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Abstract

With ever growing data sets spanning DNA sequencing all the
way to single-cell transcriptomics, we are now facing the
question of how can we turn this vast amount of information
into knowledge. How do we integrate these large data sets into
a coherent whole to help understand biological programs? The
last few years have seen a growing interest in machine
learning methods to analyse patterns in high-throughput data
sets and an increasing interest in using program synthesis
techniques to reconstruct and analyse executable models of
gene regulatory networks. In this review, we discuss the syn-
ergies between the two methods and share our views on how
they can be combined to reconstruct executable mechanistic
programs directly from large-scale genomic data.
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Introduction
Uncovering and understanding the programs that un-
derlie the behaviour of cells is one of the major chal-
lenges in biology today. Understanding these programs
will help us determine the molecular mechanisms of
disease, and ultimately impact translational research. A
central goal of executable biology [1] is the construction
of executable mechanistic models of such cellular
behaviour programs, and the development of computa-
tional techniques for automated analysis and inference
of these models. In this review, we discuss two fields of
computer science, machine learning and program syn-

thesis that are focused on learning predictive models
from data and on automated construction of computer
Current Opinion in Systems Biology 2017, 4:64–70
programs from desired behaviours, respectively. These
two fields can be seen as two sides of the same coin,
particularly in the context of executable biology where

we want to learn from large complex datasets, and where
the artefact we ideally want to learn is a mechanistic
model of the cell’s behaviour, which is essentially a
program.

Recent research has begun to blur the boundaries be-
tween these two fields, as machine learning researchers
have begun to develop methods that can learn algo-
rithmic patterns in data and as programming language
researchers have begun to investigate the methods of
deep learning for program synthesis. Here, we explain

the differences between these two approaches, discuss
the growing connections between the two fields, and
give our projections for how they can be combined to
extract comprehensive cell signalling programs from the
tsunami of genomic data.
Machine learning for uncovering patterns in
large data sets
Machine learning allows us to approach problems that
have no clear solution as a traditional program auth-
ored in human-readable source code [2,3]. For
example, how would you program a computer to
recognise images of cats? There is no direct way to do
this. Instead, one can use a machine learning algo-
rithm to train a model on many images of cats, and
have the algorithm learn the underlying patterns in

the data in a way that generalises to new, previously
unseen images. Then, when presented with a new
image, the trained model is able to correctly predict
whether it contains a cat or not.

Machine learning can be used for classification problems
(for example, object recognition e detect a face in an
image), for regression (i.e., predict a continuous variable
given some input), or for sample generation (i.e.,
generate new objects that are similar to previously seen
objects). A machine learning algorithm takes training
data as an input and uses it to estimate a function f. The
algorithm typically does this by optimising a metric that
measures how well f fits the training data. Machine
learning is distinguished from a regular optimisation
problem by the requirement for generalisation to new,
previously unseen data (in order not to over fit the
training data). To test how well the trained model
generalises, we evaluate the performance measure on
test data, which is disjoint from the training data.
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Classical approaches to machine learning
‘Classical’ machine learning approaches are based upon

the careful extraction of features of a data set. These
features are then plugged into a standard regression or
classification algorithm, such as linear regression, naı̈ve
bayes, or the k-nearest neighbours classifier (see Ref. [3]
for an overview of these classic algorithms). The success
or failure of the machine learning algorithm to make
accurate predictions is largely dependent on the fea-
tures it is presented with. In areas such as speech
recognition and image classification, features of interest
can be highly complex and must be thoroughly designed
by hand by a domain expert, a process known as feature
engineering.

