog acts, covering individual request dialog acts for each task
parameter, task-level and parameter-level inform dialog acts, as
well as more specialized flavors of inform to cover business re-
quirements. The NLU schema contains 14 slots.

Performance of the simulator user models is measured of-
fline, using automatic evaluation, as well as online with each
simulator interfaced to Cortana.

The offline, automatic evaluation is intended to assess the
performance of a particular simulator model in aggregate. Liu et
al. [21] discuss the ineffectiveness of other unsupervised met-
rics, such as BLEU [22], METEOR [23], and ROUGE [24],
in particular in the context of evaluating the dialog system re-
sponses which may or may not have strong surface form over-
lap with the ground truth. In evaluating user simulators, the
problem is compounded by the fact that ground truth may not
even be available, especially when the simulator must gener-
ate a relatively open-ended slot value (such as the text of a re-
minder). Thus, instead of evaluating each generated utterance
against a set of references, we use an aggregate evaluation ap-
proach, inspired by language modelling methods. Given a sim-
ulated user model, we compute the perplexity of the evaluation
set data against a language model trained on utterances gener-
ated by that simulated user model. To generate data, we use
the development set sessions as templates1. That is, for each
system-side utterance (and associated real user context utter-
ances, if any) in each session, we generate a new user-side
utterance using the simulator model. This approach does not
yield new complete (and coherent) dialogues, since the gener-
ated user utterances may diverge, and the succeeding system ut-
terances remain fixed, rather than adapting to the simulated user
utterances. However, given a good simulated user model, we
expect that the generated data, in aggregation, will approximate
the behavior of real users (also in aggregation). The perplexity

1Note this is the only use of the development set, it is not used for
model tuning.



measure thus allows us to evaluate how well the simulated user
data matches data obtained from real users.

The online evaluation interfaces the user simulator with the
publicly available version of Cortana in Windows 10 for PC,
Anniversary Update. This version was not restricted in any way:
Cortana could misinterpret the simulated user and respond with
any supported task [20] or with web results. As Cortana’s in-
teraction differs for speech vs. text input, each user simulator
utterance is first converted to speech using the Microsoft Cog-
nitive Services, Bing Speech API TTS engine [25]. The Cortana
responses are captured in real-time from the Windows 10 event
logs and are used as input to the next execution of the simu-
lator, together with the previous simulator-generated utterance
(if any) as context. A session continues until either Cortana
terminates the interaction (by setting a reminder for the sim-
ulated user or reaching a terminal state in the attempted task)
or until the simulated user model generates a special token that
terminates the session. The generated sessions are evaluated in
aggregate by a human annotator. The annotation scheme was
designed in collaboration with a computational linguist. Each
session is assigned two scores on a scale of 1-5, indicating natu-
ralness and discourse-level cohesion, respectively. Naturalness
(is this a grammatically correct and understandable dialog) is
expected to correlate with perplexity, while discourse cohesion
captures how natural the conversational flow is (e.g. did the
simulated user answer system prompts reasonably).

4.2. Baseline: LM-based simulator

As baseline, we use a natural language simulator built using
language modelling techniques. LM-based user simulators are
a popular approach for building simulated users, in particular
for dialog system evaluation tasks [4]. A common approach in
LM-based simulation is to model the dialog as a sequence of
user and system actions that alternate [26]. In this paradigm,
the user action au can be predicted from the previous system
action as, as p = P (au|as).

The text generation is done using a generative LM ap-
proach, similar to the class LM approach described by Oh and
Rudnicky [27]. We treat each user action au as a separate class
for LM generation. Given the strong system-directed aspect of
our domain, we simplify this model further, tying the user act
distribution such that P (au|as) = 1 if au = as and 0 other-
wise. In other words, we use all user utterances in the training
data that follow a particular system dialog act as to train the
corresponding LM for generating the user act au.