An example of using classical machine learning tech-
niques in biology is the prediction of gene expression
levels from transcription factor binding profiles using
linear regression [4]. Yu et al. map genotype to pheno-
type in yeast using random forests with gene ontology
terms as features [5]. Deng et al. built a predictive
system for classifying genes as essential or non-essential
in bacteria by integrating gene expression, proteine
protein interaction and genomic data, averaging the

predictions of an ensemble of different models [6].
Applications of machine learning techniques to gene
regulatory network reconstruction have focused on
detection of statistical signals in gene expression data
using clustering [7e9], correlation [10,11], mutual in-
formation [12], Bayesian networks [13] or random for-
ests [14].
Deep neural networks
Deep learning, the application of deep neural networks
to machine learning, is the current state-of-the-art in
supervised learning [2]. While the explosion of deep
learning research is recent, researchers have been
working on the underlying models, artificial neural
networks, since the 1940s, initially as computational
models of the brain. Early applications of deep learning

in biology include the use of neural networks to deci-
pher the complex tissue-specific splicing regulatory
code and to predict DNA-protein binding [15,16].

There are two major features that distinguish deep
learning from classical approaches to machine learning.
The first is that neural networks can represent essen-
tially any (continuous) function, rather than simple
functions of a specific form [17]. This property is true of
shallow neural networks, as well as deep ones. The
second major difference between deep learning and

classical machine learning is that deep neural networks
perform representation learning. Representation learning
solves the feature engineering problem faced by classical
approaches to machine learning, mentioned above. In a
deep neural network, the features themselves can also
be learnt from the raw data, automatically. Figure 1
www.sciencedirect.com
shows how a deep neural network can learn to repre-
sent the concept of an image of a person by building a
hierarchy of representations, of increasing levels of
abstraction [2].

Figure 2 shows an illustration of a deep neural network
architecture for predicting the sequence specificities of
DNA- and RNA-binding proteins [15]. The neural

network is trained on sequence specificities measured
by a range of experimental methodologies. The network
then learns to generalise the patterns it finds in this data
to discover both motifs and an associated score
predicting their binding affinity. The resulting trained
model can then be used to identify new binding se-
quences or predict the effect of DNA or RNA
mutations.

In a neural network, components called neurons are
connected into a graph. A neuron receives a signal from

each of its input neighbours, takes a weighted combi-
nation of these inputs (according to learned weights)
and passes the result through an activation function to
determine its output signal. In a deep neural network,
these outputs are in turn fed into other neurons, and
many layers can be stacked, with the input to the system
arriving at the first layer and the output of the system
arriving from the final layer.

To train a neural network, we define an objective function
that measures how well the network outputs fit our

training data. In modern machine learning, the objective
function and the activation functions are differentiable,
meaning that a small change in the weights of a neuron
result in small changes to its output. We can track the
effect of changing each neuron weight on the resulting
objective value, and use a local optimisation algorithm to
iteratively update all the weights to optimise the
objective. Because the objective function associated
with a neural network is in general highly non-convex, a
local optimisation algorithm may get stuck at a locally
optimal, but not globally optimal choice of weights. It is
therefore somewhat surprising that deep learning works

so well. For image and speech recognition tasks, local
optima which are far from the value of the global opti-
mum do not seem to be a problem in practice. There has
been some recent theoretical work on trying to under-
stand this [18e21]. However, the presence of local
optima seems to be a much larger issue for using deep
learning approaches to synthesise programs, as we
discuss next.
Program synthesis for reconstructing gene
regulatory networks
Program synthesis is a method for automatically
constructing a program that satisfies a given set of
desired behaviours [22e25]. The set of behaviours can
be given as a logical formula or as a set of inpute
Current Opinion in Systems Biology 2017, 4:64–70
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Figure 1

Representation learning. Deep neural networks learn to represent concepts in terms of progressively simpler ones. At the lowest level of the network,
raw pixel values are input into the model. The next layer of the model identifies edges, by comparing the brightness of neighbouring pixels. The third layer
takes the representation of edges, and uses them to represent corners and contours. The forth layer is able to detect entire parts of specific objects, by
combing together contours and corners. Finally, the model outputs a classification of the image which it determines based upon the object parts fed from
the forth layer. Crucially, none of these abstract concepts is provided a-priori by the programmer. Instead, they are directly learnt from the raw data.
Reproduced, with permission, from Ref. [2].
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output examples that the program should reproduce, or
as some combination of the two. For example, we may
want a program that can sort a list of integers. Rather

than directly writing such a program, we may ask the
computer to automatically find one for us. Unlike deep
Figure 2

Deep learning in biology. A deep neural network architecture for predicting th
with permission, from Ref. [15].