Unlike in [27], we use a hierarchical generation approach.
That is, we first train a template LM for each class, where the
text covered by any NLU slot is collapsed to the correspond-
ing slot tag name. Then, for each slot tag, we train a separate
LM dedicated to just producing text that should fill this slot.
This allows for different dialog acts that use a particular slot to
share the corresponding slot LM, while each dialog act still uses
a separate LM trained using template sentences. At decoding
time, we first generate a template given the appropriate dialog
act class. Each slot tag contained in the template is replaced
with text generated from the corresponding slot tag LM.

All LMs are trained using the training set data. The data is
first tagged using the external, domain-matched slot tagger [20].
The word sequences covered by slot tags are collapsed to each
respective slot tag label to generate the templatized strings for
training dialog act-level LMs, and extracted to train the slot tag-
level LMs. We experiment with different LM orders for both
the dialog act-level LMs and the slot tag-level LMs. All LMs

Table 1: Comparison of LM-based and Sequence-to-Sequence
simulators without any context modelling, using LM perplexity
of the evaluation set as the automatic performance measure.

LM Source Sim Configuration Perplexity
training transcripts n/a 13.5

dev transcripts 15.2

LM Sim LM Order
Dialog Act Slot

dev generated

5 5 83
5 2 111
2 5 85
2 2 117

Seq2Seq Sim Context Type
dev generated no context 17.1

are trained using the SRILM toolkit [28].

4.3. Experiment: LM vs. Sequence-to-Sequence Simulators

In the first experiment, we compare the performance of the
baseline LM-based simulator against the sequence-to-sequence
simulator without any context. We use the offline, automated
LM perplexity-based measure. For each simulator configura-
tion, we first use the trained simulator to generate utterances
using the dev set sessions as templates. For comparison, we
also include the perplexity of the eval set user utterances given
the real user utterances in the training and dev sets, to show the
effect of using more data as well as using the same amount of
real user data vs. simulated user data.

Results are shown in table 1. The first two rows in the ta-
ble indicate the perplexity of the eval set given language models
trained on human user transcripts. The small difference in per-
formance between using the training vs. the development set as
LM training shows the impact of the corpus size. All the LM-
based simulators exhibit significant performance degradation;
the utterances generated by these simulators are not sufficiently
similar to the true human transcripts to predict the eval set; in
general, performance is better when using longer-span context
in the Slot LMs, even though the available data to train some of
the slot LMs is limited; we hypothesize this is primarily due to
the general text saved in the reminder text slot. The sequence-
to-sequence simulator recovers most of the performance lost by
the baseline LM simulators, yielding only a small performance
degradation relative to the human transcript-based evaluation.

4.4. Experiment: Comparison of Different Sequence-to-
Sequence Architectures

Next, we compare the effect of different context modelling ap-
proaches in our sequence-to-sequence architecture. For each
model configuration (None if using no context, with the previ-
ous user-side utterance Concatenated to the system utterance as
input, or with the previous user-side utterance used as a Sepa-
rate input layer), we train a corresponding model for up to 200
epochs. We select the model configuration corresponding to the
lowest loss function value for evaluation. The model selected
for the None configuration was also used in table 1.

Results are shown in table 2. Over all, the perplexity num-
bers obtained from each simulator configuration are very sim-
ilar, with no significant differences in the results. We observe
that the training objective for the None configuration appears to
converge more slowly than either context-aware configuration.



Table 2: Effect of context modelling on Sequence-to-Sequence
simulators, as evaluated using evaluation set LM perplexity.

Context Epoch Perplexity
None 160 17.1

Concatenated 60 17.4
Separate 80 17.4

Figure 2: Eval set perplexity and training loss at each epoch.

We perform two additional studies to evaluate the correla-
tion between the training objective and the perplexity measure.
Figure 2 plots the training loss together with the corresponding
model’s eval set perplexity, as evaluated every 5 epochs during
the training process. We use the Concatenated context model
configuration (other architectures display similar behaviour).
We see that the loss function drops smoothly until around 60-80
iterations; the improvement then stalls, with the loss function
displaying only minor fluctuations in later iterations. The per-
plexity, on the other hand, shows optimal behaviour at the first
evaluation of the model (epoch 5); performance after that is es-
sentially flat, with insignificant fluctuations.