Current Opinion in Systems Biology 2017, 4:64–70
learning, program synthesis generally leads to discrete
problems which can be exactly solved to obtain a
globally optimal solution, using algorithms that

leverage SAT, SMT, or integer linear programming
solvers.
e sequence specificities of DNA- and RNA-binding proteins. Reproduced,
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The Single Cell Network Synthesis toolkit (SCNS) is a
method for synthesising executable models of gene
regulatory networks in the form of Boolean networks
from single-cell gene expression data [26,27]. SCNS is
based upon viewing single-cell gene expression profiles
as though they were states of an asynchronous Boolean
network, and then solving the problem of reconstructing
a Boolean network from its state space. This algorithm

uses a combination of enumerative search, graph
reachability and Boolean satisfiability solving to extract a
gene regulatory network model that best matches the
state space data (Figure 3A). Before SCNS can be used,
gene expression data first must be discretised to binary
data, where continuous gene expression values are
converted to Boolean on/off values.

The SCNS approach can be applied to study develop-
mental processes, and requires measurement of suffi-
cient single-cells to get reasonable coverage of a system

across a time course. We applied this methodology to
study early blood development in the mouse embryo,
capturing nearly 4000 cells with blood-forming potential
across four sequential time points. We designed this
experiment so that approximately one embryo equiva-
lent of cells was collected at each time point, giving a
comprehensive single-cell resolution picture of the
developmental process and allowing us to find a model
that can explain transitions from early cell states to late
cell states. Once a model has been found, it can be used
to make predictions which can be validated experi-

mentally. If the model predicts that transcription factors
A and B are both required for activation of C, experi-
ments can be designed that mutate binding sites for A
and B individually and in combination and assess the
effects on the expression of C. If the model predicts that
overexpression or knockout of a specific gene eliminates
or adds model states, this can be tested via corre-
sponding overexpression/knockout studies.

The Reasoning Engine for Interaction Networks
(RE:IN) synthesises Boolean networks from prior
Figure 3

Executable gene regulatory network model synthesis. Boolean network m
expression data and from relevance networks + stable state specifications re
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knowledge of the gene regulatory network connections
together with a set of desired stable states that the
constructed model should have [28] (Figure 3B). The
search for a compatible model is encoded as a logical
formula and solved using an SMT solver. Again, this
specification is discrete, given by binary stable states
and the presence of network edges. Dunn et al. used
this method to reconstruct a minimal Boolean network

model that can explain embryonic stem cell
pluripotency.
Connections between machine learning and
program synthesis for learning programs
from data
Recently, machine learning researchers have begun to
extend their deep neural network models so that they
can learn algorithmic patterns in data. At the same time,
researchers working in program synthesis have begun to
investigate the methods of deep learning for program
synthesis, and so these two fields have begun to overlap.
Below we survey the latest developments in these fields,
and in the next section we will discuss how these ad-
vances could be used to improve methods for synthe-
sising biological models.

Deep learning researchers have found that by
augmenting networks with an external data structure
such as a tape, stack or list, they can train models to
learn simple algorithms [29e38]. Compared to regular
programs, there is no interpretable source code repre-
sentation for these trained models. They are black boxes
given by a huge number of parameters on a neural
network, and they can only be understood by their ac-
tions on given inputs [39].

On the other side, in the programming languages com-

munity, there has been work on applying the methods of
differentiable models and deep learning to the problem
of synthesising (the source code of) programs. The tool
TerpreT has been developed to understand the capa-
bilities of machine learning techniques relative to
odels synthesised by SCNS (A) and REIN (B), from single-cell gene
spectively. Reproduced, with permission, from Refs. [27] and [28].

Current Opinion in Systems Biology 2017, 4:64–70
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traditional alternatives based on discrete models and
exact constraint solving [39]. The conclusions of this
study were that constraint solving significantly outper-
formed the direct application of machine learning
methods. Gaunt et al. also showed that on a simple
problem there are exponentially many local optima in
the solution space and that empirically they arise often
in practice during training. However, the use of differ-

entiable models and deep learning does provide some
interesting possibilities, such as synthesising programs
from perceptual data such as images [40]. Differentiable
Forth is a similar work, where a Forth program with
“holes” is sketched by the user, and then the holes are
filled in by machine learning methods [41].

In Adaptive Neural Compilation, Bunel et al. introduce
an approach for compiling an existing program to a
differentiable model, then try to find a more efficient
Figure 4

Combining representation learning and program synthesis to reconstruc
data sources. In our first proposed approach, using machine learning to sca
distribution over features of the data. This will be used to guide a constraint so
proposed approach, neural network methods will be directly applied to learn
interpretable form.

Current Opinion in Systems Biology 2017, 4:64–70
model for solving the same problem, by demanding that it
agrees with the original program on a set of inputeoutput
examples [42]. The resulting model is then translated
back to source code. In Neuro-Symbolic Program Syn-
thesis, Parisotto et al. use a novel neural network archi-
tecture to search over the space of source code to find a
matching program [43]. Very recently, Balog et al. intro-
duced DeepCoder, an approach which uses neural net-

works to guide traditional search techniques rather than
directly using machine learning methods to search
through the space of programs [44]. This approach
combines the advantages of program synthesis and ma-
chine learning to scale to harder problems.
Challenges and future directions
From the viewpoint of executable biology, the task of
automatically generating mechanistic insights from
t human-interpretable, executable models from a variety of biological
le synthesis to larger data sets, a neural network will output a probability
lver, by looking for models with high-probability features first. In the second
a model from non-discretised data, which will be translated to a human-
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genomic data amounts to reconstructing gene regulatory
network programs. This task poses two main challenges:
(1) scalability e due to the sheer volume of data avail-
able, and (2) handling the non-discrete and often noisy
nature of that data. Combining program synthesis with
deep learning can potentially help address both of these
problems (Figure 4).

Scalability
While the potential for uncovering biological mecha-
nisms from large data is huge, combinatorial synthesis

methods such as those used in the Single Cell Network
Synthesis tool e SCNS [26,27] and the RE:IN tool [28]
do not scale up sufficiently. Recently, combinatorial
search methods augmented by a machine learning
component to guide the search process have been suc-
cessfully applied to improve baseline methods for
automated theorem proving [45,46] and program syn-
thesis [44] and there is hope for further progress.

Non-discrete data
Current combinatorial synthesis methods rely on clean,
discrete data and well-defined behaviours. Some valuable
data sources, however, such as single-cell mass cytometry

[47], are noisy and hard to discretise. A major attraction of
machine learning methods is their ability to deal with
noisy, continuous data. Thus, a combination of program
synthesis and machine learning methods could recon-
struct executable models directly from continuous
expression data. Functions describing gene regulatory in-
teractions could be represented as compact regularised
neural networks. Then, using techniques developed in
recent research on differential interpreters
[35,39,40,42,44,48], these networks could be translated
back to a human-readable formula anda logical, executable

model. There is now a deluge of data from DNA
sequencing [49], imaging, proteomics [47] and metab-
olomics [50] that as of yet has not been leveraged to
reconstruct mechanistic models. The potential for
uncovering biological mechanisms from this data is huge,
butwill requireboth the scalability and robustness tonoise
found in machine learning methods and the ability to
extract executable, human-interpretable models found in
methods developed in the program synthesis community.

Going forward, combining deep learning and program

synthesis will allow us to incorporate into executable
models information from diverse data sources, which
may be continuous, noisy or perceptual and therefore
difficult to deal with using existing methods. Taken
together, these developments hold the promise of
innovative methods for turning genomic datasets into a
comprehensivemap of human cells in health and disease.
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