Given that the perplexity score was optimal as early as it-
eration 5, we perform an analysis of the perplexity scores com-
puted for each of the first 10 epochs of training of each model
architecture. Results are shown in figure 3. The trends are sim-
ilar for all three architectures, with the first epoch yielding sub-
stantially higher perplexity scores than the rest, and the scores
flattening after the first five epochs. Even though the loss func-
tion continues to improve over a much longer period of time, the
performance of the user simulators stabilizes much faster. The
Separate context model generally has lower perplexity than the
other architectures, though the differences are not significant.

We additionally perform a live evaluation of the best simu-
lator model from each model architecture, as described in sec-

Figure 3: Eval set perplexity for each model architecture as
measured at each of the first ten epochs of training.

Table 3: Human evaluation of the three sequence-to-sequence
user simulator architectures compared to human user data

User Type Context Naturalness Cohesion
Human n/a 4.56 4.52

Simulated
None 4.31 4.33

Concatenated 4.45 4.52
Separate 4.41 4.41

Table 4: Task success during online evaluation.

Statistic Human Simulator Context
(% of total) Sessions None Concat. Separate

Success 62.9 56.5 58.2 63.7
Cancelled 1.9 4.3 5.2 8.0

Abandoned 33.3 30.4 29.8 23.9
Other 1.9 8.8 6.8 4.4

Goal Changes 6.6 5.2 7.5 14.2
ave. #turn pairs 3.2 2.8 3.1 3.5

tion 4.1. For each model architecture, we generated 100 ses-
sions by interfacing the simulator with the live Cortana system,
and selected 100 sessions from the offline evaluation set. We
had a single human judge score all sessions. The average scores
for each simulator model configuration, as well as the human
sessions, are shown in table 3. Differences between the No con-
text configuration and the human user sessions are significant at
p = 0.1; other differences are not significant.

Table 4 shows some additional statistics regarding the hu-
man sessions as compared to the live sessions recorded from
each simulator. The Separate context model best matches the
successful completion rate of the human sessions; it also has
a much lower abandonment rate than the No context and Con-
catenated context models. The Other category includes various
conditions, such as Cortana losing focus or incorrectly ranking
a user query as reminder; these are also lowest in the Separate
context configuration, suggesting that the dialogs better match
system expectations. Interestingly, the Separate context config-
uration has a much higher rate of goal changing than the others;
anecdotally, it appears that many of the extra goal changes are
due to repeated goal-changing in a single session.

5. Conclusion
In this paper, we introduced a class of NL-to-NL simulated
user models based on sequence-to-sequence architectures, and
showed that they significantly outperform a simulated user
based on language modelling techniques. These models are
trained from log data, with no further human annotation, al-
lowing them to be automatically trained and deployed.

All three seq-2-seq architectures examined perform simi-
larly and closely match human user data when hand-evaluated
for naturalness and discourse cohesion. This matches the LM
perplexity measure results that also show little difference be-
tween the models. The seq-2-seq models approximate the hu-
man distribution over Complete, Cancelled, Abandoned, Goal
Change and average dialog length, showing that these models
learned not only to reproduce natural sounding dialogs for this
domain but also to match the general statistics observed in real
user data. Both points are important when using such models to
evaluate dialog system improvements.

Future work will focus on additional architectures for better
modelling context, and apply the methods to additional domains
and more sophisticated dialog systems, e.g. by allowing more
user initiative in the interactions.



6. References
[1] K. Scheffler and S. Young, “Corpus-based dialogue simulation

for automatic strategy learning and evaluation,” in Proceedings
NAACL Workshop on Adaptation in Dialogue, 2001.
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